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Abstract. A 6-year-long high-resolution Chinese air quality reanalysis (CAQRA) dataset is presented in this
study obtained from the assimilation of surface observations from the China National Environmental Monitoring
Centre (CNEMC) using the ensemble Kalman filter (EnKF) and Nested Air Quality Prediction Modeling Sys-
tem (NAQPMS).This dataset contains surface fields of six conventional air pollutants in China (i.e. PM2.5, PM10,
SO2, NO2, CO, and O3) for the period 2013–2018 at high spatial (15km×15km) and temporal (1 h) resolutions.
This paper aims to document this dataset by providing detailed descriptions of the assimilation system and the
first validation results for the above reanalysis dataset. The 5-fold cross-validation (CV) method is adopted to
demonstrate the quality of the reanalysis. The CV results show that the CAQRA yields an excellent perfor-
mance in reproducing the magnitude and variability of surface air pollutants in China from 2013 to 2018 (CV
R2
= 0.52–0.81, CV root mean square error (RMSE)= 0.54 mg/m3 for CO, and CV RMSE= 16.4–39.3 µg/m3

for the other pollutants on an hourly scale). Through comparison to the Copernicus Atmosphere Monitoring Ser-
vice reanalysis (CAMSRA) dataset produced by the European Centre for Medium-Range Weather Forecasts
(ECWMF), we show that CAQRA attains a high accuracy in representing surface gaseous air pollutants in China
due to the assimilation of surface observations. The fine horizontal resolution of CAQRA also makes it more
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suitable for air quality studies on a regional scale. The PM2.5 reanalysis dataset is further validated against the
independent datasets from the US Department of State Air Quality Monitoring Program over China, which ex-
hibits a good agreement with the independent observations (R2

= 0.74–0.86 and RMSE= 16.8–33.6 µg/m3 in
different cities). Furthermore, through the comparison to satellite-estimated PM2.5 concentrations, we show that
the accuracy of the PM2.5 reanalysis is higher than that of most satellite estimates. The CAQRA is the first
high-resolution air quality reanalysis dataset in China that simultaneously provides the surface concentrations
of six conventional air pollutants, which is of great value for many studies, such as health impact assessment
of air pollution, investigation of air quality changes in China, model evaluation and satellite calibration, op-
timization of monitoring sites, and provision of training data for statistical or artificial intelligence (AI)-based
forecasting. All datasets are freely available at https://doi.org/10.11922/sciencedb.00053 (Tang et al., 2020a), and
a prototype product containing the monthly and annual means of the CAQRA dataset has also been released at
https://doi.org/10.11922/sciencedb.00092 (Tang et al., 2020b) to facilitate the evaluation of the CAQRA dataset
by potential users.

1 Introduction

Air pollution is a critical environmental issue that adversely
affects human health and is closely connected to climate
change (von Schneidemesser et al., 2015). Exposure to am-
bient air pollution has been confirmed by many epidemiolog-
ical studies to be a leading contributor to the global disease
burden, which increases both morbidity and mortality (Co-
hen et al., 2017). China, as the largest developing country,
has achieved great economic development since the 1980s.
This large-scale economic expansion, however, is accompa-
nied by a dramatic increase in air pollutant emissions, lead-
ing to severe air pollution in China (Kan et al., 2012). Since
2012, the Chinese government has established a nationwide
ground-based air quality monitoring network (Fig. 1) to mon-
itor the surface concentrations of six conventional air pollu-
tants in China – i.e. particles with an aerodynamic diameter
of 2.5 µm or smaller (PM2.5), particles with an aerodynamic
diameter of 10 µm or smaller (PM10), sulfur dioxide (SO2),
nitrogen dioxide (NO2), carbon monoxide (CO), and ozone
(O3) – which plays an irreplaceable role in understanding the
air pollution in China. In addition, since the implementation
of the Action Plan for the Prevention and Control of Air Pol-
lution in 2013, a series of aggressive control measures have
been applied in China to reduce the emissions of air pollu-
tants. According to the estimates of Zheng et al. (2018b),
Chinese anthropogenic emissions have decreased by 59 % for
SO2, 21 % for NOx , 23 % for CO, 36 % for PM10, and 35 %
for PM2.5 from 2013 to 2017. Concurrently, the air quality
in China has changed dramatically over the past 6 years (Sil-
ver et al., 2018; Zheng et al., 2017). Such large changes in
Chinese air quality and their effects on human health and the
environment have become an increasingly hot topic in many
scientific fields (e.g. Xue et al., 2019; Zheng et al., 2017), ne-
cessitating a long-term air quality dataset in China with high
accuracy and spatiotemporal resolutions.

Ground-based observations can provide accurate informa-
tion on the spatial and temporal distributions of air pollutants

in China, but they are sparsely and unevenly distributed in
space. Satellite observations exhibit the advantages of a high
spatial coverage and have widely been applied in air pollu-
tion monitoring over large domains. A series of satellite re-
trievals related to air quality have been developed over the
past 2 decades, such as the observations of NO2, SO2, and
O3 columns from the Ozone Monitoring Instrument (OMI;
Levelt et al., 2006), CO column observations from the Mea-
surement of Pollution in the Troposphere (MOPITT; Deeter
et al., 2003), and aerosol optical depth (AOD) observations
from the Moderate Resolution Imaging Spectroradiometer
(MODIS; Barnes et al., 1998). These satellite column mea-
surements have also been used to estimate surface concentra-
tions based on different methods, such as chemical transport
models (CTMs) (e.g. van Donkelaar et al., 2016, 2010), ad-
vanced statistical methods (e.g. Ma et al., 2014, 2016; Xue
et al., 2019; Zou et al., 2017), and semi-empirical models
(e.g. Lin et al., 2015, 2018), which have been proven to be an
effective way to acquire wide-coverage distributions of sur-
face air pollutant with good accuracy (Chu et al., 2016; Shin
et al., 2019). However, challenges remain in satellite-based
estimates due to missing values related to cloud contami-
nation, uncertainties in satellite measurements, and difficul-
ties in modelling the complex relationship between surface
concentrations and column measurements (Shin et al., 2019;
van Donkelaar et al., 2016; Xue et al., 2019). In addition,
most satellite-based estimates of surface concentrations ex-
hibit low temporal resolutions (daily or even longer), which
limit their application in fine-scale studies, such as the as-
sessment of the acute health effects of the air quality. To our
knowledge, a nationwide long-term estimate of the surface
concentrations of all conventional air pollutants in China on
an hourly scale have not yet been reported in previous satel-
lite estimates.

A long-term air quality reanalysis dataset of critical air
pollutants can provide constrained estimates of their con-
centrations at all locations and times, which optimally com-
bines the accuracy of observations and the physical infor-
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mation and spatial continuity of CTMs through advanced
data assimilation techniques. Reanalysis datasets are uni-
form, continuous, and state-of-the-science best-estimate data
products that have been adopted by a vast number of re-
search communities. For example, several long-term mete-
orological reanalysis datasets have been developed by vari-
ous weather centres in different regions and countries, such
as the ERA-Interim reanalysis developed by the European
Centre for Medium-Range Weather Forecasts (ECMWF;
Dee et al., 2011), the National Center for Atmospheric Re-
search (NCAR)/National Centers for Environmental Pro-
tection (NCEP) reanalysis developed by the NCEP (Saha
et al., 2010), the Modern-Era Retrospective Analysis for
Research and Applications (MERRA) developed by the
NASA Global Modeling and Assimilation Office (NASA-
GMAO; Rienecker et al., 2011), the Japanese 55-year Re-
analysis (JRA-55) developed by the Japan Meteorological
Agency (Kobayashi et al., 2015), and the China Meteo-
rological Administration’s Global Atmospheric Reanalysis
(CRA-40) developed by the China Meteorological Admin-
istration (CMA). The use of data assimilation in atmospheric
chemistry reanalysis is more recent, and certain reanalysis
datasets for atmospheric composition have been produced
over the past decades, for example the Monitoring Atmo-
spheric Composition and Climate (MACC), Copernicus At-
mosphere Monitoring Service (CAMS) interim reanalysis
(CIRA), and CAMS reanalysis (CAMSRA) produced by the
ECWMF (Flemming et al., 2017; Inness et al., 2019, 2013);
the MERRA-2 aerosol reanalysis produced by the NASA-
GMAO (Randles et al., 2017); the tropospheric chemistry
reanalysis (TCR) from 2005–2012 produced by Miyazaki
et al. (2015) and its latest version TCR-2 (Miyazaki et al.,
2020); the global reanalysis of carbon monoxide produced by
Gaubert et al. (2016); the multi-sensor total ozone reanalysis
from 1970–2012 produced by van der A et al. (2015); and
the Japanese Reanalysis for Aerosols (JRAero) from 2011–
2015 produced by Yumimoto et al. (2017). These reanalysis
datasets promote our understanding of atmospheric compo-
sition and also facilitate air quality research. However, these
datasets are all global datasets with coarse horizonal reso-
lutions (> 50 km), which may be insufficient to capture the
high spatial variability of air pollutants on a regional scale.
In addition, some of these reanalysis datasets only provide air
quality data prior to the year 2012 and only focus on specific
species. There is still no high-resolution air quality reanaly-
sis dataset in China capturing its dramatic air quality change
during recent years.

In view of these discrepancies, in this study we develop
a high-resolution regional air quality reanalysis dataset in
China from 2013 to 2018 (which will be extended in the fu-
ture on a yearly basis) by assimilating surface observations
from the China National Environmental Monitoring Centre
(CNEMC). The developed reanalysis dataset may help miti-
gate the lack of high-resolution air quality datasets in China
by providing surface concentration fields of all six conven-

tional air pollutants in China at high spatial (15km× 15km)
and temporal (hourly) resolutions, which is of great value
to (1) retrospective air quality analysis in China, (2) health
and environmental impact assessment of air pollution on fine
scales, (3) model evaluation and satellite calibration, (4) opti-
mization of monitoring sites, and (5) provision of basic train-
ing datasets for statistical or artificial intelligence (AI)-based
forecasting.

2 Description of the chemical data assimilation
system

The Chinese air quality reanalysis (CAQRA) dataset was
produced with the chemical data assimilation system (Chem-
DAS) developed by the Institute of Atmospheric Physics,
Chinese Academy of Sciences (IAP, CAS) (Tang et al.,
2011). This system consists of (i) a three-dimensional CTM
called the Nested Air Quality Prediction Modeling System
(NAQPMS) developed by Wang et al. (2000), (ii) an en-
semble Kalman filter (EnKF) assimilation algorithm, and
(iii) surface observations from CNEMC with the automatic
outlier detection method developed by Wu et al. (2018). We
adopted an offline analysis scheme in this study since there
are no previous experiences with online chemical data assim-
ilation at such a high horizontal resolution. The lessons learnt
from this offline analysis application could also facilitate fu-
ture implementation of online analysis. In the offline analysis
scheme, a free ensemble simulation is first conducted, and
the observations are then assimilated using the EnKF. A sim-
ilar offline analysis scheme has also been applied in previous
reanalysis studies, such as Candiani et al. (2013) and Kumar
et al. (2012). Detailed descriptions of the ensemble simula-
tion, observations, and data assimilation algorithm used in
this study are presented below.

2.1 Air pollution prediction model

The NAQPMS model was used as the forecast model to
represent the atmospheric chemistry, which has been ap-
plied in previous assimilation studies (Tang et al., 2011,
2013). The model is driven by the hourly meteorological
fields produced by the Weather Research and Forecasting
(WRF) model (Skamarock, 2008). Gas phase chemistry is
simulated with the carbon bond mechanism Z developed
by Zaveri and Peters (1999). Aqueous-phase chemistry and
wet deposition are simulated based on the Regional Acid
Deposition Model (RADM) mechanism in the Community
Multi-scale Air Quality (CMAQ) model version 4.6. In re-
gard to aerosol processes, the thermodynamic model ISOR-
ROPIA 1.7 (Nenes et al., 1998) is applied for the simulations
of inorganic atmospheric aerosols. Six secondary organic
aerosols are explicitly treated in the NAQPMS model based
on Li et al. (2011). To simulate the interactions between par-
ticles and gases, 28 heterogeneous reactions involving sul-
fate, soot, dust, and sea salt particles are included based on
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Figure 1. Modelling domain of the ensemble simulation overlain
on the distribution of the observation sites of the CNEMC. The dif-
ferent colours denote the different regions in China, namely, the
North China Plain (NCP), northeast China (NE), southwest China
(SW), southeast China (SE), northwest China (NW), and central
China.

previous studies (Li et al., 2015, 2012). Size-resolved min-
eral dust emissions are calculated online as a function of
the relative humidity, frictional velocity, mineral particle size
distribution, and surface roughness (Li et al., 2012). Sea salt
emissions are calculated with the scheme of Athanasopoulou
et al. (2008). The dry deposition of gases and aerosols is
modelled based on the scheme of Wesely (1989), and advec-
tion is simulated with the accurate mass conservation algo-
rithm of Walcek and Aleksic (1998).

