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Abstract. As a linkage among water, energy, and carbon cycles, global actual evapotranspiration (ET) plays
an essential role in agriculture, water resource management, and climate change. Although it is difficult to
estimate ET over a large scale and for a long time, there are several global ET datasets available with uncer-
tainty associated with various assumptions regarding their algorithms, parameters, and inputs. In this study,
we propose a long-term synthesized ET product at a kilometer spatial resolution and monthly temporal resolu-
tion from 1982 to 2019. Through a site-pixel evaluation of 12 global ET products over different time periods,
land surface types, and conditions, the high-performing products were selected for the synthesis of the new
dataset using a high-quality flux eddy covariance (EC) covering the entire globe. According to the study re-
sults, Penman–Monteith–Leuning (PML), the operational Simplified Surface Energy Balance (SSEBop), the
Moderate Resolution Imaging Spectroradiometer (MODIS, MOD16A2105), and the Numerical Terradynamic
Simulation Group (NTSG) ET products were chosen to create the synthesized ET set. The proposed product
agreed well with flux EC ET over most of the all comparison levels, with a maximum relative mean error (RME)
of 13.94 mm (17.13 %) and a maximum relative root mean square error (RRMSE) of 38.61 mm (47.45 %). Fur-
thermore, the product performed better than local ET products over China, the United States, and the African
continent and presented an ET estimation across all land cover classes. While no product can perform best in
all cases, the proposed ET can be used without looking at other datasets and performing further assessments.
Data are available on the Harvard Dataverse public repository through the following Digital Object Identifier
(DOI): https://doi.org/10.7910/DVN/ZGOUED (Elnashar et al., 2020), as well as on the Google Earth En-
gine (GEE) application through this link: https://elnashar.users.earthengine.app/view/synthesizedet (last access:
21 January 2021).

1 Introduction

Over most of the global land area, terrestrial evapotranspi-
ration (ET) considers the second largest element of the hy-
drological cycle after precipitation (Waring and Running,
2007b; Bastiaanssen et al., 2014) and represents the link-
age between water, energy, and carbon cycles (Gentine et
al., 2019; Yang et al., 2016; Ferguson and Veizer, 2007) and

ecosystem services (Almusaed, 2011; Yang et al., 2015; Rev-
elli and Porporato, 2018).

Hence, the accurate estimation of global ET is essential for
understanding the global hydrological cycle and water bud-
gets (Oki and Kanae, 2006; Trenberth et al., 2007; Rodell et
al., 2015), global drought (Sheffield et al., 2012; Naumann et
al., 2018; Spinoni et al., 2019; Lu et al., 2019; Forootan et
al., 2019), impacts of climate change (Waring and Running,
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2007a; Zomer et al., 2008; Scheff and Frierson, 2014; Pan
et al., 2015), climate change and global water resources (Ar-
nell, 1999; Haddeland et al., 2014; Arnell and Lloyd-Hughes,
2014), global transboundary basin water scarcity (Degefu et
al., 2018), water competition within a basin (Scott et al.,
2001), and water stress/conflict within transboundary basins
(Samaranayake et al., 2016; Munia et al., 2016; Bastiaanssen
et al., 2014).

While precipitation and runoff, which are other paramount
factors of the global water balance, can be directly measured
by in situ weather stations and stream gauge networks, as
well as the availability of several datasets of remotely sensed
precipitation (Funk et al., 2015; Ashouri et al., 2015; Huff-
man et al., 1997; Yamamoto and Shige, 2015), it is difficult
to measure ET, especially at large spatial scales (Senay et al.,
2012; Zhang et al., 2016).

Recently, several global ET datasets have become avail-
able for a variety of purposes, and they have been gen-
erated using remote sensing models, land surface models
(LSMs), and hydrological models (Trambauer et al., 2014;
Li et al., 2018; Sörensson and Ruscica, 2018). There are
many differences among these models concerning their al-
gorithms, parameters, and inputs, and they produce differ-
ent levels of uncertainty (Wang and Dickinson, 2012; Xu et
al., 2019; Weerasinghe et al., 2020; Vinukollu et al., 2011a).
The remote sensing model, which mainly focuses on ther-
mal remote sensing and the energy balance equation, will
be represented by MOD16A2 (Mu et al., 2011), Penman–
Monteith–Leuning (PML; Zhang et al., 2019), the opera-
tional Simplified Surface Energy Balance (SSEBop; Senay
et al., 2013), the Surface Energy Balance System (SEBS;
Chen et al., 2013), the Numerical Terradynamic Simula-
tion Group (NTSG; Zhang et al., 2010), and the Global
Land Evaporation Amsterdam Model (GLEAM) v3.3b (Mi-
ralles et al., 2011b). The land surface model uses quanti-
tative methods to simulate the vertical exchanges of water
and energy fluxes between the atmosphere and the land sur-
face, as represented by the Global Land Data Assimilation
System (GLDAS) ET (Rodell et al., 2004), GLEAM v3.3a
(Miralles et al., 2011b), and the Famine Early Warning Sys-
tems Network (FEWS NET) Land Data Assimilation Sys-
tem (FLDAS) (McNally et al., 2017). TerraClimate, which
is a hydrological model, is based on a one-dimensional wa-
ter balance approach (Abatzoglou et al., 2018). However, the
availability of many datasets introduces challenges related to
how users choose the appropriate dataset for their purposes
(Wu et al., 2020).

Some studies have evaluated global ET products using an
inferred estimate of ET obtained by subtracting discharge
(Q) from precipitation (P ), ET=P −Q, over global river
basins (Zhang et al., 2010; Vinukollu et al., 2011a, b), conti-
nental river basins (Weerasinghe et al., 2020), transboundary
river basins (Hofste, 2014), and national river basins (Zhong
et al., 2020). Some, on the other hand, have used the en-
semble ET product as observed data for evaluating certain

ET products (Hofste, 2014; Trambauer et al., 2014; Andam-
Akorful et al., 2015; Bhattarai et al., 2019).

Although flux eddy covariance (EC) ET is commonly
flawed, particularly concerning energy balance closure at
some sites (Foken, 2008; Helgason and Pomeroy, 2012), rel-
atively short periods, and sparse spatial coverage, it is the
most direct method for measuring the exchange between the
surface and the atmosphere in different ecosystems (Foken
et al., 2012; Baldocchi, 2014). Thus, site-pixel-level valida-
tion of certain ET products against flux EC ET as typically
observed data has been performed by several studies in spe-
cific regions, e.g., globally (Leuning et al., 2008; Zhang et al.,
2010; Ershadi et al., 2014; Michel et al., 2016), Asia (Kim et
al., 2012), South Africa (Majozi et al., 2017), Europe (Ghi-
lain et al., 2011; Hu et al., 2015), North America (Jiménez
et al., 2009; Mu et al., 2011), Europe and the United States
(Miralles et al., 2011b), the United States (Vinukollu et al.,
2011b; Velpuri et al., 2013; Xu et al., 2019), and China (Jia
et al., 2012; Liu et al., 2013; Y. Chen et al., 2014; Tang et al.,
2015; Yang et al., 2017; Li et al., 2018). Few previous stud-
ies have focused on merging certain ET products to create an
ensemble ET product. For instance, Vinukollu et al. (2011a),
Mueller et al. (2013), and Badgley et al. (2015) used all ET
products and created a merged product with a low spatial res-
olution. There are some global merged benchmarking evap-
otranspiration products. Vinukollu et al. (2011a) generated
an ensemble of six global ET datasets at a daily timescale
and 0.5◦× 0.5◦ (≈ 55 km) spatial resolution for the period
1984–2007 using two surface radiation budget products and
three models (i.e., surface energy balance, revised Penman–
Monteith, and modified Priestley–Taylor). They reported that
the ensemble simple mean value was reasonable; however, it
was generally highly biased globally. Mueller et al. (2013)
presented two monthly global ET products that differed in
their input ET members and temporal coverage. The first
dataset consisted of 40 datasets for the period 1989–1995,
while the second dataset merged 14 datasets from 1989 to
2005. Their ET was derived from satellite and/or in situ ob-
servations (diagnostic) or calculated via LSMs driven with
observation-based forcing or output from atmospheric re-
analysis. Hence, they provided four merged synthesis prod-
ucts, one including all datasets and three including datasets
of each category (i.e., diagnostic, LSM, and reanalysis). They
introduced the first benchmark products for global ET and
found that its multiannual variations showed realistic re-
sponses and were consistent with previous findings. Badg-
ley et al. (2015) used a Priestley–Taylor Jet Propulsion Lab
(PT-JPL) model with 19 different combinations of forcing
data to produce global ET estimates from 1984 to 2006 at
a 1◦× 1◦ (≈ 100 km) spatial resolution. The ensemble ET
members changed according to the number of products avail-
able each year, which ranged between 4 and 12 members for
1999/2000 and 2001/2002, respectively. Their study focused
on the uncertainty in global ET estimates resulting from each
class of input forcing datasets.
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However, from the aforementioned studies, we can report
three findings: (1) no single ET product performed better
than any other over different land surface types and condi-
tions, (2) no one product generated a single dataset for users,
and (3) the created ensemble ET products relied on several
individual ET products and were not based on the product
with the best performance.

From our point of view, this work attempts to add to the
growing scientific literature by using a high-quality dataset
from global flux towers for further validations and intercom-
parison between different global ET products to understand
their behavior within defined land cover types, elevation lev-
els, and climatic classes. Moreover, we attempt to build an
ensemble ET product that has a minimum level of uncer-
tainty over as many conditions as possible. The study has
two objectives: (1) to assess global ET products with in situ
data derived from global flux towers across a variety of land
surface types and conditions to gain a better understanding
of the disparities among datasets and (2) to synthesize an en-
semble global ET product with minimum uncertainties over
more land surface types, climate systems, and monthly, an-
nually, and interannual time steps for a longer time.

2 Data

2.1 Evapotranspiration

A total of 12 global ET datasets were explored in the cur-
rent study (Table 1 and Appendix A). Of them, five datasets
used the Moderate Resolution Imaging Spectroradiometer
(MODIS) as input, including two versions (V6 and V105)
of the Global Evapotranspiration Project (MOD16A2), the
Penman–Monteith–Leuning ET (PML), the operational Sim-
plified Surface Energy Balance ET (SSEBop), and the Sur-
face Energy Balance System (SEBS). One dataset used the
Advanced Very High-Resolution Radiometer (AVHRR) as
input, including the Numerical Terradynamic Simulation
Group (NTSG). The remainder mainly used meteorological
datasets as direct input, including field measurements such
as TerraClimate and reanalysis datasets such as FLDAS and
GLDAS. The algorithm used in 12 global ET datasets is
mainly the Penman–Monteith model, except for FLDAS and
GLDAS, which use the LSM, and TerraClimate, which uses
the soil water balance model. Priestley–Taylor is used to esti-
mate evaporation from open water by NTSG, while Penman
evapotranspiration is used in PML for water body, snow, and
ice evaporation. SSEBop, SEBS, NTSG, and GLEAM are
individually managed, and other ET products, as well as ele-
vation data, are available from GEE.

Three regional ET datasets were used for the compari-
son of consistent agreement over China, the United States,
and the African continent (Table 2). Over mainland China,
the complementary relationship (CR) ET product was used
(Ma et al., 2019); it is estimated monthly at a 0.1◦ (≈
10 km) spatial resolution over 1982–2015 and can be re-
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Table 2. Regional ET products.

Product Method Satellite data Meteorological data Resolution Temporal coverage

Spatial Temporal

CR CR MODIS CMFD 10 km 1 month 1 Jan 1982–31 Dec 2015
SSEBop P-M MODIS NASA GDAS 1 km 1 d 1 Jan 2000–31 Dec 2018
WaPOR RS-SEB MODIS MERRA/GEOS-5, CHIRPS 250 m 1 month 1 Jan 2009–ongoing

Note: CR: complementary relationship; P-M: Penman–Monteith; P-T: Priestley–Taylor; RS-SEB: remotely sensed surface energy balance; CMFD: China
Meteorological Forcing Dataset; NASA GDAS: National Oceanic and Atmospheric Administration’s (NOAA) Global Data Assimilation System; MERRA:
Modern-Era Retrospective Analysis for Research and Applications; GEOS-5: Goddard Earth Observing System, version 5; CHIRPS: Climate Hazards Group
InfraRed Precipitation with Stations.

Figure 1. Spatial distribution of 645 in situ flux EC sites across the world.

trieved from http://en.tpedatabase.cn (last access: 21 Jan-
uary 2021). For the United States, daily SSEBop was used
(Savoca et al., 2013; Senay and Kagone, 2019). These data
are produced at a 0.009◦× 0.009◦ (≈ 1 km) grid cell spa-
tial resolution from 2000 to 2018 and can be downloaded
from https://earlywarning.usgs.gov/ssebop/modis/daily (last
access: 21 January 2021). Daily SSEBop is aggregated to
monthly time steps to be comparable with the synthesized
ET temporal resolution. The Food and Agriculture Organi-
zation (FAO) Water Productivity through Open access of Re-
motely sensed derived ET product (FAO WaPOR version 2)
was used for Africa (FAO, 2018, 2020). These data esti-
mates are the sum of ET and interception, provided at a
0.002◦× 0.002◦ (≈ 250 m) spatial resolution with a monthly
temporal resolution from 2009. WaPOR ET estimates are
available through the following website: https://wapor.apps.
fao.org/home/WAPOR_2/1 (last access: 21 January 2021).

2.2 Flux EC data

Comprehensive flux EC ET data from 645 sites (Fig. 1 and
Table 3) – AmeriFlux, FLUXNET, EuroFlux, AsiaFlux, and
ChinaFlux – were collected and processed to examine the
performance of different estimated ET products. The down-
loaded EC data are half-hourly text-type data, while the pe-
riods of flux EC ET ranged from 1 year (12 months) to
21 years (252 months) from 1994 to 2019. The gap-filling
technique was applied to the downloaded in situ EC data (Re-
ichstein et al., 2005). Different EC flux sites were spatially
distributed on the heterogeneous underlying surface corre-
sponding to different land cover types according to the Inter-
national Geosphere–Biosphere Programme (IGBP) classifi-
cation system, which is recorded in each flux attribute data.
The in situ measured ET (mm d−1) can be obtained by the
half-hourly average latent heat flux (LE, W m−2 s−1) through
Eq. (1) (Su, 2002):

Earth Syst. Sci. Data, 13, 447–480, 2021 https://doi.org/10.5194/essd-13-447-2021
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ET=
LE
λ
× 3600× 24, (1)

where LE (W m−2 s−1) is the daily average of the half-hourly
average latent heat flux, and λ is the latent heat of evapo-
ration. λ varies with air temperature in hydrologic or agri-
cultural system modeling but only to a small extent (Walter
et al., 2001), and the value acts directly on the accuracy of
the estimated in situ measured ET. Considering that there are
very limited impacts of the changes in air temperature on the
estimated in situ measured ET (Henderson-Sellers, 1984; Li
et al., 2018), the constant value of 2.45 MJ kg−1 is fixed in
the calculation above (Walter et al., 2001).