Figure 1 shows the modelling domain of this study, which
covers most parts of East Asia with a fine horizontal reso-
lution of 15 km. The vertical coordinate system consists of
20 terrain-following levels, with the model top reaching up
to 20 000 m and the first layer at approximately 50 m. Nine
vertical layers are set within 2 km of the surface to better
characterize the vertical mixing process within the bound-
ary layers. The emissions of air pollutants considered in this
study include the monthly anthropogenic emissions retrieved
from the Hemispheric Transport of Air Pollution (HTAP)
v2.2 emission inventory with a base year of 2010 (Janssens-
Maenhout et al., 2015), biomass burning emissions retrieved
from the Global Fire Emissions Database (GFED) version 4
(Randerson et al., 2017; van der Werf et al., 2010), biogenic
volatile organic compound (BVOC) emissions retrieved from
the Model of Emissions of Gases and Aerosols from Na-
ture (MEGAN)-MACC (Sindelarova et al., 2014), marine
VOC emissions retrieved from the POET database (Granier
et al., 2005), soil NOx emissions retrieved from the Regional
Emission Inventory in Asia (Yan et al., 2003), and lightning
NOx emissions retrieved from Price et al. (1997). Clean ini-
tial conditions are used in the air quality simulations with

a 2-week free run of the NAQPMS model as the spin-up
time. The top and boundary conditions are provided by the
Model for Ozone and Related Chemical Tracers (MOZART;
Brasseur et al., 1998; Hauglustaine et al., 1998) model, and
the meteorological fields are provided by the WRF model.
In each daily meteorology simulation, a 36 h free run of the
WRF model is conducted with the first 12 h simulation period
as the spin-up run and the remaining 24 h period providing
the meteorologic inputs for the NAQPMS model. The initial
and boundary conditions for the meteorology simulations are
provided by the NCAR/NCEP 1◦× 1◦ reanalysis data.

2.2 Generation of ensemble simulation

The EnKF uses an ensemble of model simulation to rep-
resent the forecast uncertainty, which should include the
most model uncertain aspects. Considering that the emis-
sions are a major source of uncertainty in air quality predic-
tion (Carmichael et al., 2008; Hanna et al., 1998; M. Li et al.,
2017), in this study the ensemble was generated by perturb-
ing the emissions based on their error probability distribution
functions (PDFs), which were assumed to be Gaussian dis-
tributions. Table 1 lists the perturbed species considered in
this study as well as their corresponding emission uncertain-
ties obtained from previous studies. The perturbed emissions
were parameterized by multiplying the base emissions with
a perturbation factor β, as expressed in Eq. (1):

Ei =E
◦βi, i = 1, 2, · · ·,N, (1)

where E denotes the vector of base emissions, ◦ denotes the
Schur product, and N denotes the ensemble size. The perfor-
mance of the EnKF is strongly related to the ensemble size,
which determines the accuracy to which the background er-
ror covariance is approximated (Constantinescu et al., 2007;
Miyazaki et al., 2012). A large ensemble size is important in
capturing the proper background error covariance structure,
especially in high-resolution data assimilation application
due to the fine-scale variability and large degree of freedoms.
However, a large ensemble is computationally expensive as
the cost of EnKF linearly increases with ensemble size, while
the accuracy of covariance estimate improves by its square
root (Constantinescu et al., 2007). Thus, an appropriate en-
semble should keep a good balance between accuracy and
computational cost. Constantinescu et al. (2007) in their ideal
experiments showed that a 50-member ensemble has signif-
icant improvement against smaller ensembles, and Miyazaki
et al. (2012) in their real chemical assimilation experiments
showed that the improvement was much less significant by
further increasing the ensemble size from 48 to 64. Thus, the
ensemble size was chosen as 50 in this study by referencing
pervious publications and also our previous high-resolution
regional assimilation work (Tang et al., 2011, 2013, 2016),
which showed that a 50-member ensemble keeps good bal-
ance between assimilation performance and computational
efficiency. However, it should be noted that our application
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Table 1. Uncertainties in the emissions of the different species.

Species SOa
2 NOa

x COa Non-methane
volatile organic
compounds
(NMVOCs)a

NHb
3 PMa

10 PMa
2.5 Black carbon

(BC)a
Organic carbon
(OC)a

Emission uncertainty 12 % 31 % 70 % 68 % 53 % 132 % 130 % 208 % 258 %

a Emission uncertainty obtained from Zhang et al. (2009). b Emission uncertainty obtained from Streets et al. (2003).

has higher horizontal resolution than that of Constantinescu
et al. (2007) and Miyazaki et al. (2012), which may require
a larger ensemble size due to the larger degrees of freedom
in our application. Thus, to reduce the degrees of freedom in
our high-resolution data assimilation work, we assumed that
the emission errors were spatially correlated, and an isotropic
correlation model was assumed in the covariance of the emis-
sion errors, which is written as

ρ(i,j )= exp

{
−

1
2

[
h(i,j )
l

]2
}
, (2)

where ρ(i,j ) represents the correlation between grids i and
j ; h(i,j ) is the distance between these two points; and l is the
decorrelation length, which was specified as 150 km in this
study. According to the PDF of the emission errors, β follows
the same Gaussian distribution as the emission errors except
that its mean equals 1. Using the method of Evensen (1994),
50 smooth pseudo-random perturbation fields of β were gen-
erated for each perturbed species. In addition, the emission
perturbations were kept independent from each other to pre-
vent pseudo-correlation among the different species.

2.3 Observations

Surface observations of the hourly ambient PM2.5, PM10,
SO2, NO2, CO, and O3 concentrations retrieved from the
CNEMC were used in this study. The number of observation
sites was approximately 510 in 2013 and increased to 1436
in 2015. Real-time observations of these six air pollutants at
each monitoring site are routinely gathered by the CNEMC
and released to the public (available at http://www.cnemc.
cn/; last access: 17 April 2020) at hourly intervals. A chal-
lenge that should be overcome in the assimilations of surface
observation is that there are occasional outliers occurring in
these observations due to the instrument malfunctions, influ-
ences of harsh environments, and limitations of the measure-
ment method. Filtering out these outliers is necessary before
the assimilation; otherwise these outliers may cause unreal-
istic spatial and temporal variations in the reanalysis. To ad-
dress this issue, a fully automatic outlier detection method
was developed by Wu et al. (2018) to filter out the observa-
tion outliers. An automatic outlier detection method is very
important in chemical data assimilation since there is a large
amount of observation data on multiple species. Four types

of outliers – characterized by temporal and spatial inconsis-
tencies, instrument-induced low variances, periodic calibra-
tion exceptions, and lower PM10 concentrations than those of
PM2.5 – were detected and removed before the assimilation.
Figure A1 in Appendix A shows the removal ratios of the six
air pollutants from 2013 to 2018, which are generally around
1.5 % for most air pollutants throughout the assimilation pe-
riod. The PM10 observations have a high removal ratio (9–
13 %) during 2013–2015, with most of these outliers marked
by lower PM10 concentrations than those of PM2.5. How-
ever, there was a sharp decrease in removal ratios of PM10 in
2016 (∼ 1.5 %) because of the implementation of a compen-
sation algorithm for the loss of semi-volatile materials in the
PM10 measurements (Wu et al., 2018). To assess the poten-
tial impacts of outlier detection on the assimilations, the dif-
ferences in annual concentrations caused by quality control
are shown in Fig. A2. The differences were generally posi-
tive for PM2.5, SO2, NO2, and CO concentrations, indicat-
ing a lower tendency of these species’ concentrations due to
the use of outlier detection. Negative differences were mainly
found in the PM10 concentrations in south China and the O3
concentrations throughout China. According to estimation,
the impacts of outlier detection were generally small at most
stations. The differences were less than 5 µg/m3 (1 µg/m3)
for PM2.5 concentrations over most stations in north (south)
China and less than 1 µg/m3 for the gaseous air pollutants for
most stations throughout China. The differences were shown
to be relative larger for PM10 concentrations over northwest
(NW) China, which can be over 20 µg/m3 at stations around
the Taklimakan Desert. This would be due to the higher out-
lier ratios in the observations over the remote areas. More
details on the outlier detection method are available in Wu et
al. (2018).

A proper estimate of the observation error is important
in regard to the filter performance since the observation and
background errors determine the relative weights of the ob-
servation and background values in the analysis. The obser-
vation error includes measurement and representativeness er-
rors. For each species, the measurement error was given by
its respective instruments, namely, 5 % for PM2.5 and PM10;
2 % for SO2, NO2, and CO; and 4 % for O3 according to offi-
cially released documents of the Chinese Ministry of Ecol-
ogy and Environmental Protection (HJ 193–2013 and HJ
654–2013, available at http://www.cnemc.cn/jcgf/dqhj/; last
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access: 17 April 2020). The representativeness error arises
from the different spatial scales that the gridded model re-
sults and discrete observations represent, which is parame-
terized by the formula proposed by Elbern et al. (2007) in
this study:

rrepr =

√
1x

Lrepr
× εabs, (3)

where rrepr represents the representativeness error, 1x rep-
resents the model resolution, Lrepr represents the character-
istic representativeness length of the observation site, and
εabs represents the error characteristic parameters for dif-
ferent species. The estimation of Lrepr is dependent on the
types of observation sites, with urban sites usually having
smaller representative length than the rural sites have due
to the larger representativeness errors. Considering that the
observation sites from CNEMC were almost all city (urban)
sites (> 90 %), theLrepr was assigned to be 2 km in this study
according to Elbern et al. (2007).

For the estimations of εabs, previous studies (D. Chen et
al., 2019; Feng et al., 2018; Jiang et al., 2013; Ma et al.,
2019; Pagowski and Grell, 2012; Peng et al., 2017; Werner
et al., 2019) usually assigned the εabs empirically to be half
of the measurement error following the study by Pagowski
et al. (2010). In this study, the εabs was obtained from F. Li
et al. (2019), who estimated the εabs based on a dense ob-
servation network in the Beijing–Tianjin–Hebei region. In
their study, the representativeness error of each species’ ob-
servation was first estimated by the spatiotemporally av-
eraged standard deviation of the observed values within a
30km× 30km grid:

rrepr,i =
1
MT

M∑
m=1

T∑
t=1

Sm,t,i, (4)

where rrepr,i represents the representativeness errors of the
observations for species i; Sm,t,i represents the standard de-
viation of the observed values of species i at different sites
that are located in the same grid m at time t ; and M and T
represent the total number of grids and observation time, re-
spectively. After the estimations of rrepr,i , the εabs

i for species
i were estimated by a transformation of Eq. (3):

εabs
i = rrepr,i/

√
1x

Lrepr
, (5)

where 1x is equal to 30 km. Based on the estimated Lrepr,i
and the εabs

i for different species, the representativeness er-
rors are estimated using Eq. (3) by specifying the 1x to be
15 km.

2.4 Data assimilation algorithm

We used a variant of the EnKF approach, i.e. the local ensem-
ble transform Kalman filter (LETKF; Hunt et al., 2007), to

assimilate the observations into the model state. The LETKF
has several advantages over the original EnKF (e.g. Miyazaki
et al., 2012). As a kind of deterministic filter, it does not need
to perturb the observations, which avoids introducing addi-
tional sampling errors. In addition, the LETKF performs the
analysis locally in space and time, which not only alleviates
the rank problem of the EnKF method but also suppresses
the spurious long-distance correlation caused by the limited
ensemble size. The formulation of the LETKF can be written
as

x̄a
=
¯
xb
+Xbw̄a, (6)

w̄a
= P̃a

(
HXb

)T
R−1(yo

−H ¯xb), (7)

P̃a
=

[
(Nens− 1)I

1+ λ
+

(
HXb

)T
R−1

(
HXb

)]−1

, (8)

¯
xb
=

1
Nens

Nens∑
i=1

xb
i ;X

b
i =

1
√
N − 1

(
xb
i −
¯
xb
)
, (9)

where x̄a is the analysis state, ¯xb is the background state,
Xb represents the background perturbations, w̄a is the analy-
sis in the ensemble space spanned by Xb, P̃a is the analysis
error covariance in the ensemble space with dimensions of
Nens×Nens, yo is the vector of observations used in the anal-
ysis of this grid, R is the observation error covariance ma-
trix, and H is the linear observational operator that maps the
model space to the observation space. The scalar λ in Eq. (8)
denotes the inflation factor for the background covariance
matrix, which was estimated with the algorithm proposed by
Wang and Bishop (2003):

λ=

(
R−1/2d

)TR−1/2d −p

trace
{

R−1/2HPb(R−1/2H
)T } , (10)

d = yo
−H ¯xb, (11)

Pb
= Xb

(
Xb
)T
, (12)

where d represents the residuals, p is the number of observa-
tions, Pb is the ensemble-estimated background error covari-
ance matrix, and the trace of the covariance matrix is used to
approximate covariance on a globally averaged basis. The in-
flation is necessary for the ensemble-based assimilation algo-
rithm since the ensemble-estimated background error covari-
ance is very likely to underestimate the true background error
covariance due to the limited ensemble size and occurrence
of the model error (Liang et al., 2012). Without any treatment
to prevent background error covariance underestimation, the
model forecast would be overconfident and eventually result
in filter divergence. Using Eq. (10), the hourly inflation fac-
tor was calculated for each species. In addition, the inflation
factor was calculated locally in this study. Thus, the inflation
factor used in this assimilation not only is species specific but
also varies with time and space, which reflects different error
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characteristics of the different species at different times and
places.