2.3 Aridity index

The mean global aridity index dataset was produced by
Zomer et al. (2008) using WorldClim global climate data.
The aridity index was estimated as the mean annual precip-
itation divided by the mean annual potential evapotranspira-
tion, and the latter was calculated by the Hargreaves equa-
tion. The spatial resolution was 0.0083◦× 0.0083◦ (≈ 1 km)
grid cells (Trabucco and Zomer, 2018), and the data can
be downloaded from the following website: https://cgiarcsi.
community/data/global-aridity-and-pet-database (last ac-
cess: 21 January 2021).

2.4 Elevation data

The Shuttle Radar Topography Mission (SRTM) data were
provided at a resolution of 1 arcsec and void-filled (Farr et
al., 2007). For the geographic areas outside the SRTM cover-
age area, the Global Multi-resolution Terrain Elevation Data
2010 (GMTED2010), which have a resolution of 7.5 arcsec,
were used (Danielson and Gesch, 2011).

3 Methods

3.1 Assessment

Because ET is highly variable in both space and time (Schaf-
frath and Bernhofer, 2013; Fisher et al., 2017), a comprehen-
sive evaluation from different perspectives is required (Tram-
bauer et al., 2014; McCabe et al., 2016; Li et al., 2018). For
each flux tower location, the aridity index, elevation, and es-
timated ET data were extracted. The aridity index was clas-
sified (Table 4) according to the United Nations Environ-
ment Programme definition (UNEP, 1997) into four classes,
i.e., humid: 361 (56 %), semiarid: 167 (26 %), dry subhu-
mid: 82 (13 %), and arid: 35 (5 %). Elevations were classified
into three levels, i.e.,< 500 m: 452 (70 %), 500–1500 m: 135
(21 %), and > 1500 m: 58 (9 %). Land cover included five
types, i.e., forests: 349 (54 %), grasslands: 128 (20 %), crop-
lands: 89 (14 %), water bodies: 73 (11 %), and others (barren
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Figure 2. Flow chart of the synthesization method.

Table 4. Climate classification according to the global aridity index
values.

Aridity index value Climate class

< 0.03 Hyper arid
0.03–0.20 Arid
0.20–0.50 Semiarid
0.50–0.65 Dry subhumid
> 0.65 Humid

land and permanent snow and ice): 6 (1 %). Accordingly, the

following metrics were estimated using Eqs. (2)–(7):

ME=
1
n

n∑
i=1

Yi −Xi, (2)

RME=
ME
X
, (3)

RMSE=

√√√√√ n∑
i=1

(Yi −Xi)2

n
, (4)

RRMSE=
RMSE
X

, (5)
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Figure 3. Monthly average flux EC ET and 12 ET products over all flux sites (a), land cover types (croplands: b; grasslands: c; forests: d;
water bodies: e), climate classes (semiarid: f; dry subhumid: g; humid: h), and elevation levels (< 500 m: i; 500–1500 m: j; > 1500 m: k).

https://doi.org/10.5194/essd-13-447-2021 Earth Syst. Sci. Data, 13, 447–480, 2021



454 A. Elnashar et al.: Synthesis of global actual evapotranspiration from 1982 to 2019

Figure 4. Monthly ET products (PML: a; GLDAS20: b; SSEBop: c; MOD16A2105: d; GLDAS21: e; SEBS: f; NTSG: g; GLEAM33a: h;
FLDAS: i; GLEAM33b: j; TerraClimate: k; MOD16A2: l) against flux EC ET aggregated for all sites.

R =

n∑
i=1

[(Yi −Y ) (Xi −X)]√
n∑
i=1

(Yi −Y )2

√
n∑
i=1

(Xi −X)2

, (6)

TS=
4(1+R)(

SD+ 1
SD

)2
(1+R0)

, (7)

where ME is the mean error, RME is the relative mean error,
RMSE is the root mean square error, RRMSE is the relative
root mean square error, R is the correlation coefficient, TS is
the Taylor score, n is the sample number, i is the ith sample,
X is the mean of the observed EC ET data, Y is the mean of
different estimated ET data, SD is the standard deviation of
the estimated ET normalized by the standard deviation of the
observed EC ET, and R0 is the maximum theoretical R, with
an R0 value of 0.9976 (Taylor, 2001).

The magnitude of ME (the absolute value) is used as a
bias indicator (Mu et al., 2011; Yang et al., 2017), while its
sign indicates whether different ET products overestimate or
underestimate the flux EC ET values. The accuracy of each
ET product can be described by the RMSE (Miralles et al.,
2011b; Hu et al., 2015). Moreover, the relative values of ME
and RMSE are used for a fairer comparison between certain
ET products among different regions and periods (Majozi et
al., 2017). In addition, correlation coefficients (R values) are
used to measure the strength of the relation between flux EC
ET and different ET products (Ghilain et al., 2011; Hu et al.,
2015), and with the aid of the Taylor score (TS), the overall
performance of each product can be described well (Taylor,
2001; Mu et al., 2011). To rank each ET product, the lower
ME, RME, RMSE, and RRMSE values and the higher R and
TS values are desired (lower biases and higher accuracies).
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Figure 5. Monthly validation metrics – ME (mm): (a); RME (%): (b); RMSE (mm): (c); RRMSE (%): (d); R: (e); TS: (f) – of ET products
against flux EC ET for all sites (legend as Fig. 3k).

3.2 Synthesis method

There are six validation metrics including R, TS, ME, RME,
RMSE, and RRMSE. The validation values of the six met-
rics are categorized into levels. The level one of validation
metrics has the highest R and TS values and the lowest ME,
RME, RMSE, and RRMSE, while the level two of the vali-
dation metrics has the highest R and TS values and the low-
est ME, RME, RMSE, and RRMSE after level one. For that,
R and TS are sorted in descending order, while ME, RME,
RMSE, and RRMSE are sorted in ascending order (Fig. 2a),
and then the corresponding ET product of each validation
metric is saved in a new table to be used to fill in Fig. 2b.

The current study proposes three steps to develop a synthe-
sized global ET dataset. First, the ET datasets are compared
based on six validated metrics to generate a matrix to indicate
levels one and two of the validation metrics of all ET prod-
ucts over all comparison levels (Fig. 2b). For each level, there
are 6 validation metrics in rows and 26 ET values of different
periods and underlying conditions in columns (comparison
levels), including monthly average (01), annual average (02),

monthly (January–December: 03–14), land cover types (15–
19), climate classes (20–23), and elevation levels (24–26).
Thus, the total number of cells is 156 for each level. Each
cell in the matrix represents 1 of 12 ET products that belong
to this level. Then, to select ET data for further synthesis, the
number and percentage of ET product occurrence at the ma-
trix (Fig. 2b) of levels one and two were calculated (Fig. 2c).
ET products were ranked in descending order based on the
occurrence percentage of levels one and two (the last column
in Fig. 2c). Finally, the first two or three highly ranked ET
products were selected to be incorporated into the ensemble
ET. For that, the selected ET products were resampled to a
comparable spatial resolution if needed, and the average was
used as the synthesized ET value.

4 Results

4.1 Assessment of existing global ET datasets

Figure 3 shows that seasonality exists and is captured well
by all ET datasets with some exceptions over barren land,
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Figure 6. Annually ET products against flux EC ET aggregated for all sites (subplot labels as in Fig. 4).

permanent snow and ice, and arid areas (not shown). The
maximum ET occurs during July and differs according to
each ET dataset. Generally, MOD16A2 represents the mini-
mum estimated ET across all conditions, while SSEBop rep-
resents the maximum ET across all conditions except over
humid regions and at elevations between 500 and 1500 m.
From Figs. 4 and 6–12, the best-fitted linear regression line
(solid blue line) is compared to the 1 : 1 line (dashed red
line), and all ET datasets overestimate the flux EC ET at
lower ET values and underestimate the flux EC ET at higher
ET values with two exceptions. The first exception is over
barren land and permanent snow and ice, where MOD16A2
underestimates and GLDAS21, GLEAM33a, and TerraCli-
mate overestimate at both lower and higher ET values (not
shown). Second, in dry subhumid areas, SSEBop (Fig. 9c3)
and GLDAS21 (Fig. 9e3) overestimate at both lower and
higher ET values. Applying the highest R (TS) and lowest
error metric roles, MOD16A2 cannot present any role; ad-

ditionally, only one contribution by the lowest RRMSE was
found in February, and the highest TS was found in March
for TerraClimate and GLEAM33b, respectively.

4.1.1 Validation by all sites’ monthly ET

Figure 4 shows that only SEBS and MOD16A2 underesti-
mate flux EC ET. PML is the dataset that best agrees with
the observed ET, and it had the lowest RMSE (RRMSE).
MOD16A2105 returned the smallest absolute ME, while
SEBS yielded the smallest RME. Figure 5 shows there are
interannual differences between certain ET product perfor-
mances. MOD16A2 shows negative MEs and RMEs for all
months with larger biases during March, April, and May,
while FLDAS shows positive MEs and RMEs for all months
with larger biases during March, April May, June, and July.
For other products, the ME and RME signs vary among
months; for instance, the ME and RME values of GLDAS21
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Figure 7. Monthly ET products (PML: a; GLDAS20: b; SSEBop: c; MOD16A2105: d; GLDAS21: e; SEBS: f) against flux EC ET aggre-
gated for all sites for each land cover type (croplands: 1; grasslands: 2; forests: 3; water bodies: 4).

are negative (underestimated) during February, September,
and November and positive (overestimated) in the remaining
months with larger biases during March, April, May, June,
and July. The RMSE declines from January to February and
then increases until July and declines again until November.
The minimum RMSE values occur during February, Novem-
ber, and December, while the maximum values occur during
June, July, and August.

For instance, the RMSE in July ranges from 36.28 to
52.41 mm for FLDAS and PML, respectively, while it ranges
from 17.08 to 21.68 mm for PML and SEBS, respectively.
RRMSE declines from January and reaches its minimum
in June and then increases again until December except for

SEBS in December. The highest values of RRMSE (> 80 %)
occur in January, February, November, and December except
for SEBS in December, while the lowest values (< 60 %) ex-
ist in June, July, and August. The R value declines from Jan-
uary and reaches its minimum in May; it then increases start-
ing in August. Except for MOD16A2, all products have an
R value greater than 0.60 during January, February, Novem-
ber, and December. SEBS has the lowest R value during
March, April, May, and June, while PML yields the high-
est R value during all months except January and December.
Except for MOD16A2 in February, which has a TS value
above 0.60, as with the R value, the TS declines from Jan-
uary, reaches its minimum in May, and then increases again
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Figure 8. Monthly ET products (NTSG: a; GLEAM33a: b; FLDAS: c; GLEAM33b: d; TerraClimate: e; MOD16A2: f) against flux EC ET
aggregated for all sites for each land cover type (croplands: 1; grasslands: 2; forests: 3; water bodies: 4).

starting in August. Figures 4 and 5 show these products yield
intra-annual ET variations but vary in their performance ac-
cording to the selected validation metrics, which also vary
among all months (from January to December).

4.1.2 Validation by all sites’ annual ET

Figure 6 shows all ET products overestimate the observed
ET with two exceptions: SEBS and MOD16A2. In all en-
vironmental conditions, PML has the highest R (TS) and
the lowest ME (RME) and RMSE (RRMSE). Figures 4 and
6 indicate the obvious error metrics of annual-scale perfor-
mances that are consistent with those that come from the
monthly time step. The lowest and highest absolute values of

ME (RME) for monthly ET exist in MOD16A2105 (SEBS)
and FLDAS, respectively, while those for annual ET exist
in PML and FLDAS, respectively. Furthermore, PML yields
the largest R and TS values for monthly and annual ET, but
the minimum values of R and TS were registered with Ter-
raClimate and MOD16A2 for monthly and annual ET, re-
spectively. This result may be attributed to the aggregation
of monthly ET into annual values.

4.1.3 Validation by land cover types

Figures 7 and 8 show that, according to the ME (RME)
sign, except for some ET products over croplands (i.e.,
MOD16A2, SEBS, MOD16A2105, and PML), grasslands
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Figure 9. Monthly ET products (PML: a; GLDAS20: b; SSEBop: c; MOD16A2105: d; GLDAS21: e; SEBS: f) against flux EC ET aggre-
gated for all sites for each climate class (arid: 1; semiarid: 2; dry subhumid: 3; humid: 4).

(i.e., MOD16A2, SEBS, MOD16A2105, GLDAS20, and
PML), forests (MOD16A2), and barren land and permanent
snow and ice (i.e., MOD16A2105, MOD16A2, FLDAS, and
GLDAS20), which underestimate the flux EC ET, the other
ET products overestimate. For water bodies, MOD16A2105,
GLEAM33b, GLDAS20, and FLDAS overestimate, while
the other products produce underestimates. Over croplands,
grasslands, and forests, PML is the best product for R (TS)
and RMSE (RRMSE). Additionally, it has the highest TS
over water bodies. SSEBop, GLEAM33a, SEBS, NTSG, and
GLDAS20 obtained the desired ME (RME) over croplands,
grasslands, forests, water bodies, and barren land and perma-
nent snow and ice, respectively. GLEAM33a also represents

the highestR (TS) with the lowest RRMSE, while GLDAS20
has the smallest RMSE over barren land and permanent snow
and ice. In addition, GLDAS20 has the lowest RMSE, while
SSEBop has the highest R and lowest RRMSE over water
bodies; see Table 5 (level one: 15–19).