Furthermore, the inter-species correlation was neglected in
the background error covariance, similar to previous chemi-
cal data assimilation studies (e.g. Inness et al., 2015, 2019;
Ma et al., 2019), although Miyazaki et al. (2012) have shown
the benefits of including correlations between the back-
ground errors of different chemical species. This is, on the
one hand, to avoid the effects of the spurious correlation be-
tween non- or weakly related variables. On the other hand,
different from Miyazaki et al. (2012), this study concentrated
on the assimilations of primary air pollutants (except O3)
whose errors are more related to the errors in their emissions.
Since the emission errors of these species were considered to
be independent in this study (Sect. 2.2), the correlation be-
tween background errors of different species was generally
near zero for most cases as shown in Figs. B1–B2 in Ap-
pendix B. The high correlations only occur in background
errors of PM2.5 and PM10 as well as those of NO2 and O3.
The high positive correlation between PM2.5 and PM10 is just
because PM2.5 is a part of PM10, and there would be redun-
dant information in the observations of PM2.5 and PM10 con-
centrations; thus we did not include the correlation between
the PM2.5 and PM10 concentrations in the assimilation. The
negative correlation between the O3 and NO2 is due to the
NOx–OH–O3 chemical reactions in the NOx-saturated con-
ditions, where the increases in NO2 concentrations would re-
duce the O3 concentrations due to the enhanced NO titra-
tion effect. However, the relationship between O3 and NO2
concentrations is actually non-linear depending on the NOx-
limited or NOx-saturated conditions (Sillman, 1999), and a
previous study by Tang et al. (2016) has shown the limita-
tions of the EnKF under strong non-linear relationships. The
cross-variable data assimilations of O3 and NO2 may come
up with inefficient or even wrong adjustments. Considering
the non-linear relationship between the O3 and NO2 concen-
trations and their unexpected effects on EnKF, we took a con-
servative approach in the assimilations of NO2 and O3 by
neglecting their error correlations. This would also make dif-
ferent species be assimilated in a consistent way. Therefore,
in this study each air pollutant is assimilated independently
by only using the observations of this pollutant.

Figure 2 shows the local scheme we used in the assimila-
tion, where the plus and dot symbols indicate the centres of
the model grids and locations of the observation sites, respec-
tively. In each model grid, only the observation sites located
within a (2l+ 1) by (2l+ 1) rectangular area centred at this
model grid were considered in the calculations of its analysis.
The cut-off radius l was chosen as 12 model grids, approxi-
mately 180 km at a 15 km horizontal resolution. The use of a
cut-off radius, however, could cause analysis discontinuities
when an observation enters or leaves the local domain when
moving from one model grid to another (Sakov and Bertino,
2011). To increase the smoothness of the analysis state, fol-
lowing Hunt et al. (2007), we artificially reduced the impact

of the observations close to the boundary of the local domain
by multiplying the entries in R−1 by a factor decaying from
1 to 0 with increasing distance of the observation from the
central model grid. The decay factors used in this study are
calculated by

ρ(i)= exp
{
−
h(i)2

2L2

}
, (13)

where ρ(i) is the decay factor for observation i; h(i) is the
distance between observation i and the central model grid
point; and L is the decorrelation length, chosen as 80 km,
smaller than the cut-off radius, to increase the smoothness
of the analysis state. Typically, only the state of the central
model grid is updated and used to construct the global analy-
sis field. However, experience has shown that an observable
discontinuity remains in the analysis over certain regions. To
address this issue, following the method of Ott et al. (2004),
we simultaneously updated the state of a small patch (l = 1)
around the central model grid (the updated region in Fig. 2) at
each local analysis step. The final analysis of a given model
grid was then obtained as the weighted mean of all the analy-
sis values of this model grid. A weighted mean was necessary
since the analysis of the different patches adopted different
decay factors for the observation error. The weight of each
analysis value in model grid i is calculated by Eq. (14):

Wi,j =
exp(−h(i,j )2

L2 )
m∑
j=1

exp(−h(i,j )2

L2 )
, (14)

where h (i,j ) is the distance of model grid i to the central
model grid of the patch generating the j th analysis value of
this grid; m is the number of patches containing this model
grid; and L is the decorrelation length, which was chosen as
80 km in this study.

3 Data assimilation statistics

3.1 χ2 diagnosis

We first applied the χ2 test to demonstrate the performance
of our data assimilation system, which is important in eval-
uating the reanalysis (Miyazaki et al., 2015). The χ2 diag-
nosis is a robust criterion for validating the estimated back-
ground and observation error covariance in the data assimi-
lation (e.g. Menard et al., 2000; Miyazaki et al., 2015, 2012),
which is estimated by comparing the sample covariance of
observation minus forecast (OmF) with the sum of estimated
background and observation error covariance in the observa-
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Figure 2. Illustration of the local analysis scheme used in the assimilation. The plus and dot symbols denote the centres of the model grids
and the location of the observation sites, respectively. The large rectangular region denotes the local region, and the shaded region denotes
the updated region.

tional space (HBHT
+R):

Y =
1
√
m

(
HBHT

+R
)− 1

2 (yo
−HXb), (15)

χ2
= YTY , (16)

where m is the number of observations. According to the
Kalman filtering theory, the mean of χ2 should approach 1 if
the background and observation error covariances are prop-
erly specified, while values greater (lower) than 1 indicate the
underestimation (overestimation) of the observation and/or
background error covariance.

Figure 3 shows the time series of the monthly χ2 values
(black lines) for different species as well as the number of
assimilated observations per month (blue bars). The mean
values of χ2 are generally within 50 % difference from the
ideal value of 1 for PM2.5, PM10, NO2, and O3, which sug-
gests that the observation and background error covariance
are generally well specified in the analysis of these species.
Although the χ2 values for these species showed pronounced
seasonal variations that reflect the different error characteris-

tics in different seasons, the χ2 values were roughly stable
for PM2.5 and O3 throughout the assimilation periods and
for NO2 and PM10 after 2015, when the number of assim-
ilated observations becomes stable, which generally shows
the long-term stability of the performance of data assimila-
tion. The χ2 values for SO2 were nevertheless greater than
1 in most cases, especially before 2017. This would be more
relevant to the underestimations of background error covari-
ance of SO2 as we only specified 12 % uncertainty in the
SO2 emissions, suggesting that the emission uncertainty of
SO2 may be underestimated by Zhang et al. (2009). There
were also pronounced annual trends in the χ2 values of SO2,
which may be attributed to the increase in observation num-
ber from 2013 to 2014 and the substantial decrease in SO2
observations from 2013 to 2018. Although smaller than the
χ2 values of SO2, the values for CO were greater than 1 in
most cases, suggesting the underestimations of the error co-
variances. Similar to the χ2 values of SO2, an obvious de-
creasing trend can also be found in the χ2 values of CO.
These results suggest that our data assimilation system has
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Figure 3. Time series of the monthly mean χ2 values (black line) and the number of assimilated observations per month (blue bars) for
(a) PM2.5, (b) PM10, (c) SO2, (d) NO2, (e) CO, and (f) O3.

relatively poor performance in the analysis of CO and SO2
concentrations compared to the other four species, which
is consistent with the cross-validation results (Sect. 4.2.2),
which showed smaller R2 values for the reanalysis data on
CO and SO2 concentrations. The annual trend of χ2 values
in CO and SO2 also indicates relatively weak stability in the
performance of the data assimilation system in assimilating
CO and SO2 observations, which may influence the analysis
of the annual trends in these two species.

3.2 OmF & OmA analysis

Spatial distributions of 6-year average OmF and observation
minus analysis (OmA) for each species in the observation
space were then analysed to investigate the structure of fore-
cast bias and to measure the improvement in the reanalysis
(Fig. 4). The analysis increment, which is estimated from the
differences between the analysis and forecast, is also plot-
ted to measure the adjustments made in the model space.
The OmF values showed persistent positive model biases
(i.e. negative OmF) in the PM2.5 and SO2 concentrations in
east China, as well as PM10 and O3 concentrations in south
China. The negative model biases (i.e. positive OmF) were
mainly found in the PM2.5 concentrations in west China, the
PM10 concentrations in north China, the O3 concentrations
in central-east China, and the concentrations of CO and NO2
throughout the whole of China.

The OmA values suggest that the data assimilation re-
moves most of the model biases for each species, which
confirms the good performance of our data assimilation sys-
tem. According to Fig. C1 in Appendix C, the monthly mean
OmF biases were almost completely removed in each region
of China because of the assimilation, with mean OmF bi-

ases reducing by 32–94 % for PM2.5, 33–83 % for PM10,
25–96 % for SO2, 53–88 % for NO2, 88–97 % for CO, and
54–90 % for O3 concentrations in different regions of China.
The mean OmF root mean square error (RMSE) was also
reduced substantially by 80–93 % for PM2.5, 80–86 % for
PM10, 73–96 % for SO2, 76–91 % for NO2, 88–96 % for CO,
and 76–87 % for O3 concentrations in different regions of
China (Fig. C2). In addition, despite the mean OmF bias and
OmF RMSE exhibiting a significant annual trend, the OmA
bias and OmA RMSE are relatively stable during the assimi-
lation period, which generally confirms the long-term stabil-
ity of our data assimilation system.

The spatial patterns of analysis increment were in good
agreement with those of the OmF values for each species,
which generally shows negative (positive) increments for
PM2.5 concentrations in east (west) China, negative (pos-
itive) increments for PM10 concentrations in south (north)
China, negative increments for SO2 throughout China, pos-
itive increments for CO and NO2 concentrations throughout
China, and the positive (negative) increments for O3 concen-
trations in central-east (south) China. These results confirm
that the data assimilation can effectively propagate the obser-
vation information into the model state and reduce the model
errors.

4 Evaluation results

In this section, we present the fields of the CAQRA dataset
and compare them to the observations. It aims to provide a
brief introduction to the CAQRA dataset and gives a first as-
sessment of the quality of this dataset. The cross-validation
(CV) method was applied in the assessment of the CAQRA
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Figure 4. Spatial distributions of the 6-year mean OmF (left column), OmA (middle column), and analysis increment (right column) for
different species in China.
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dataset, in which a proportion of the observation data was
withheld from the data assimilation process and adopted
as a validation dataset. We conducted five CV experiments
by randomly dividing the observation sites of the CNEMC
into five groups (with 20 % of the observation sites in each
group). In each experiment, the analysis was performed with
one group of the observation data omitted in the assimila-
tion process. Analysis results at the validation sites, i.e. the
observation sites not used in the assimilation process, were
then collected and used to validate the assimilation results.
For convenience, the analysis results at the validation sites
of the five CV experiments were combined and comprised
a validation dataset containing all observation sites (the CV
run). This dataset was then evaluated against the observations
to assess the quality of the CAQRA dataset. In addition, in-
dependent PM2.5 observations retrieved from the US Depart-
ment of State Air Quality Monitoring Program over China
were also employed in the assessment of the PM2.5 reanal-
ysis field. The quality of the CAQRA dataset was assessed
on different spatial and temporal scales to better understand
the CAQRA dataset. Additionally, the validation results of
the ensemble mean of the simulations without assimilation
(the base simulation) are provided to highlight the impacts of
assimilation.