4.1.4 Validation by climate classes

Figures 9 and 10 show that SEBS, PML, NTSG, and SSE-
Bop in arid areas and PML, NTSG, and SSEBop in semiarid
areas overestimate values, while MOD16A2 and SEBS in
dry subhumid areas and MOD16A2, SEBS, and PML in hu-
mid areas underestimate values; for each aridity index class,
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Figure 10. Monthly ET products (NTSG: a; GLEAM33a: b; FLDAS: c; GLEAM33b: d; TerraClimate: e; MOD16A2: f) against flux EC ET
aggregated for all sites for each climate class (arid: 1; semiarid: 2; dry subhumid: 3; humid: 4).

other products were the opposite. Over humid areas, PML
represents the highest agreement and accurate dataset com-
pared to the flux EC ET. Furthermore, it had the highest R
(TS) in the arid and semiarid areas and the smallest RMSE
(RRMSE) in semiarid areas. GLDAS20 yielded the largest R
(TS) with the smallest RMSE (RRMSE) in dry subhumid re-
gions; over these regions, MOD16A2105 presented the best
ME (RME). FLDAS makes two contributions with the small-
est ME (RME) and RMSE (RRMSE) in semiarid and arid
areas, respectively, while GLDAS21 has only one point over
arid areas where the best ME (RME) is found; see Table 5
(level one: 20–23).

4.1.5 Validation by elevation levels

Figures 11 and 12 show that MOD16A2 and SEBS over el-
evation levels < 500 m and MOD16A2 and MOD16A2105
over elevation levels from 500 to 1500 m underestimate
the values, while the other ET products overestimate the
values; additionally, at elevations > 1500 m, only SSEBop
and NTSG overestimate the values. The ET product agreed
best with the desired RMSE (RRMSE) in the PML prod-
uct. Moreover, it yielded the best ME (RME) at elevations
< 500 m. The preferred ME (RME) over elevations of 500 m
to 1500 m and elevations > 500 m was obtained using SEBS
and FLDAS, respectively; see Table 5 (level one: 24–26).
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Figure 11. Monthly ET products (PML: a; GLDAS20: b; SSEBop: c; MOD16A2105: d; GLDAS21: e; SEBS: f) against flux EC ET
aggregated for all sites for each elevation level (< 500 m: 1; 500–1500 m: 2; > 1500 m: 3).
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Figure 12. Monthly ET products (NTSG: a; GLEAM33a: b; FLDAS: c; GLEAM33b: d; TerraClimate: e; MOD16A2: f) against flux EC ET
aggregated for all sites for each elevation level (< 500 m: 1; 500–1500 m: 2; > 1500 m: 3).
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Figure 13. Monthly average flux EC ET, MOD16A2105, SSEBop, NTSG, PML, and the synthesized ET (subplot labels as in Fig. 3).
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Table 5. Level one and two validation metrics of the 12 ET products for monthly (01), annual (02), interannual (January–December: 03–14),
land cover types (croplands, grasslands, forests, water bodies, others: 15–19), climatic classes (arid, semiarid, dry subhumid, humid: 20–23),
and elevation levels (< 500, 500–1500 m, > 1500 m: 24–26) (cell colors as in Table 6).

4.2 Ensemble ET product

4.2.1 Ensemble steps

Table 5 provides levels one and two validation metrics of
all ET products for monthly (01), annual (02), interannual
(January–December: 03–14), land cover types (croplands,
grasslands, forests, water bodies, others: 15–19), climatic
classes (arid, semiarid, dry subhumid, humid: 20–23), and
elevation levels (< 500, 500–1500, > 1500 m: 24–26). Each
cell represents one of the validation levels (01–26) and the
best-performing ET product based on the selected validation
metric; see Sect. 3.

Table 6 shows that, according to the occurrence of ET
products in level one, PML, GLDAS20, and SEBS represent
the first three best-performing ET products, while, according
to the occurrence of ET products in level two, GLDAS20,
PML, and MOD16A2105 and, according to the total occur-
rence in levels one and two, PML, GLDAS20, and SSEBop
are the best. For example, PML yielded the best validation
metrics (the lowest ME, RME, RMSE, and RRMSE), as well
as the highest R (TS) over 83 (53 %) and 24 (15 %) cells in
levels one and two, respectively; thus, the total count was
107 (34 %) cells. Accordingly, the three best-performing ET
products over most of all conditions are PML followed by
GLDAS20 – level one: 10 (6 %); level two: 37 (24 %); total:
37 (15 %) – and SSEBop – level one: 12 (8 %); level two: 15
(10 %); total: 27 (9 %).

Since the three best-performing ET products differ in their
spatial resolution and algorithms, we introduced an ensemble
mean product at a 1000m× 1000m spatial resolution that
spans from 2003 to 2017 (15 years) and relies on remotely
sensed models (PML and SSEBop). It should be noted that
although SEBS has one point more than SSEBop in level one,
it has seven fewer points than SSEBop in level two (5 %). In
addition, SSEBop has a higher spatial resolution than that
of SEBS. In the same manner, SSEBop and MOD16A2105
have the same performance in terms of total count, 27 (9 %),
but SSEBop is higher by five points in level one.

Obviously, from Table 7, the ensemble of ET products can-
not perform highly across all regions, and it had a total count
of 50 %, followed by PML (44 %). Looking to the ensemble
mean from Table 7 compared to PML from Table 6, the to-
tal count increased from 34 % to 50 % (+16 %), indicating
that the ensemble mean, which was created from PML and
SSEBop, enhanced PML performance across all conditions
by 16 %, and PML itself still has the best performance by
44 %.

To introduce an ensemble product before 2003, firstly,
PML and SSEBop were ignored, and the same steps were re-
peated. Table 8 shows that the best-performing products are
GLDAS20, MOD16A2105, and NTSG in terms of the total
count. Since the last two products are based on remote sens-
ing, they were selected to create the ensemble product be-
fore 2003 at a 1000m× 1000m spatial resolution. Although
GLDAS20 agreed well with over 42 % and had the lowest
maximum ME among all datasets (9.73 mm), NTSG was se-
lected to provide the ET estimates before 2000 because it had
a higher spatial resolution, so it could capture more spatial
details than GLDAS20.

Table 9 shows that the ensemble ET for 2001 and 2002
performed better than the original ET products with values
of 62 %, 38 %, and 50 % for level one, level two, and the to-
tal, respectively. For the periods before 2001, NTSG can be
used from 1982 to 2001 or GLDAS20 can be used instead.
Hence, remote-sensing-based long-term ensemble ET can be
synthesized from PML and SSEBop between 2003 and 2017
and MOD16A2105 and NTSG between 2001 and 2002. SSE-
Bop can be used after 2017, while before 2001, NTSG can
be used.

4.2.2 Contribution of ET datasets to the synthesized ET

The synthesized ET dataset was created at a 1000m×
1000m spatial resolution from 1982 to 2019 based on re-
motely sensed ET products. PML, SSEBop, MOD16A2105,
and NTSG were augmented together to create the new
dataset. Since SSEBop and MOD16A2105 have a 1000m×
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Table 6. The occurrence of the 12 ET products based on Table 5.

Table 7. The occurrence of PML and SSEBop products and their
ensemble mean from 2003 to 2017.

ET products Occurrence in Occurrence in Total
level one level two

Count % Count % Count %

Mean 43 28 113 72 156 50
PML 103 66 33 21 136 44
SSEBop 10 6 10 6 20 6

Table 8. The occurrence of all ET products except PML and SSE-
Bop products.

ET products Occurrence in Occurrence in Total
level one level two

Count % Count % Count %

GLDAS20 42 27 27 17 69 22
MOD16A2105 28 18 28 18 56 18
NTSG 14 9 35 22 49 16
GLDAS21 23 15 14 9 37 12
SEBS 21 13 7 4 28 9
GLEAM33a 8 5 16 10 24 8
GLEAM33b 6 4 15 10 21 7
FLDAS 9 6 5 3 14 4
TerraClimate 3 2 5 3 8 3
MOD16A2 2 1 4 3 6 2

1000m spatial resolution, PML was upscaled and NTSG
was downscaled by pixel average and nearest-neighbor re-
sampling techniques in GEE, respectively. The synthesized
ET was fully contributed by SSEBop for the years 2018
and 2019 and by NTSG from 1982 to 2000, while for the
years 2001 and 2002, it was contributed by the simple mean
of MOD16A2105 and NTSG. Finally, between 2003 and
2017, the value represents the simple mean of PML and SSE-
Bop.

Table 9. The occurrence of NTSG and MOD16A2105 products and
their ensemble mean during 2001 and 2002.

ET products Occurrence in Occurrence in Total
level one level two

Count % Count % Count %

Mean 96 62 59 38 155 50
NTSG 19 12 68 44 87 28
MOD16A2105 41 26 29 19 70 22

Since the synthesized ET performance was governed by
each ET product(s) for the corresponding year from 1994 to
2019 (25 years), when the ET EC fluxes were available, most
of the performance comes from PML and SSEBop for the
15 years from 2003 to 2017 (60 %), from MOD16A2105 and
NTSG for 2 years (2001 and 2002; 8 %), from SSEBop for
individual values in years 2018 and 2019 (8 %), and from
NTSG for 7 years (24 %) from 1994 to 2000.

4.2.3 Synthesized global ET product

Figure 13 shows, looking to July and except over barren land,
permanent snow and ice, and arid areas (not shown), that the
maximum value of the synthesized ET lies between SSEBop,
which yields the largest ET during all months, and PML.
Hence, the long-term monthly synthesized ET performance
is affected by PML and SSEBop more than by NTSG and
MOD16A2105, as mentioned in Sect. 4.2.2.

Table 10 provides the average monthly and annual syn-
thesized ET (mm month−1), land cover types, aridity index
classes, and elevation levels (mm yr−1). The average annual
ET from 1982 to 2019 is 567 mm yr−1. July represents the
maximum synthesized ET (Fig. 13). Table 10 also provides
average annual ET for land cover types calculated from flux
sites. Across land cover types, croplands are higher than
forests, followed by grasslands, where the average synthe-
sized ET was 597, 548, and 542 for croplands, forests, and
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Table 10. The average decadal synthesized ET of monthly (mm month−1), land cover types, aridity index classes, and elevation levels
(mm yr−1).

Level 1982–1989 1990–1999 2000–2009 2010–2019 1982–2019

January 43.22 44.10 44.94 45.99 44.56
February 39.73 41.14 42.83 42.09 41.45
March 44.83 45.09 43.73 42.93 44.15
April 45.84 46.04 39.32 38.57 42.44
May 52.86 53.36 47.13 46.61 49.99
June 56.15 57.31 53.98 54.00 55.36
July 60.83 61.80 57.06 56.99 59.17
August 58.02 58.77 51.25 50.25 54.57
September 49.99 50.15 44.10 42.79 46.76
October 46.76 46.91 38.53 38.77 42.74
November 42.55 42.45 41.52 42.29 42.20
December 42.66 43.58 42.92 44.43 43.40
Annual 583 591 547 546 567
Croplands 597 619 595 577 597
Grasslands 526 546 539 557 542
Forests 541 561 544 546 548
Water bodies 499 517 519 534 517
Others 280 288 230 195 248
Arid 400 405 366 398 392
Semiarid 519 538 528 541 532
Dry subhumid 479 498 498 511 497
Humid 577 600 582 577 583
Elevation < 500 m 551 570 570 579 568
Elevation 500–1500 m 498 519 484 484 496
Elevation > 1500 m 557 583 506 471 529

Note: monthly and annual estimates have been based on synthesized ET raster layers averaged over a decade. Land cover type,
aridity index class, and elevation level estimates have been based on annual synthesized ET values extracted over all flux sites.

grasslands, respectively. Low synthesized ET values across
arid areas (average= 392 mm yr−1) can be attributed to low
vegetation cover. It should be noted that Table 10 does not
represent the perfect calculation of ET over each land cover
class because the total number of fluxes for each class was
not distributed well; for instance, in the arid areas, there were
35 (5 %) fluxes, while in the humid area, there were 361
(56 %) fluxes.

Figure 14 shows the decadal (1982–1989, 1990–1999,
2000–2009, and 2010–2019) and long-term (1982–2019) av-
erage synthesized ET maps worldwide except for Antarctica.
Regarding the spatial distribution, the higher ET is shown
in Malaysia, Singapore, and Indonesia and the northern part
of South America. During the first and second decades, the
synthesized ET is based on the NTSG product; thus, the same
spatial distribution was observed. Although PML and SSE-
Bop mainly contribute the synthesized ET between 2003 and
2017, there is little difference in their spatial distributions, in
which higher ET can be observed during 2010–2019 over the
northern parts of South America.

Table 11 shows statistics of the maps provided in Fig. 14
for all continents except Antarctica. The standard deviation
is higher over Africa, followed by Oceania and Asia. The

mean values of the synthesized ET are sequenced from South
America, followed by Oceania and Africa. The maximum
value of the synthesized ET is recorded over Asia, followed
by Africa and Australia. The total ET values are 29.1 %,
21.7 %, 19.9 %, 16.7 %, 7.9 %, 4.2 %, and 0.5 % for Asia,
South America, Africa, North America, Europe, Australia,
and Oceania, respectively.

4.2.4 Validation of the synthesized ET

Figures 15–18 show that the synthesized ET agreed well
with the observed data, in which the R (TS) ranged between
0.70 (0.85) and 0.78 (0.89) except at the annual time step
(Fig. 15b) and over barren land and permanent snow and ice
(not shown), where R (TS) was 0.65 (0.81) and 0.68 (0.80),
respectively. Based on the ME sign, the value was underesti-
mated only over water bodies. The magnitude of ME (RME)
ranged between 0.54 mm (1.05 %) and 6.76 mm (16.62 %),
while the RMSE (RRMSE) ranged from 20.95 mm (45.22 %)
to 30.12 mm (59.61 %). Looking at the regression line equa-
tion, with no exceptions, the synthesized ET overestimated
the flux EC ET at lower ET values and underestimated the
flux EC ET at higher ET values. As mentioned above, even
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Figure 14. Decadal and long-term synthesized ET. The last plot shows the continental scale used to create Table 11 accompanied by the
percent of ET over each continent except Antarctica for the period 1982–2019. Use the following link of the GEE application to preview
these maps: https://elnashar.users.earthengine.app/view/synthesizedet (last access: 21 January 2021).

Figure 15. Monthly (a) and annually (b) synthesized ET against flux EC ET aggregated for all sites.
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Table 11. Statistics of the decadal and long-term synthesized ET (mm).