4.1 Particulate matter (PM)

4.1.1 Spatial distribution of the PM reanalysis data over
China

We first present the reanalysis fields of the PM concentrations
(PM2.5 and PM10) in China. Figure 5 shows the 6-year mean
(2013–2018) spatial distribution of the PM2.5 concentration
in China obtained from the CAQRA dataset, base simula-
tion, and observations. The CAQRA dataset provides a con-
tinuous map of the PM2.5 concentration in China and suit-
ably reproduces the observed magnitude of the PM2.5 con-
centration in China. The highest PM2.5 concentrations were
observed in the North China Plain (NCP) region due to its in-
tensive industrial activities and the associated high emissions
of PM2.5 and its precursors (Qi et al., 2017). High PM2.5
concentrations were also found in the southeast (SE) region,
where the PM2.5 concentration is influenced by both local
emissions and the long-range transport of air pollutants from
northern China (Lu et al., 2017). In the NW region, in addi-
tion to hotspots exhibiting high PM2.5 concentrations in large
cities, high PM2.5 concentrations were observed in the Tak-
limakan Desert due to the influences of dust emissions. The
observed magnitude and spatial variability of the PM10 con-
centration were also represented well by the PM10 reanalysis
field. In general, the spatial distributions of the PM10 reanal-
ysis were similar to those of the PM2.5 reanalysis except in
Gansu and Ningxia provinces, where high PM10 concentra-
tions and relatively low PM2.5 concentrations occurred. This
may be related to the large contributions of dust emissions in

these areas. The base simulation notably overestimated the
PM2.5 and PM10 concentrations in China. This may occur
due to the systematic biases in the emission inventory (Kong
et al., 2020) and because negative trends of PM and its pre-
cursor emissions were not considered in our simulations. In
addition, the PM2.5 concentration hotspots in the NW region
and Tibetan Plateau were not captured in the base simulation,
possibly due to the absence of emissions in these remote re-
gions.

Seasonal maps of the PM2.5 and PM10 concentrations are
shown in Figs. D1–D2 in Appendix D, which reveal pro-
found seasonal variations. Both the PM2.5 and PM10 concen-
trations exhibit maximum values in winter in most regions
of China due to the increased anthropogenic emissions re-
lated to enhanced power generation, industrial activities, and
fossil fuel burning for heating purposes (M. Li et al., 2017).
Unfavourable meteorological conditions with stable bound-
ary conditions also contribute to the high PM concentrations
in winter. In contrast, due to the low emission rate and in-
tense mixing processes, the PM concentrations are the lowest
in summer. The PM concentrations in the Taklimakan Desert
exhibit a different seasonality, with the highest PM concen-
trations occurring in spring and the lowest levels occurring
in winter. This occurs because the major PM sources in the
Taklimakan Desert are not anthropogenic emissions but dust
emissions, which are usually the highest in spring due to the
frequent strong dust storms. Figure 6 further shows an ex-
ample of the hourly PM reanalysis results, including a year-
round time series of the site mean hourly PM concentrations
in Beijing. This figure shows that PM reanalysis suitably cap-
tures the hourly evolution of the PM concentrations. Both
the heavy haze episodes during the wintertime and the strong
dust storms during the springtime are represented well in PM
reanalysis.

4.1.2 Assessment of the PM reanalysis data over China

The CV method was used to assess the quality of the PM re-
analysis data over China. Table 2 summarizes the site-based
CV results for the reanalysis data from 2013 to 2018 on the
different temporal scales. It should be mentioned that these
sites are all validation sites not used in the data assimila-
tion process. The validation results indicated that, due to
assimilation of the surface PM concentrations, the reanaly-
sis data exhibit a relatively high performance in reproduc-
ing the magnitude and variability of the surface PM con-
centrations in China. The CV R2 values were up to 0.81
and 0.72 in regard to the hourly PM2.5 and PM10 concen-
trations, respectively, which were much higher than the val-
ues of 0.26 and 0.17, respectively, in the base simulation. The
bias was substantially reduced in the PM2.5 and PM10 reanal-
ysis data, with CV mean bias error (MBE) values of approxi-
mately −2.6 µg/m3 (−4.9 %) and −6.8 µg/m3 (−7.8 %), re-
spectively, on an hourly scale, much smaller than the large
bias in the base simulation. The CV RMSE values were
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Figure 5. Spatial distributions of the (a–c) PM2.5 and (d–f) PM10 concentrations in China from (a, d) CAQRA, (b, e) the base simulation,
and (c, f) observations averaged from 2013 to 2018.

only approximately half of the base simulation RMSE val-
ues, which were approximately 21.3 and 39.3 µg/m3 for the
hourly PM2.5 and PM10 concentrations, respectively. The re-
analysis data showed a good performance on daily, monthly,
and yearly scales, with CV RMSE values ranging from 9.0
to 15.1 µg/m3 for the PM2.5 concentration and from 19.1 to
28.8 µg/m3 for the PM10 concentration.

The quality of the PM2.5 and PM10 reanalysis data in
the different regions of China is further summarized in Ap-
pendix E, Tables E1–E2. On an hourly scale, small negative
biases of the PM2.5 reanalysis data were found in the NCP
(−4.8 %), NE (−5.8 %), SE (−3.8 %), and SW (southwest,
−3.4 %) regions. The biases in the NW and central regions
were relatively large, with CV normalized mean bias (CV
NMB) values of approximately −13.1 and −8.2 %, respec-
tively. Two factors might explain the large biases in these
two regions. First, the observation sites are sparse in the NW
and central regions. As a result, the PM2.5 concentration is
not suitably constrained at certain sites in the CV method.
Second, the emissions of PM2.5 and its precursors might be
very low in these two regions, leading to underestimation of
the background errors since we only considered the emis-

sion uncertainty in the ensemble simulations. Although this
problem was alleviated by using the inflation technique to
compensate for the missing errors, the overconfident model
results still degraded the assimilation performance to a cer-
tain extent, making the analysis less influenced by the ob-
servations. The errors of the PM2.5 reanalysis data exhib-
ited apparent spatial differences (Table E1). The CV RMSE
values were the smallest in the SE (14.9 µg/m3) and SW
(16.5 µg/m3) regions and increased to ∼ 25 µg/m3 in the
NCP, NE, and central regions. Consistent with the bias dis-
tributions, the largest CV RMSE value was found in the NW
region, which reached 52.1 µg/m3 but was still much smaller
than the RMSE value of the base simulation (73.0 µg/m3).
The errors of the PM2.5 reanalysis data were small on daily,
monthly, and yearly scales, with CV RMSE values of approx-
imately 10.6–39.4 µg/m3 on a daily scale, 7.4–26.9 µg/m3

on a monthly scale, and 6.1–23.5 µg/m3 on a yearly scale.
In terms of the hourly PM10 reanalysis data, the CV results
(Table E2) indicated that small negative biases occurred in
the NCP, NE, SE, and SW regions, ranging from −9.6 %
(NE region) to −5.9 % (SE region). The biases were larger
in the NW and central regions, with the CV NBM values
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Table 2. Site-based cross-validation results for the reanalysis data (outside brackets) and base simulation (inside brackets) from 2013 to 2018
on the different temporal scales.

PM2.5 (µg/m3) PM10 (µg/m3)

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.81 (0.26) −2.6 (17.6) −4.9 (34.7) 21.3 (54.1) 0.72 (0.17) −6.8 (−7.6) −7.8 (−8.7) 39.3 (75.7)
Daily 0.86 (0.32) −2.5 (17.4) −4.9 (34.3) 15.1 (46.4) 0.81 (0.22) −6.7 (−7.0) −7.7 (−8.1) 28.8 (64.1)
Monthly 0.88 (0.40) −2.5 (17.4) −5.0 (34.1) 10.3 (33.6) 0.83 (0.28) −6.7 (−7.3) −7.7 (−8.4) 21.1 (44.4)
Yearly 0.86 (0.37) −3.0 (15.2) −5.6 (28.7) 9.0 (28.9) 0.79 (0.27) −7.5 (−10.2) −8.3 (−11.3) 19.1 (38.2)

SO2 (µg/m3) NO2 (µg/m3)

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.52 (0.03) −2.0 (25.5) −8.5 (106.6) 24.9 (67.2) 0.61 (0.22) −2.3 (−5.0) −6.9 (−14.8) 16.4 (24.9)
Daily 0.67 (0.04) −2.0 (25.6) −8.5 (106.9) 17.5 (59.3) 0.67 (0.27) −2.3 (−5.0) −6.8 (−14.8) 12.3 (19.9)
Monthly 0.74 (0.04) −2.1 (25.4) −8.6 (105.7) 13.2 (52.0) 0.67 (0.34) −2.3 (−5.0) −6.8 (−14.8) 10.0 (15.9)
Yearly 0.71 (0.04) −2.6 (23.1) −9.9 (87.2) 12.0 (47.5) 0.62 (0.42) −2.5 (−5.9) −7.3 (−17.3) 9.1 (13.6)

CO (mg/m3) O3 (µg/m3)

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.55 (0.17) −0.06 (−0.47) −6.1 (−44.7) 0.54 (0.87) 0.76 (0.35) −2.3 (−10.5) −4.0 (−17.8) 21.9 (38.3)
Daily 0.61 (0.20) −0.06 (−0.47) −5.8 (−44.6) 0.44 (0.77) 0.74 (0.25) −2.3 (−10.4) −3.9 (−17.8) 16.6 (31.3)
Monthly 0.62 (0.21) −0.06 (−0.47) −6.0 (−44.7) 0.36 (0.69) 0.74 (0.28) −2.3 (−10.4) −3.9 (−17.8) 13.1 (25.3)
Yearly 0.52 (0.09) −0.08 (−0.51) −6.9 (−46.7) 0.37 (0.72) 0.53 (0.03) −2.2 (−9.8) −3.8 (−17.2) 10.4 (21.2)

Figure 6. Time series of the site mean hourly (a) PM2.5 and (b) PM10 concentrations in Beijing obtained from the observations and CAQRA.

increasing to approximately 18.0 and 14.1 %, respectively.
The errors of the PM10 reanalysis data also exhibited spa-
tial heterogeneity. The CV RMSE value was the smallest in
the SE (26.0 µg/m3) and SW (30.2 µg/m3) regions and in-
creased to approximately 39.8 and 43.7 µg/m3 in the NE and

NCP regions, respectively. The largest errors were found in
the central and NW regions, with CV RMSE values of ap-
proximately 105.5 and 57.3 µg/m3, respectively. The PM10
reanalysis data revealed small errors on daily, monthly, and
yearly scales, with CV RMSE values of approximately 18.6–
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85.5 µg/m3 on a daily scale, 13.7–64.0 µg/m3 on a monthly
scale, and 12.3–55.8 µg/m3 on a yearly scale.

4.1.3 Trend study of the PM reanalysis data over China

A realistic representation of the observed interannual change
is another important aspect of the reanalysis dataset. The per-
formance of the reanalysis data in representing the observed
interannual changes in the PM2.5 and PM10 concentrations
was thus evaluated nationwide and in the different regions
of China. Figures 7–8 show time series of the monthly mean
PM2.5 and PM10 concentrations nationwide and in the dif-
ferent regions. The observed national PM2.5 concentration
revealed a profound seasonal cycle with the highest con-
centration in winter and the lowest level in summer. The
annual trends of the PM2.5 and PM10 concentrations were
also calculated using the Mann–Kendall trend test and the
Theil–Sen trend estimation method, which are summarized
in Table 3. A significant negative trend was observed in the
PM2.5 concentration nationwide, with a calculated annual
trend of approximately −5.8 (p < 0.05) µg/m3/yr1. The NE
and NCP regions exhibited the highest negative trends among
the six regions, with calculated trends of approximately−7.5
(p < 0.05) and −7.0 (p < 0.05) µg/m3/yr1, respectively. In
the other regions, the negative trends ranged from −6.3 to
−5.2 µg/m3/yr1. The base simulation suitably reproduced
the observed seasonal cycle of the PM2.5 concentration in all
regions. The magnitude of the PM2.5 concentration in 2013
was also captured well in the different regions, suggesting
that the emission inventories of 2010 were generally reason-
able for the simulation of the PM2.5 concentration in 2013.
However, starting from 2014, the base simulation tended to
overestimate the observations in the NCP, SE, and SW re-
gions, indicating that the emission inventory of 2010 may
be too high for the simulation of the PM2.5 concentration in
these regions after 2014. In contrast, the base simulation sig-
nificantly underestimated the PM2.5 concentration in the NW
region. The model performance of the base simulation was
relatively good in the NE and central regions throughout the
6 years. Although the base simulation captured the negative
trends of the observed PM2.5 concentration in China and the
different regions, the simulated trends were much lower than
those indicated by the observations. Since we adopted the
same emission inventory in the simulations of the air pollu-
tants in the different years, the simulated trends in the base
simulation were only driven by the variations in meteoro-
logical conditions. This suggests that the change in meteoro-
logical conditions only explained a small proportion of the
negative trends in the PM2.5 concentration in China and that
emission reductions contributed more to the decline in the
PM2.5 concentration. The CV run agreed better with the ob-
servations. The observed trends of the PM2.5 concentration in
China and each subregion were all suitably captured by the
reanalysis in the CV run. Similar results were obtained for
the analysis of the trend of the PM10 concentration, as shown

in Fig. 8. The observed PM10 concentration also exhibited
significant negative trends, which were captured well by the
PM10 reanalysis in the CV run. The base simulation attained
a better performance in reproducing the PM10 concentration
in China than in reproducing the PM2.5 concentration, while
significant underestimations of the PM10 concentration oc-
curred in the NW and central regions. The calculated nega-
tive trends of the base simulation were still lower than those
indicated by the observations. This again highlights the large
contributions of emission reduction to the improvement of
the air quality in China in these years.

4.1.4 Independent validation of the PM2.5 reanalysis
data

In addition to the CV method, the PM2.5 reanalysis data
were further validated against an independent dataset ac-
quired from the US Department of State Air Quality Mon-
itoring Program over China (http://www.stateair.net/; last ac-
cess: 17 April 2020), which contains the hourly PM2.5 con-
centration in the cities of Beijing, Chengdu, Guangzhou,
Shanghai, and Shenyang. Table 4 presents a comparison of
the observed PM2.5 concentrations to those obtained from the
CAQRA dataset and base simulation. The results indicated
that the magnitude and variability of the PM2.5 reanalysis
data agreed better with those of the observed PM2.5 concen-
trations in all cities. Both the MBE and RMSE values were
greatly reduced in the CAQRA dataset, which only ranged
from −7.1 to −0.3 µg/m3 and from 16.8 to 33.6 µg/m3, re-
spectively, in these cities. The correlation coefficient was also
greatly improved in CAQRA (R2

= 0.74–0.86) over the base
simulation (R2

= 0.09–0.37). These results confirm that the
CAQRA dataset attains a high-quality performance in repre-
senting the PM2.5 pollution in China in these years.

4.1.5 Comparison to the satellite-estimated PM2.5
concentration

Previous studies have shown that estimating the ground-
based PM2.5 concentration from the satellite-derived AOD
is an effective way to map the PM2.5 concentration with
good accuracy. To further demonstrate the accuracy of our
PM2.5 reanalysis data, we also compared the accuracy to that
of satellite-estimated PM2.5 concentrations. Table 5 summa-
rizes several representative studies focusing on the estima-
tion of the ground-based PM2.5 concentration in China at the
national level using different kinds of methods. Most of these
studies estimated the ground-based PM2.5 concentration on a
daily scale since they employed polar-orbiting satellite data
(e.g. MODIS) that only provide daily AOD observations. The
estimation conducted by Liu et al. (2019) was an exception
which exhibited an hourly resolution due to the use of AOD
measurements from a geostationary satellite (Himawari-8).
The horizontal resolution in these studies was mainly ap-
proximately 10 km, except that of Lin et al. (2018), which
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Table 3. Calculated annual trends of the PM2.5 and PM10 concentrations in China.

PM2.5 (µg/m3) PM10 (µg/m3)

Observation Cross-validation Base simulation Observation Cross-validation Base simulation

China −5.8 (−13.4, −3.5)∗ −5.0 (−12.6, −3.1) −2.0 (−3.6, −0.7) −7.2 (−18.4, −3.2) −6.0 (−17.0, −2.9) −2.5 (−3.6, −0.7)
NCP −7.0 (−15.7, −5.5) −6.6 (−14.5, −4.8) −3.5 (−4.7, −1.9) −8.3 (−20.4, −5.1) −7.6 (−19.2, −4.4) −4.2 (−4.7, −1.9)
NE −7.5 (−11.0, −3.9) −6.7 (−10.0, −3.5) −3.2 (−5.8, −1.2) −11.2 (−17.4, −4.7) −10.4 (−16.4, −4.7) −3.7 (−5.8, −1.2)
SE −5.2 (−11.3, −2.8) −4.9 (−10.6, −2.7) −0.9 (−3.1, 1.3) −6.0 (−14.9, −2.4) −5.8 (−13.2, −1.9) −1.6 (−3.1, 1.3)
SW −6.3 (−12.8, −2.6) −4.9 (−12.2, −2.4) −1.4 (−7.5, 0.4) −7.9 (−19.9, −2.2) −5.5 (−17.5, −2.1) −1.3 (−7.5, 0.4)
NW −5.7 (−11.6, 2.1)b

−3.3 (−10.7, 1.8) −1.3 (−4.9, 2.9) −0.5 (−14.4, 1.6) −2.2 (−8.5, 3.4) −2.3 (−4.9, 2.9)
Central −5.8 (−19.8, −0.8) −3.6 (−17.7, 0.2) −0.6 (−5.9, 0.9) −8.9 (−28.5, 0.2) −6.8 (−26.9, 0.5) −2.0 (−5.9, 0.9)

∗ The bold font denotes that the calculated trend is significant at the 0.05 significance level, and the values in brackets denote the 95 % confidence interval.

Figure 7. Time series of the monthly mean PM2.5 concentrations in (a) China, (b) NCP, (c) NE, (d) SE, (e) SW, (f) NW, and (f) central
regions obtained from the cross-validation run (red line), base simulation (blue line), and observations (black dots).

revealed the finest horizontal resolution (1 km), and that of
Zhan et al., 2017, which revealed the coarsest horizontal res-
olution (0.5◦). Few studies have provided long-term PM2.5
data covering recent years. In comparison, our PM2.5 reanal-
ysis data provide long-term data in China at a fine tempo-
ral resolution (1 h) and a high accuracy. A fine temporal res-

olution is important for epidemiological studies, especially
for the assessment of the acute health effects of air pollu-
tion. Furthermore, the accuracy of our reanalysis data (CV
R2
= 0.86 and CV RMSE= 15.1 µg/m3) was also higher

than that of most of these satellite estimates (CV R2
= 0.56–

0.86 and CV RMSE= 15.0–30.2 µg/m3).
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Figure 8. Same as Fig. 7 but for the PM10 concentration.

Table 4. Independent validation results of the CAQRA dataset (outside brackets) and base simulation (inside brackets) against the observation
data retrieved from the US Department of State Air Quality Monitoring Program over China on an hourly scale.

R2 MBE (µg/m3) NMB (%) RMSE (µg/m3)

Beijing 0.86 (0.37) −0.3 (11.4) −0.3 (13.2) 33.6 (75.6)
Shanghai 0.86 (0.34) 5.5 (39.6) 10.9 (78.3) 17.1 (64.8)
Chengdu 0.85 (0.19) −7.1 (59.3) −8.9 (74.7) 23.1 (91.5)
Guangzhou 0.74 (0.09) −3.3 (11.1) −7.5 (25.1) 16.8 (38.8)
Shenyang 0.85 (0.29) −2.2 (16.8) −3.2 (24.3) 24.8 (59.1)

4.2 Gases

4.2.1 Spatial distribution of the reanalysis data on
gaseous air pollutants over China

Next, we present the reanalysis fields for gaseous air pol-
lutants in China, namely, SO2, CO, NO2, and O3. Figure 9
shows the spatial distribution of the 6-year average SO2
and CO concentrations in China obtained from the CAQRA
dataset, base simulation, and observations. The SO2 reanal-

ysis data captured the magnitude and spatial distribution of
the SO2 concentration in China well, while the base simula-
tion greatly overestimated the SO2 concentration due to the
positive biases of the SO2 emissions in the simulations. Con-
sistent with the observations, the SO2 reanalysis data exhib-
ited high spatial heterogeneity, with the highest values lo-
cated in the NCP region, especially in Shandong, Shanxi,
and Hebei provinces. Several SO2 concentration hotspots
were also found in the NE region. SO2 is mainly emitted
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Table 5. Comparison of the accuracy of our PM2.5 reanalysis data to those of satellite estimates.

Reference Spatial Temporal Temporal CV CV Method
resolution resolution coverage R2 RMSE

Ma et al. (2016) 0.1◦× 0.1◦ daily 2004–2013 0.79 27.4 LME+GAM
Xue et al. (2019) 0.1◦× 0.1◦ daily 2000–2016 0.56 30.2 CTM+HD-expansion+GAM
Xue et al. (2017) 0.1◦× 0.1◦ daily 2014 0.72 23.0 CTM+LME+ spatiotemporal kriging
Chen et al. (2018) 0.1◦× 0.1◦ daily 2005–2016 0.83 18.1 RF
Lin et al. (2018) 1km× 1km daily 2001–2015 0.78∗ 19.3∗ Semi-empirical
Z. Y. Chen et al. (2019) 3km× 3km daily 2014–2015 0.86 15.0 XGBoost+NELRM
Yao et al. (2019) 6km× 6km daily 2014 0.60 21.8 TEFR+GWR
You et al. (2016) 0.1◦× 0.1◦ daily 2014 0.79 18.6 GWR
Zhan et al. (2017) 0.5◦× 0.5◦ daily 2014 0.76 23.0 GW-GBM
T. W. Li et al. (2017b) 0.1◦× 0.1◦ daily 2015 0.82 16.4 Geoi-DBN
Liu et al. (2019) 0.125◦× 0.125◦ hourly 2016 0.86 17.3 RF
This study 15km× 15km hourly 2013–2018 0.81 21.3 EnKF

daily 2013–2018 0.86 15.1 EnKF

∗ The accuracy of the PM2.5 estimates of Lin et al. (2018) was assessed on a monthly scale.
LME: linear mixed-effect model; GWR: geographically weighted regression model; GAM: generalized additive model; HD-expansion: high-dimensional expansion; RF:
random forest; XGBoost: extreme gradient boosting; NELRM: non-linear exposure–lag–response model; TEFR: time-fixed effects regression model; GW-GBM:
geographically weighted gradient boosting machine; Geoi-DBN: geographical deep belief network.

Figure 9. Same as Fig. 5 but for the SO2 and CO concentrations.
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from fossil fuel consumption, especially coal burning (Lu
et al., 2010). Shandong, Shanxi, Inner Mongolia, and Hebei
provinces are the four largest consumers of coal in China ac-
cording to the China Energy Statistical Yearbook (NBSC,
2017a, b), which explains the high SO2 concentrations in
these provinces. The spatial distribution of the CO reanal-
ysis data was similar to that of the SO2 reanalysis data and
agreed well with the observed spatial distribution. In con-
trast, the base simulation highly underestimated the CO con-
centration, especially in the NCP region. In addition, both the
observations and reanalysis data showed CO concentration
hotspots in the NW region and Xizang Province, while these
hotspots were largely underestimated or even missing in the
base simulation. According to previous studies, such under-
estimation might be related to underestimated CO emissions
in China (Kong et al., 2020; Tang et al., 2013). In regard
to NO2 (Fig. 10), both the reanalysis data and base simu-
lation captured the observed magnitude and spatial distribu-
tion of the NO2 concentration in China. High NO2 concen-
trations generally occurred in the NCP region and the major
city clusters in China. However, the base simulation gener-
ally revealed an underestimated NO2 concentration in China.
The spatial distribution of the O3 concentration (Fig. 10)
demonstrated a lower spatial heterogeneity than that of the
other gases. The O3 reanalysis data suitably captured the ob-
served magnitude and spatial distribution of the O3 concen-
tration in China, while the base simulation generally under-
estimated the O3 concentration in China. Figures D3–D6 in
Appendix D further show seasonal maps of the reanalysis
fields of these gases. All gases exhibited a profound sea-
sonal cycle, with maximum values observed in winter and
the lowest values in summer, except O3, which demonstrated
the opposite seasonal cycle. The highest SO2, CO, and NO2
concentrations in winter could occur due to the increased an-
thropogenic emissions and the more stable atmospheric con-
ditions during this season. Regarding O3, the highest value
in summer was closely related to the enhanced photochemi-
cal reactions in summer associated with the high temperature
and solar radiance.

4.2.2 Assessment of the gas reanalysis data over China

Evaluation results of the above gas reanalysis data are pro-
vided in Table 2. The table indicates that the reanalysis data
attain an excellent performance in representing the magni-
tude and variability of these gaseous air pollutants in China,
with CV R2 values ranging from 0.52 for SO2 to 0.76
for O3 and CV MBE (CV NMB) values of approximately
−2.0 µg/m3 (−8.5 %),−2.3 µg/m3 (−6.9 %),−0.06 mg/m3

(−6.1 %), and −2.3 µg/m3 (−4.0 %) for the hourly SO2,
NO2, CO, and O3 reanalysis data, respectively. Compared
to the base simulation, the errors were reduced by approx-
imately half in the reanalysis data, with CV RMSE values
of approximately 24.9 µg/m3, 16.4 µg/m3, 0.54 mg/m3, and
21.9 µg/m3 for the hourly SO2, NO2, CO, and O3 reanaly-

sis data, respectively. The reanalysis data achieved a good
performance on daily, monthly, and yearly scales. The CV
RMSE values of the daily SO2 and NO2 reanalysis data were
also smaller than those of the SO2 and NO2 concentration
datasets in China previously developed by Zhan et al. (2018)
and Zhang et al. (2019), respectively, based on the random
forest–spatiotemporal kriging model wherein the RMSE val-
ues of the daily SO2 and NO2 concentrations were estimated
to be 19.5 and 13.3 µg/m3, respectively.