Period Continent Minimum Maximum Mean SD Sum

Africa 0 3588 541 540 17 091 316 777
Asia 0 3979 377 392 25 075 224 084
Australia 0 4076 445 275 3 812 181 627

1982–1989 Europe 0 2934 403 189 6 902 627 799
North America 0 3818 413 331 14 682 344 407
Oceania 111 2155 903 392 431 987 028
South America 4 3585 1002 364 18 968 179 507
Global 0 4076 583 355 86 963 861 230

Africa 0 3673 555 545 17 552 175 432
Asia 0 4054 387 398 25 755 440 497
Australia 0 4240 438 281 3 748 291 789

1990–1999 Europe 0 2825 424 203 7 260 038 441
North America 0 3742 423 338 15 051 753 185
Oceania 111 2176 892 394 426 754 913
South America 8 3409 1015 363 19 218 216 796
Global 0 4240 591 360 89 012 671 053

Africa 0 4326 538 504 17 073 575 117
Asia 0 4794 393 377 26 457 856 410
Australia 0 4804 397 260 3 417 383 567

2000–2009 Europe 0 4108 399 165 7 119 724 411
North America 0 3915 333 310 15 229 417 841
Oceania 0 3349 811 398 425 095 485
South America 0 3975 960 411 18 312 021 115
Global 0 4804 547 346 88 035 073 946

Africa 0 4892 556 530 17 631 809 454
Asia 0 6167 398 401 26 760 551 956
Australia 0 4692 425 271 3 658 944 492

2010–2019 Europe 0 3866 384 165 6 834 742 252
North America 0 4366 338 320 15 454 707 917
Oceania 0 3387 766 417 391 231 772
South America 0 4452 953 453 18 166 326 886
Global 0 6167 546 365 88 898 314 729

Africa 0 4892 548 530 17 337 219 195
Asia 0 6167 389 392 26 012 268 237
Australia 0 4804 426 272 3 659 200 369

1982–2019 Europe 0 4108 402 180 7 029 283 226
North America 0 4366 377 325 15 104 555 837
Oceania 0 3387 843 400 418 767 300
South America 0 4452 983 398 18 666 186 076
Global 0 6167 567 357 88 227 480 239

the long-term synthesized ET cannot perform best across all
comparison levels (Tables 12 and 13).

During the periods 2018–2019 and before 2001, the syn-
thesized ET performance came from the original datasets of
SSEBop and NTSG, respectively. The ensemble mean has a
total count of 50 % over the periods 2003–2017 and 2001–
2002 compared to the original datasets, indicating that it can
perform better than other ET products over half of all com-
parison levels (see Tables 7 and 9).

Figure 19 presents a monthly comparison between the syn-
thesized ET with the country-based ET products over China
and the United States, as well as over the African continent.
In general, the synthesized ET returned higher agreement (R
and TS) and accuracy (RMSE) with the flux EC ET than
did the other ET products (CR, SSEBop, and FAO WaPOR).
Moreover, it has lower biases over the United States and the
African continent.
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Table 12. Same as Table 5 but MOD16A2 replaced by the synthesized ET (cell colors as in Table 13).

Note: MOD16A2 ignored according to Sect. 4.1.

Table 13. Same as Table 6 but MOD16A2 replaced by the synthesized ET and based on Table 12.

5 Discussion

Since global land ET plays a paramount role in the hydrologi-
cal cycle, its accurate estimation is essential for further stud-
ies. Although there are many global ET products that have
been derived from remote sensing models, land surface mod-
els, and hydrological models, they differ in their algorithms,
parameterization, and temporal span, and none of these prod-
ucts can be used for a long time with a reasonable spatial
resolution and lower uncertainty. In this study, we ensemble
the best-performing currently available global ET products at
a reasonable spatial resolution (kilometer) as one consistent
global ET dataset covering a long temporal period. Users can
use this dataset assuredly without looking at other datasets
and performing additional assessments.

We used a high-quality dataset of global flux towers as a
site-pixel-level validation for certain global ET products (Le-
uning et al., 2008; Zhang et al., 2010; Ershadi et al., 2014;
Michel et al., 2016) to assess them and select the best prod-
ucts to create a synthesized ET covering a long temporal pe-
riod. For that, a matrix of 6 validation criteria and 26 com-
parison levels was created, and then levels one and two of the

validation metrics were used to select the best-performing
products. Finally, by the simple mean of the products that
performed best over the different periods, the synthesized ET
was created.

Among all global ET products investigated in this study,
the products that performed best are PML, GLDAS20, SSE-
Bop, MOD16A2105, GLDAS21, SEBS, and NTSG (Ta-
ble 6). From the perspective of all comparison levels, the
performance of these products varied, and no single product
performed well across all land surface types and conditions
(Vinukollu et al., 2011a; Li et al., 2018). The PML repre-
sents the ET product with the highest agreement with lower
ME (RME) and RMSE (RRMSE) values, followed by the
synthesized ET (Tables 12 and 13); however, it should be
noted that PML estimates span a 15-year period, while the
synthesized ET presents longer estimates from 1982 to 2019
(38 years).

The main advantage of the new dataset is that, for the
first time, a synthesized remotely sensed ET product with
a reasonable spatial resolution and lower long-term uncer-
tainties has been provided, in which the maximum abso-
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Figure 16. Monthly synthesized ET against flux EC ET aggregated for all sites for each land cover type (croplands: a; grasslands: b; forest:
c; water bodies: d).

lute ME (RME) and RMSE (RRMSE) values are 13.94 mm
(17.13 %) and 38.61 mm (47.45 %), respectively. Further-
more, it agreed well (R > 0.70) in 62 % of all comparison
levels (Table 14). This dataset can provide ensemble ET es-
timates for all land cover types for which MOD16A2105
does not provide ET estimates, including over water bodies
and desert areas. Moreover, a comparison between the syn-
thesized ET and CR, SSEBop, and FAO WaPOR ET prod-
ucts over China, the United States, and the African continent
proved that the synthesized ET outperformed these products
in terms of a higher agreement, higher accuracies, and lower
biases. Hence, the synthesized ET can play an essential role,
especially for regional- and global-scale studies, over a long
time period (1892–2019).

The synthesized ET used SSEBop ET for the years 2018
and 2019 and NTSG from 1982 to 2000 because NTSG is
the only remotely sensed global ET product available and
has a good spatial resolution compared to GLDAS20. It is
the simple mean of MOD16A2105 and NTSG for the years
2001 and 2002 and the simple mean of PML and SSEBop
between 2003 and 2017 (see Tables 7 and 9).

Because the ET was synthesized during the first and sec-
ond decades, as well as the year 2000, and is based on NTSG
resampled to a 1 km spatial resolution to be comparable with

Table 14. Percentage of R more than 0.70 and the maximum abso-
lute value of ME (mm), RME (%), RMSE (mm), and RRMSE (%)
across all comparison levels (01–26) of the highly performing ET
products and the synthesized ET.

ET products R > 0.7 ME RME RMSE RRMSE
(%)

PML 65 7.64 12.22 36.28 44.30
Synthesized 62 13.94 17.13 38.61 47.45
GLDAS20 42 9.73 23.02 39.53 49.32
SSEBop 42 21.82 26.07 48.14 57.50
MOD16A2105 42 12.89 51.06 42.78 53.27
GLDAS21 35 13.69 22.07 47.84 58.32
NTSG 23 14.46 86.35 40.50 50.26

other products, future improvements may be focused on sta-
tistical downscaling of NTSG during this period. Moreover,
since different datasets were selected due to data availability,
also future improvements may be focused on the adjustment
of the ensemble means particularly for long-term pixel-based
studies.
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Figure 17. Monthly synthesized ET against flux EC ET aggregated for all sites for each climate class (arid: a; semiarid: b; dry subhumid: c;
humid: d).