In terms of the different regions (Tables E3–E6, Ap-
pendix E), the hourly SO2 reanalysis data indicated small
negative biases (approximately 2–10 %) in all regions ex-
cept the central region, where the negative bias was rela-
tively large (17.0 %). The smallest CV RMSE values of the
SO2 reanalysis data were observed in the SE, SW, and NW
regions (smaller than 25 µg/m3), while in the other regions
the CV RMSE values exceeded 30 µg/m3. The hourly NO2
reanalysis data showed small negative biases in all regions,
which were relatively small in the NE, NCP, and SE regions
(ranging from −5.9 to −3.5 %) and were relatively large
in the SW, NW, and central regions (ranging from −15.1
to −12.9 %). The CV RMSE for the hourly NO2 reanaly-
sis data was approximately 15 µg/m3 in all regions except
the NW (24.3 µg/m3) and central (20.5 µg/m3) regions. The
hourly CO reanalysis data exhibited small negative biases in
all regions. The largest biases were still found in the NW
region, which reached approximately 15.0 %, while in the
other regions the biases ranged from −11.2 to −2.5 %. The
CV RMSE values for the hourly CO reanalysis data were the
smallest in south China (approximately 0.39 and 0.46 mg/m3

in the SE and SW regions, respectively) and increased to
0.64 and 0.59 mg/m3 in the NCP and NE regions, respec-
tively. The largest CV RMSE was observed in the NW re-
gion, which amounted to approximately 1.13 mg/m3. The
biases of the hourly O3 reanalysis data were uniformly dis-
tributed in the different regions, with the CV NMB value
ranging from −6.1 to 1.4 %. Similarly, the CV RMSE value
of the O3 reanalysis data was approximately 20 µg/m3 in all
regions except the NW region (28.3 µg/m3).

4.2.3 Trend study of the gas reanalysis data over China

Figure 11 shows time series of the monthly mean SO2 con-
centration in China obtained from the CV run, base sim-
ulation, and observations. Additionally, time series of the
monthly mean SO2 concentration in the different regions
are shown. The observed SO2 concentrations showed signif-
icant negative trends (P < 0.05) in China (−6.2 µg/m3/yr1,
Table 6) and in all regions (ranging from −2.3 to
−9.5 µg/m3/yr1, Table 6) due to the large reductions in
SO2 emissions across China. During the 11th–13th Five-Year
Plans (FYPs) and the Air Pollution Prevention and Control
Plan, the Chinese government invested great effort to reduce
SO2 emissions, such as the installation of flue-gas desul-
furization (FGD) and selective catalytic reduction systems,
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Figure 10. Same as Fig. 5 but for NO2 and O3.

Table 6. Calculated annual trends of the SO2, NO2, CO, and O3 concentrations in China.

SO2 (µg/m3) NO2 (µg/m3)

Observation Cross-validation Base simulation Observation Cross-validation Base simulation

China −6.2 (−12.0, −3.9)∗ −4.9 (−10.3, −3.0) −1.7 (−6.2, −0.8) −2.6 (−5.9, 0.1) −2.1 (−5.9, 0.1) −0.9 (−3.0, −0.3)
NCP −9.5 (−16.5, −7.2) −8.1 (−14.5, −5.9) −1.7 (−4.1, −1.4) −2.0 (−5.9, 0.0) −2.1 (−5.6, 0.1) −0.6 (−1.6, −0.3)
NE −6.8 (−14.6, −4.9) −5.9 (−12.1, −4.1) −1.8 (−7.6, −0.6) −3.0 (−4.9, −1.1) −3.3 (−5.4, −1.2) −1.3 (−3.8, −0.3)
SE −4.4 (−6.7, −2.5) −3.7 (−5.6, −2.0) −1.0 (−2.9, −0.1) −2.4 (−5.3, 0.1) −2.5 (−5.1, 0.1) −1.0 (−1.8, −0.3)
SW −4.2 (−8.8, −1.9) −2.8 (−7.6, −1.3) −3.4 (−15.6, −1.9) −1.8 (−6.2, 0.3) −1.6 (−6.5, 0.2) −0.7 (−3.9, −0.2)
NW −2.3 (−11.1, 0.6) −4.2 (−7.7, −1.1) −1.9 (−13.7, 1.0) −3.4 (−8.4, 2.3) −1.7 (−9.5, 1.3) −1.0 (−6.5, 0.3)
Central −7.9 (−17.5, −3.3) −5.5 (−15.7, −2.3) −0.6 (−10.2, 0.0) −2.0 (−6.6, 1.9) −1.0 (−8.0, 2.2) −0.5 (−3.8, 0.1)

CO (mg/m3) O3 (µg/m3)

Observation Cross-validation Base simulation Observation Cross-validation Base simulation

China −0.12 (−0.17, −0.06) −0.12 (−0.18, −0.07) −0.02 (−0.05, −0.01) 3.5 (2.1, 5.0) 3.8 (2.1, 5.0) 2.0 (0.1, 5.9)
NCP −0.18 (−0.25, −0.11) −0.17 (−0.24, −0.11) −0.03 (−0.05, −0.02) 5.3 (2.5, 8.7) 5.5 (2.4, 8.8) 1.4 (−0.5, 5.0)
NE −0.13 (−0.21, −0.05) −0.13 (−0.20, −0.06) −0.03 (−0.07, −0.01) 4.8 (1.5, 10.0) 4.6(1.4, 9.5) 2.8 (−0.4, 8.0)
SE −0.06 (−0.09, −0.04) −0.06 (−0.08, −0.04) −0.01 (−0.02, −0.01) 2.3 (0.3, 3.4) 2.6 (0.8, 3.5) 1.7 (0.3, 3.0)
SW −0.11 (−0.19, −0.04) −0.09 (−0.21, −0.04) −0.02 (−0.06, −0.01) 3.2 (1.2, 5.0) 3.5 (1.8, 5.4) 2.7 (−0.9, 7.1)
NW −0.14 (−0.46, 0.04) −0.14 (−0.30, 0.04) −0.03 (−0.06, 0.00) 5.4 (1.6, 9.8) 4.0 (1.4, 10.1) 2.6 (−0.2, 8.8)
Central −0.16 (−0.27, −0.09) −0.17 (−0.25, −0.10) −0.01 (−0.06, 0.00) 5.3 (2.3, 9.2) 4.5 (1.4, 7.8) 2.2 (−0.3, 7.7)

∗ The bold font denotes that the calculated trend is significant at the 0.05 significance level, and the values in brackets denote the 95 % confidence interval.
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Figure 11. Same as Fig. 7 but for the SO2 concentration.

construction of large units, decommissioning of small units,
and replacement of coal with cleaner energies (M. Li et al.,
2017; Zheng et al., 2018b). As a result, the SO2 emissions
substantially decreased in China, especially in the industrial
and power sectors. The base simulation significantly overes-
timated the SO2 concentration in all regions, especially after
2013. The negative trends of the SO2 concentration were also
largely underestimated in the base simulation. In contrast,
the SO2 reanalysis data captured the magnitude and negative
trends of the observed SO2 concentrations in China and in all
regions well. The NO2 observations showed negative trends
in China as well (Fig. 12). However, the negative trend was
not significant except in the NE region (Table 6). This is con-
sistent with the small reductions in NOx emissions (21 %)
in China due to the small changes in the emissions origi-
nating from the transportation sector, accounting for almost
one-third of the NOx emissions in China. The pollution con-
trols applied in the transportation section were exactly offset
by the growing emissions related to vehicle growth (Zheng
et al., 2018b). The base simulation generally underestimated

the NO2 concentration during the wintertime, and the ob-
served negative trends of the NO2 concentration were also
underestimated in all regions. Due to assimilation of the ob-
served NO2 concentrations, the reanalysis data agreed bet-
ter with the observations in regard to both the magnitude
and negative trends. The CO observations exhibited signif-
icant negative trends in all regions except the NW region
(Fig. 13), with calculated negative trends ranging from−0.18
to −0.06 µg/m3/yr1. Such negative trends have also been
observed in satellite measurements, such as MOPITT obser-
vations (Zheng et al., 2018a), which are mainly attributed
to the reduced anthropogenic emissions in China, as sug-
gested by both bottom-up and top-down methods (Zheng et
al., 2019). The base simulation largely underestimated the
CO concentration in all regions. In addition, the negative
trends of the CO concentration were also notably underes-
timated in the base simulation, which highlights the major
contribution of emission reduction to the decreased CO con-
centration in these regions. The CO reanalysis data agreed
well with the observations and captured the negative trends
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Figure 12. Same as Fig. 7 but for the NO2 concentration.

of the CO concentration in all regions. The O3 concentration
exhibited the opposite trend to that exhibited by the other
air pollutants (Fig. 14), which revealed significant positive
trends in all regions, ranging from 2.3 to 5.4 µg/m3/yr1 and
indicating enhanced photochemical pollution in China. This
phenomenon has been observed and investigated by K. Li et
al. (2019), who suggested that the rapid decrease in the PM2.5
concentration and the resultant reduction in the aerosol sink
of hydroperoxyl (HO2) radicals were important factors con-
tributing to the enhanced O3 concentration in China. The
base simulation generally captured the magnitude of the O3
concentration in the SE, SW, NW, and central regions but
underestimated the O3 concentration in the NCP and NE re-
gions, especially in spring and summer. In addition, the base
simulation underestimated the observed positive trends of the
O3 concentration in all regions, which suggests that meteoro-
logical variability only contributed a small proportion of the
observed O3 trend in China. Again, the O3 reanalysis data
are substantially better than the base simulation and suitably

reproduce the observed trends of the O3 concentration in all
regions.

4.2.4 Comparison to the CAMS reanalysis data

To further evaluate the accuracy of our reanalysis dataset
for gaseous air pollutants, the CAMSRA dataset produced
by the ECMWF (Inness et al., 2019) was employed as a
reference in a comparison to our reanalysis dataset. The
CAMSRA dataset is the latest global reanalysis dataset
on atmospheric composition, which assimilates satel-
lite retrievals of O3, CO, NO2, and AOD. Three-hour
reanalysis data on the SO2, NO2, CO, and O3 concen-
trations at the surface model level from 2013 to 2018
were adopted in this study, which were downloaded from
https://atmosphere.copernicus.eu/copernicus-releases-new-
global-reanalysis-data-set-atmospheric-composition (last
access: 17 April 2020) at a resolution of 1◦ by 1◦. Here, we
only focus on a comparison of the gaseous pollutants since
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Figure 13. Same as Fig. 7 but for the CO concentration.

the CAMSRA dataset does not provide PM2.5 and PM10
concentrations.

Figure 15 shows the spatial distribution of the 6-year aver-
age concentration of these gaseous air pollutants in China ob-
tained from the CAMSRA dataset. Compared to the spatial
distributions determined with the CAQRA dataset and ob-
servations (Figs. 9–10), the CAMSRA dataset greatly over-
estimates the surface SO2 and O3 concentrations in China.
In addition, due to the higher spatial resolution (15 km) of
the CAQRA dataset than that of the CAMSRA dataset (ap-
proximately 50 km), our products provide more detailed spa-
tial patterns of the surface air pollutants in China, which are
better suited for air quality studies on a regional scale. Ta-
ble 7 quantitatively compares the accuracy of the CAQRA
dataset to that of the CAMSRA dataset in the estimation of
the surface concentrations of gaseous air pollutants in China.
Compared to CAMSRA (R2

= 0.00–0.23), CAQRA attains
a better performance in capturing the spatiotemporal vari-
ability in the surface concentrations of gaseous air pollu-
tants in China, with R2 values ranging from 0.53 to 0.77.

The MBE and RMSE values are also smaller in the CAQRA
dataset than those in the CAMSRA dataset, especially for the
SO2 and O3 concentrations. This is attributed to the assimi-
lation of surface observations in CAQRA, while CAMSRA
only assimilates satellite retrievals. These results suggest that
the CAQRA dataset provides surface air quality datasets in
China of a higher quality than the air quality datasets pro-
vided by the CAMSRA dataset, which is especially valuable
for relevant future studies with high demands on spatiotem-
poral resolution and accuracy.

5 Data availability

The CAQRA dataset can be freely downloaded at
https://doi.org/10.11922/sciencedb.00053 (Tang et al.,
2020a), and the prototype product, which contains the
monthly and annual means of the CAQRA dataset, is
available at https://doi.org/10.11922/sciencedb.00092 (Tang
et al., 2020b). When you click the first Science DB link,
you will see basic descriptions of the CAQRA dataset and
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Figure 14. Same as Fig. 7 but for the O3 concentration.

Table 7. Comparison of the data accuracy of CAQRA and CAMSRA in China on an hourly scale.

CAQRA CAMSRA

SO2 NO2 CO O3 SO2 NO2 CO O3
(µg/m3) (µg/m3) (mg/m3) (µg/m3) (µg/m3) (µg/m3) (mg/m3) (µg/m3)

R2 0.53 0.61 0.55 0.77 0.04 0.23 0.13 0.00
MBE −2.0 −2.3 −0.1 −2.3 19.4 1.7 −0.2 30.6
NMB (%) −8.5 −6.9 −6.1 −4.0 81.2 5.2 −17.5 52.1
RMSE 24.8 16.4 0.5 21.9 54.5 27.3 0.9 55.2

2192 zip files listed in the DATA FILES column on the
website. The total file sizes are approximately 318.81 GB
as of the time of this writing. Each zip file is named by
the date and contains one day’s reanalysis data, which are
composed of 24 Network Common Data Form (NetCDF)
files. Each NetCDF file contains one hour’s reanalysis data
and is named by the date. The time zone of the reanalysis
data is Beijing Time, and the description on the content
of each NetCDF file is available in README.txt on the

website. The monthly and annual versions of the CAQRA
dataset each contain a zip file, corresponding to the monthly
and annual mean of the reanalysis data, respectively. The
total file sizes of this product are approximately 480.67 MB,
which is easier to downloaded and suitable for users who
only need air quality data on monthly or yearly scales.
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Figure 15. Spatial distributions of the multiyear average concentrations of (a) SO2, (b) NO2, (c) CO, and (d) O3 from 2013 to 2018 obtained
from CAMSRA.

6 Conclusions

A high-resolution CAQRA dataset was produced in this
study by assimilating surface observations of the PM2.5,
PM10, SO2, NO2, CO, and O3 concentrations retrieved from
the CNEMC. This dataset provides time-consistent concen-
tration fields of PM2.5, PM10, SO2, NO2, CO, and O3 in
China from 2013 to 2018 (will be extended in the future on
a yearly basis) at high spatial (15 km) and temporal (1 h) res-
olutions. The CAQRA dataset was produced with the Chem-
DAS, which applied the NAQPMS model as the forecast
model, and the LETKF to assimilate the observations in
the postprocessing mode. The background error covariance
was calculated from ensemble simulations, which consid-
ered the emission uncertainties of the major air pollutants.
An inflation technique was also applied to dynamically in-
flate the background error to prevent underestimation of the
true background error covariance.

The 5-fold CV method was employed to validate the
reanalysis dataset, which provided us with the first indi-
cation of the quality of the CAQRA dataset. The vali-
dation results suggested that the CAQRA dataset attains
an excellent performance in representing the spatiotempo-
ral variability of surface air pollutants in China, with CV
R2 values ranging from 0.52 for the hourly SO2 concen-
tration to 0.81 for the hourly PM2.5 concentration. The
CV MBE values of the reanalysis data were −2.6 µg/m3,
−6.8 µg/m3, −2.0 µg/m3, −2.3 µg/m3, −0.06 mg/m3, and
−2.3 µg/m3 for the hourly concentrations of PM2.5, PM10,
SO2, NO2, CO, and O3, respectively. The CV RMSE values
of the reanalysis data for these air pollutants were estimated
to be approximately 21.3 µg/m3, 39.3 µg/m3, 24.9 µg/m3,
16.4 µg/m3, 0.54 mg/m3, and 21.9 µg/m3, respectively. In
the different regions of China, the NW and central regions
exhibited relatively large biases and errors, which mainly oc-
curred due to the relatively sparse observations and underes-
timated background errors. Chinese air quality has substan-
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tially changed over the last 6 years. The observations indicate
significant decreasing trends for all air pollutants except O3,
which shows an increasing trend over the last 6 years. The re-
analysis data reveal an excellent performance in representing
the trends of all air pollutants in China, suggesting the suit-
ability of the reanalysis data for air pollutant trend analysis
in China.

In addition to the CV method, the PM2.5 reanalysis data
were also evaluated against independent observations re-
trieved from the US Department of State Air Quality Mon-
itoring Program over China. The results suggested that the
reanalysis data suitably reproduce the magnitude and vari-
ability of the observed PM2.5 concentration in all cities,
with the MBE and RMSE values only ranging from −7.1
to −0.3 µg/m3 and from 16.8 to 33.6 µg/m3, respectively.
The reanalysis data on the gaseous air pollutants were also
compared to the latest global reanalysis data contained in
the CAMSRA dataset produced by the ECMWF. The CAM-
SRA dataset is of great value in providing three-dimensional
distributions of multiple chemical species globally. As a re-
gional dataset, our products attain a higher spatial resolution
than does the CAMSRA dataset, which could better suit air
quality studies on a regional scale. Although our products
only provide the surface concentrations of six conventional
air pollutants in China, the accuracy of the CAQRA dataset
was estimated to be higher than that of the CAMSRA dataset
due to the assimilation of surface observations. Hence, our
products exhibit their own value in regional air quality stud-
ies with high demands on spatiotemporal resolution and ac-
curacy. We also compared our PM2.5 reanalysis data to pre-
vious satellite estimates of the surface PM2.5 concentration,
which revealed that the PM2.5 reanalysis data are more accu-
rate than most satellite estimates and exhibit a relatively fine
temporal resolution.

As the first version of the CAQRA dataset, certain limita-
tions remain that potential users should be aware of. Firstly,
the discontinuities in the availability and coverage of assimi-
lated observations will affect the reanalysis quality and the
estimated interannual trends. As shown in Sect. 3.1, there
has been a consistent increase in the number of assimilated
observations from 2013 to 2015 due to the increases of ob-
servation sites. The smaller number of assimilated observa-
tions in 2013 and 2014 would provide fewer constraints on
the background state and thus degrade the reanalysis in these
2 years. This may cause spurious interannual changes and
trends from 2013 to 2018. Thus, caution is needed when
using the reanalysis for long-term air quality change from
2013 to 2018. However, this problem would be not serious
after 2015, when the number of assimilated observations be-
comes stable. In addition, the observation sites used in the
assimilation are mainly urban or suburban sites that do not
provide enough information on the air pollution in rural ar-
eas, which may influence the quality of CAQRA in rural ar-
eas. Secondly, we only perturbed the emissions to represent
the forecast uncertainty in this study, which may underesti-

mate the forecast uncertainty due to the omitting of other er-
ror sources, such as the uncertainty in poorly parameterized
physical or chemical processes, and the uncertainty in mete-
orological simulation. The limited ensemble size would also
lead to underestimation of the forecast error, especially in the
high-resolution assimilation applications. Although the infla-
tion method is used to compensate for the missing errors, the
underestimated forecast uncertainty would still degrade the
assimilation performance to a certain extent as exemplified
by the larger biases in the reanalysis over the NW and cen-
tral regions. Thirdly, we did not consider the annual trend
of emissions in the ensemble simulation. This would lead to
temporal changes in the statistics of innovation due to the
substantial changes of observations, which would influence
the long stability of the data assimilation as suggested by
the χ2 test, although the OmA statistics generally confirm
a passable stability in our assimilation system. Last but not
least, the current CAQRA only contains the surface concen-
trations of the air pollutants in China, which cannot provide
the information on the vertical structure of the air pollutants.
To further improve the accuracy of our air quality reanaly-
sis dataset, in the future, an online EnKF run could be con-
ducted to simultaneously correct the emissions and concen-
trations. More observation types, such as observation data
on PM2.5 composition, could also be assimilated to provide
PM2.5 composition fields in China, which could support both
epidemiological studies and climate research.

https://doi.org/10.5194/essd-13-529-2021 Earth Syst. Sci. Data, 13, 529–570, 2021



554 L. Kong et al.: A 6-year-long high-resolution air quality reanalysis dataset in China

Appendix A: Diagnosis results of the outlier
detection method

Figure A1. Removal ratio of the observations in China from 2013 to 2018 for different species detected by the automatic outlier detection
method.

Figure A2. Spatial distributions of differences in annual concentrations of six air pollutants in China before and after quality control averaged
from 2013 to 2018.
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Appendix B: Inter-species correlation coefficient
among different species

Figure B1. Correlations between species in the background error covariance matrix, estimated from the LETKF ensemble averaged from
2013 to 2018. The global mean of the covariance estimated for each station is plotted.

Figure B2. Correlations between species in the background error covariance matrix, estimated from the LETKF ensemble averaged in
different seasons from 2013 to 2018. The global mean of the covariance estimated for each station is plotted.
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Appendix C: Time series of the OmF and OmA
statistics from the data assimilation system

Figure C1. Time series of monthly mean OmF and OmA normalized mean bias in different regions of China for different species.
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Figure C2. Time series of monthly mean OmF and OmA normalized root mean square error in different regions of China for different
species.
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Appendix D: Spatial distributions of seasonal mean
concentrations of different species obtained from
CAQRA

Figure D1. Spatial distributions of the PM2.5 reanalysis in China during (a) spring, (b) summer, (c) autumn, and (d) winter averaged from
2013 to 2018.
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Figure D2. Same as Fig. D1 but for PM10.
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Figure D3. Same as Fig. D1 but for SO2.

Figure D4. Same as Fig. D1 but for CO.
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Figure D5. Same as Fig. D1 but for NO2.

Figure D6. Same as Fig. D1 but for O3.
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Appendix E: CV results of the reanalysis data in
different regions of China

Table E1. CV results of the reanalysis (outside brackets) and base simulation (in brackets) for PM2.5 concentrations in different regions of
China on different temporal scales.

PM2.5 NCP NE

(µg/m3) R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.85 (0.33) −3.3 (22.4) −4.8 (32.8) 25.1 (62.6) 0.77 (0.25) −2.6 (2.8) −5.8 (6.5) 22.6 (44.5)
Daily 0.90 (0.44) −3.4 (22.3) −4.9 (32.4) 17.5 (51.2) 0.86 (0.32) −2.6 (2.6) −5.9 (6.0) 14.7 (35.1)
Monthly 0.92 (0.56) −3.4 (22.2) −4.9 (32.4) 11.4 (34.1) 0.86 (0.38) −2.6 (2.7) −5.9 (6.0) 9.7 (21.4)
Yearly 0.92 (0.56) −3.6 (20.8) −5.0 (29.2) 8.7 (27.3) 0.79 (0.35) −3.1 (0.4) −6.6 (0.8) 8.8 (16.7)

SE SW

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.85 (0.25) −1.8 (22.2) −3.8 (47.6) 14.9 (51.5) 0.79 (0.22) −1.4 (30.3) −3.4 (74.7) 16.5 (57.4)
Daily 0.90 (0.31) −1.8 (22.2) −3.8 (47.4) 10.6 (45.4) 0.86 (0.29) −1.4 (30.0) −3.4 (74.2) 12.1 (51.6)
Monthly 0.92 (0.45) −1.8 (22.1) −3.8 (47.2) 7.4 (33.7) 0.86 (0.49) −1.5 (29.8) −3.7 (73.3) 9.7 (42.8)
Yearly 0.90 (0.37) −2.0 (20.5) −4.0 (42.0) 6.1 (29.3) 0.79 (0.47) −2.2 (27.2) −5.0 (63.2) 9.5 (38.8)

NW Central

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.52 (0.11) −7.3 (−28.7) −13.1 (−51.1) 52.1 (73.0) 0.72 (0.23) −4.1 (0.8) −8.2 (1.6) 26.6 (47.5)
Daily 0.66 (0.15) −7.5 (−29.0) −13.2 (−51.3) 39.4 (66.0) 0.83 (0.30) −4.2 (0.7) −8.3 (1.4) 19.1 (39.9)
Monthly 0.72 (0.28) −7.4 (−28.9) −13.1 (−51.3) 26.9 (50.3) 0.85 (0.42) −4.2 (0.7) −8.2 (1.4) 13.1 (26.1)
Yearly 0.64 (0.40) −9.8 (−33.5) −16.1 (−54.9) 23.5 (43.1) 0.77 (0.31) −5.4 (−3.6) −10.1 (−6.7) 12.5 (24.3)

Table E2. CV results of the reanalysis (outside brackets) and base simulation (in brackets) for PM10 concentrations in different regions of
China on different temporal scales.

PM10 NCP NE

(µg/m3) R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.79 (0.23) −7.7 (−14.6) −6.4 (−12.1) 43.7 (88.3) 0.71 (0.18) −7.6 (−23.6) −9.6 (−29.8) 39.8 (70.8)
Daily 0.86 (0.31) −7.6 (−14.2) −6.3 (−11.7) 30.9 (71.8) 0.79 (0.25) −7.6 (−23.6) −9.7 (−30.0) 27.1 (56.8)
Monthly 0.86 (0.38) −7.6 (−14.2) −6.3 (−11.8) 21.4 (44.9) 0.76 (0.29) −7.7 (−23.6) −9.8 (−30.0) 19.4 (39.6)
Yearly 0.85 (0.46) −7.6 (−15.8) −6.2 (−12.8) 17.6 (33.0) 0.67 (0.31) −8.3 (−26.5) −10.3 (−32.6) 18.4 (36.2)

SE SW

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.77 (0.18) −4.4 (6.9) −5.9 (9.4) 26.0 (61.2) 0.69 (0.15) −5.1 (13.0) −7.5 (19.1) 30.2 (66.2)
Daily 0.85 (0.23) −4.1 (8.1) −5.6 (11.1) 18.6 (52.0) 0.77 (0.21) −5.0 (13.1) −7.4 (19.6) 22.4 (56.5)
Monthly 0.85 (0.38) −4.2 (7.5) −5.7 (10.2) 13.7 (33.3) 0.76 (0.38) −5.2 (12.5) −7.8 (18.5) 18.7 (41.4)
Yearly 0.81 (0.36) −4.7 (4.9) −6.1 (6.5) 12.3 (26.3) 0.62 (0.38) −6.8 (8.7) −9.6 (12.2) 19.3 (35.7)

NW Central

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.46 (0.08) −21.5 (−88.5) −18.0 (−74.1) 105.5 (150.2) 0.61 (0.11) −14.6 (−45.6) −14.1 (−43.9) 57.3 (96.4)
Daily 0.56 (0.11) −21.5 (−89.3) −17.9 (−74.1) 85.5 (141.6) 0.72 (0.14) −14.6 (−45.5) −14.1 (−43.8) 42.1 (84.6)
Monthly 0.59 (0.17) −20.8 (−89.5) −17.2 (−74.0) 64.0 (118.9) 0.74 (0.28) −14.6 (−45.3) −14.1 (−43.8) 30.2 (62.5)
Yearly 0.58 (0.23) −23.8 (−92.3) −19.3 (−74.7) 55.8 (110.2) 0.67 (0.25) −16.4 (−50.1) −15.4 (−46.8) 28.0 (60.4)
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Table E3. CV results of the reanalysis (outside brackets) and base simulation (in brackets) for SO2 concentrations in different regions of
China on different temporal scales.

SO2 (µg/m3) NCP NE

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.62 (0.10) −3.6 (26.4) −9.4 (69.4) 31.5 (63.1) 0.46 (0.08) −2.0 (5.1) −6.9 (17.5) 34.8 (53.2)
Daily 0.74 (0.16) −3.6 (26.4) −9.4 (69.6) 22.8 (52.7) 0.62 (0.13) −2.0 (5.1) −7.0 (17.6) 23.8 (42.2)
Monthly 0.79 (0.19) −3.7 (26.2) −9.6 (68.4) 17.1 (43.6) 0.71 (0.14) −2.0 (5.0) −6.9 (17.3) 17.9 (34.9)
Yearly 0.81 (0.18) −4.2 (23.7) −10.2 (56.9) 13.3 (36.1) 0.56 (0.14) −2.4 (2.7) −7.6 (8.7) 15.9 (27.7)

SE SW

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.42 (0.01) −1.0 (29.8) −5.7 (169.6) 14.6 (69.3) 0.27 (0.01) −1.9 (44.2) −12.1 (277.2) 16.7 (88.1)
Daily 0.55 (0.01) −1.0 (29.9) −5.7 (170.2) 10.5 (63.3) 0.38 (0.01) −1.9 (44.1) −12.2 (276.5) 11.8 (80.3)
Monthly 0.61 (0.01) −1.0 (29.7) −5.7 (168.6) 7.8 (55.8) 0.46 (0.02) −2.0 (43.9) −12.4 (273.7) 9.1 (73.7)
Yearly 0.66 (0.01) −1.4 (28.0) −7.1 (144.5) 7.9 (52.7) 0.53 (0.01) −2.7 (41.2) −15.2 (231.3) 9.5 (68.3)

NW Central

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.31 (0.01) −0.3 (9.4) −2.3 (61.6) 22.7 (40.4) 0.30 (0.02) −4.4 (13.2) −17.0 (51.3) 36.0 (58.9)
Daily 0.42 (0.01) −0.3 (9.4) −1.8 (62.2) 17.8 (36.2) 0.49 (0.03) −4.4 (13.2) −17.0 (51.5) 23.6 (49.1)
Monthly 0.48 (0.03) −0.3 (9.3) −2.2 (61.1) 13.4 (30.3) 0.59 (0.03) −4.4 (13.1) −17.0 (51.0) 18.2 (43.2)
Yearly 0.29 (0.00) −1.9 (6.6) −10.5 (35.9) 15.8 (28.0) 0.50 (0.00) −5.6 (8.6) −19.0 (29.3) 18.6 (40.2)
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Table E4. CV results of the reanalysis (outside brackets) and base simulation (in brackets) for NO2 concentrations in different regions of
China on different temporal scales.

NO2 NCP NE

(µg/m3) R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.67 (0.20) −1.4 (−3.0) −3.5 (−7.1) 16.8 (26.5) 0.61 (0.27) −1.6 (−5.9) −5.0 (−19.1) 15.8 (22.4)
Daily 0.72 (0.22) −1.4 (−2.9) −3.3 (−7.1) 12.4 (20.8) 0.66 (0.34) −1.5 (−5.9) −4.9 (−19.0) 11.7 (17.2)
Monthly 0.72 (0.24) −1.4 (−2.9) −3.3 (−7.1) 9.3 (15.5) 0.64 (0.37) −1.5 (−5.9) −5.0 (−19.1) 9.3 (13.7)
Yearly 0.67 (0.36) −1.4 (−3.8) −3.3 (−9.0) 7.5 (11.0) 0.64 (0.45) −1.5 (−6.4) −4.8 (−20.3) 7.8 (11.7)

SE SW

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.64 (0.23) −1.9 (−1.3) −5.9 (−4.0) 14.9 (24.1) 0.49 (0.19) −3.9 (−9.9) −14.0 (−35.7) 16.4 (23.2)
Daily 0.71 (0.28) −1.8 (−1.3) −5.8 (−4.0) 11.2 (19.2) 0.55 (0.28) −3.9 (−9.9) −14.0 (−35.7) 12.8 (18.7)
Monthly 0.72 (0.36) −1.8 (−1.2) −5.8 (−3.9) 8.8 (14.7) 0.48 (0.32) −4.0 (−10.0) −14.4 (−36.0) 12.6 (17.2)
Yearly 0.66 (0.49) −1.9 (−2.2) −6.0 (−6.6) 7.8 (11.7) 0.46 (0.37) −4.6 (−11.0) −16.1 (−38.7) 11.8 (16.4)

NW Central

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.46 (0.20) −4.3 (−18.0) −12.9 (−54.4) 24.3 (31.5) 0.50 (0.20) −5.2 (−16.7) −15.1 (−48.3) 20.5 (29.2)
Daily 0.55 (0.27) −4.1 (−18.0) −12.5 (−54.4) 18.3 (27.0) 0.58 (0.28) −5.2 (−16.7) −15.0 (−48.3) 15.4 (24.7)
Monthly 0.59 (0.40) −4.2 (−18.0) −12.7 (−54.3) 15.3 (23.8) 0.61 (0.40) −5.2 (−16.6) −15.1 (−48.3) 12.8 (21.6)
Yearly 0.40 (0.36) −6.0 (−19.7) −17.3 (−56.3) 16.5 (23.8) 0.55 (0.36) −5.6 (−17.6) −16.0 (−50.1) 12.2 (21.4)
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Table E5. CV results of the reanalysis (outside brackets) and base simulation (in brackets) for CO concentrations in different regions of
China on different temporal scales.

CO NCP NE

(mg/m3) R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.67 (0.25) −0.03 (−0.59) −2.49 (−43.4) 0.64 (1.13) 0.50 (0.20) −0.05 (−0.51) −5.3 (−51.9) 0.59 (0.88)
Daily 0.72 (0.31) −0.03 (−0.59) −2.15 (−43.3) 0.50 (0.99) 0.56 (0.25) −0.05 (−0.51) −4.9 (−51.7) 0.46 (0.78)
Monthly 0.74 (0.34) −0.03 (−0.59) −2.24 (−43.5) 0.38 (0.85) 0.59 (0.25) −0.05 (−0.51) −5.2 (−52.0) 0.37 (0.70)
Yearly 0.71 (0.14) −0.04 (−0.64) −2.75 (−45.1) 0.32 (0.85) 0.55 (0.14) −0.06 (−0.56) −5.9 (−54.0) 0.35 (0.74)

SE SW

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.42 (0.13) −0.06 (−0.36) −6.4 (−38.2) 0.39 (0.62) 0.36 (0.07) −0.08 (−0.32) −9.4 (−36.4) 0.46 (0.65)
Daily 0.45 (0.15) −0.06 (−0.36) −6.1 (−38.0) 0.34 (0.57) 0.40 (0.08) −0.08 (−0.31) −9.1 (−36.3) 0.39 (0.59)
Monthly 0.44 (0.14) −0.06 (−0.36) −6.2 (−38.1) 0.28 (0.51) 0.40 (0.08) −0.08 (−0.32) −9.4 (−36.7) 0.34 (0.54)
Yearly 0.38 (0.05) −0.06 (−0.38) −6.5 (−39.3) 0.25 (0.50) 0.36 (0.01) −0.09 (−0.36) −10.1 (−39.1) 0.36 (0.57)

NW Central

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.38 (0.12) −0.19 (−1.02) −15.0 (−79.3) 1.13 (1.55) 0.44 (0.22) −0.13 (−0.76) −11.2 (−65.2) 0.73 (1.11)
Daily 0.45 (0.18) −0.19 (−1.01) −14.6 (−79.2) 0.92 (1.43) 0.49 (0.27) −0.13 (−0.76) −10.8 (−65.1) 0.62 (1.04)
Monthly 0.50 (0.29) −0.19 (−1.02) −15.1 (−79.3) 0.75 (1.32) 0.53 (0.32) −0.13 (−0.76) −11.1 (−65.2) 0.52 (0.97)
Yearly 0.13 (0.12) −0.31 (−1.18) −21.1 (−80.8) 0.85 (1.35) 0.19 (0.08) −0.17 (−0.84) −13.3 (−67.3) 0.69 (1.08)

Table E6. CV results of the reanalysis (outside brackets) and base simulation (in brackets) for O3 concentrations in different regions of
China on different temporal scales.

O3 (µg/m3) NCP NE

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.83 (0.50) −3.9 (−24.5) −6.1 (−39.1) 22.1 (44.3) 0.76 (0.38) −3.6 (−15.4) −6.0 (−25.6) 21.0 (36.7)
Daily 0.83 (0.48) −3.8 (−24.5) −6.0 (−39.1) 16.3 (37.0) 0.76 (0.34) −3.6 (−15.3) −5.9 (−25.5) 16.4 (30.8)
Monthly 0.85 (0.62) −3.8 (−24.4) −6.1 (−39.1) 12.6 (31.6) 0.76 (0.42) −3.6 (−15.2) −5.9 (−25.4) 13.1 (25.2)
Yearly 0.72 (0.29) −3.7 (−23.1) −6.2 (−38.6) 9.2 (26.8) 0.62 (0.18) −3.5 (−14.4) −6.1 (−25.0) 10.0 (20.4)

SE SW

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.77 (0.57) −2.3 (−10.0) −3.9 (−17.4) 21.1 (38.2) 0.69 (0.40) 0.8 (9.6) 1.4 (18.0) 22.2 (33.6)
Daily 0.69 (0.44) −2.2 (−10.0) −3.8 (−17.3) 15.8 (31.0) 0.64 (0.34) 0.8 (9.7) 1.5 (18.1) 17.4 (26.7)
Monthly 0.69 (0.43) −2.2 (−10.0) −3.9 (−17.3) 12.4 (24.2) 0.64 (0.44) 0.8 (9.7) 1.6 (18.1) 14.4 (21.1)
Yearly 0.45 (0.07) −2.4 (−10.1) −4.2 (−17.7) 10.0 (20.7) 0.42 (0.28) 1.3 (10.0) 2.6 (19.4) 12.0 (17.7)

NW Central

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE

Hourly 0.52 (0.31) −2.7 (−2.2) −4.6 (−3.8) 28.3 (33.2) 0.71 (0.45) −1.5 (−0.8) −2.5 (−1.3) 23.9 (32.5)
Daily 0.50 (0.31) −2.6 (−2.1) −4.5 (−3.6) 22.9 (26.6) 0.67 (0.42) −1.4 (−0.7) −2.4 (−1.1) 17.8 (23.9)
Monthly 0.58 (0.42) −2.6 (−2.1) −4.5 (−3.6) 19.1 (22.1) 0.72 (0.56) −1.4 (−0.7) −2.4 (−1.2) 13.9 (17.6)
Yearly 0.37 (0.24) −1.6 (−0.6) −2.9 (−1.1) 15.7 (17.1) 0.53 (0.30) −0.8 (0.2) −1.4 (0.4) 11.6 (14.1)
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