Figure 18. Monthly synthesized ET against flux EC ET aggregated for all sites for each elevation level (< 500 m: a; 500–1500 m: b;
> 1500 m: d).

6 Data availability

All data used in this study are freely available; see
Sect. 2 and Appendix A. The synthesized ET is avail-
able at https://doi.org/10.7910/DVN/ZGOUED (Elnashar
et al., 2020) and as a GEE application from the
following link: https://elnashar.users.earthengine.app/view/
synthesizedet (last access: 21 January 2021). In addition, it
can be accessed in the GEE JavaScript editor (the updated
link is embedded in the GEE application interface). Through
this application, the user can query and display, as well as

download, the synthesized ET. It should be noted that SSE-
Bop and NTSG datasets are not available in Earth Engine, so
they were uploaded as assets in GEE for this purpose.

7 Conclusion

In the current study, a site-pixel-level validation was con-
ducted for certain global ET products across a variety of land
surface types and conditions to select the best performing ET
products and then produce a global long-term synthesized ET
dataset. To apply a comprehensive evaluation from different
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Figure 19. Monthly comparison between the synthesized ET (a, c, e) and CR (b), SSEBop (d), and FAO WaPOR (f) ET products against
flux EC ET aggregated for all sites over China (a, b), the USA (c, d), and the African continent (e, f).

perspectives, land cover types, climate, and elevations were
classified into five, four, and three classes, respectively. Ac-
cording to six comprehensive validation criteria, the evalu-
ated ET products were ranked based on the lowest error met-
rics and highest accuracy and consistency over different clas-
sification levels to choose the ensemble members over differ-
ent times.

The average annual ET from 1982 to 2019 is 567 mm yr−1.
Although no product performed better in terms of all se-
lected validation criteria in all classification levels, PML,
GLDAS20, SSEBop, MOD16A2105, GLDAS21, SEBS, and

NTSG are the sequence of their performances. The synthe-
sized ET from PML, SSEBop, MOD16A2105, and NTSG
agreed with the flux EC ET with R values higher than 0.70,
a maximum ME (RME) of 13.94 mm (17.13 %), and a max-
imum RMSE (RRMSE) of 38.61 mm (47.45 %) over 62 %
of all comparison levels as a remote-sensing-based ET prod-
uct spanning from 1982 to 2019 with the highest agreements
and accuracies and lower biases over most of the land surface
types and conditions. It performs well when compared with
country-based and continental ET products over China, the
United States, and the African continent. However, the fur-
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ther synthesis of local ET products is encouraged if regional
ET products are available.

The results from this study provide a better understanding
of the high-performing ET products in each land cover type,
elevation level, and climate region, as well as monthly, an-
nual, and interannual time steps. Hence, this study provides
an ET product that can be used to improve the quality of ET
at regional and global levels and, consequently, can be used
to improve agriculture, water resource management, and cli-
mate change studies.
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Appendix A

A summary of ET datasets used in this research is pre-
sented here. It should be noted that except for SSEBop,
SEBS, NTSG ET, and GLEAM, which are downloaded
from their providers, other datasets are available from the
Earth Engine Data Catalog through the following link: https:
//developers.google.com/earth-engine/datasets/catalog (last
access: 21 January 2021). Each dataset in GEE has Earth En-
gine Snippet as following:

– MOD16A2 ET V6:

ee.ImageCollection(“MODIS/006/MOD16A2”)

– MOD16A2 ET V105:

ee.ImageCollection(“MODIS/NTSG/MOD16A2/105”)

– PML ET:

ee.ImageCollection(“CAS/IGSNRR/PML/V2”)

– GLDAS ET V20:

ee.ImageCollection(“NASA/GLDAS/V20/NOAH/
G025/T3H”)

– GLDAS ET V021:

ee.ImageCollection(“NASA/GLDAS/V021/NOAH/
G025/T3H”)

– FLDAS ET:

ee.ImageCollection(“NASA/FLDAS/NOAH01/C/GL/
M/V001”)

– TerraClimate ET:

ee.ImageCollection(“IDAHO_EPSCOR/TERRACLI
MATE”)

A1 MOD16 ET

The Moderate Resolution Imaging Spectroradiometer
(MODIS) Global Evapotranspiration Project (MOD16A2)
estimates terrestrial ET as the sum of evaporation and plant
transpiration. MOD16A2 ET uses the Penman–Monteith
model, which includes MODIS remotely sensed data (e.g.,
vegetation, surface albedo, and land cover classification)
and daily meteorological reanalysis. There are two prod-
ucts of MOD16A2 ET (V6 and V105) at an 8 d temporal
resolution, but they differ in their spatial resolution and
temporal coverage (Mu et al., 2011, 2014b). V6 spans
from 2001 until now at a 500m× 500m spatial resolution
and is provided by NASA Land Processes Distributed
Active Archive Center (LP DAAC) at the United States
Geological Survey (USGS) Earth Resources Observa-
tion and Science (EROS) center; it can be downloaded
from https://doi.org/10.5067/MODIS/MOD16A2.006.
V105 estimates span the period from 2001 to 2014 at a

1000m× 1000m spatial resolution and are provided by the
Numerical Terradynamic Simulation Group (NTSG) at the
University of Montana in conjunction with the NASA Earth
Observing System (Mu et al., 2014a).

A2 PML ET

The Penman–Monteith–Leuning (PML) ET product parti-
tions ET into three components: plant transpiration, soil
evaporation, and intercepted rainfall by the canopy, as well
as water evaporation. PML data span from 2002 to 2017 at a
500m× 500m spatial resolution and an 8 d temporal resolu-
tion (Zhang et al., 2019).

A3 SSEBop

The operational Simplified Surface Energy Balance (SSE-
Bop) model is based on the Simplified Surface Energy Bal-
ance (SSEB) approach with a unique parameterization for
operational applications. Using a thermal index approach,
it combines ET fractions generated from remotely sensed
MODIS land surface temperature (LST) acquired every 10 d
with reference ET from global weather datasets. The SSE-
Bop uses predefined, seasonally dynamic, boundary condi-
tions that are unique to each pixel for the hot and cold
reference points (Senay et al., 2007, 2011, 2013, 2020).
SSEBop estimates are from 2003 at a 0.0096◦× 0.0096◦

(≈ 1 km) spatial resolution and a monthly temporal resolu-
tion. Data were provided by the Early Warning and Environ-
mental Monitoring Program via the United States Geological
Survey and can be downloaded from the following website
https://earlywarning.usgs.gov (last access: 21 January 2021).

A4 SEBS

The Surface Energy Balance System (SEBS) is an approach
designed to estimate ET from the evaporative fraction using
satellite remote sensing augmented by meteorological data
at corresponding scales (Su, 2002). MODIS-LST and the
Normalized Difference Vegetation Index (NDVI), GLASS-
LAI (leaf area index), GLAS global forest height, Glob-
Albedo, and ERA-Interim meteorological data have been
used in these ET calculations with the revised SEBS algo-
rithm (X. Chen et al., 2013, 2014, 2019). SEBS is available
during the period from 2000 to 2017 at a 5km× 5km spa-
tial resolution and monthly temporal resolution. It is copy-
righted by the Institute of Tibetan Plateau Research, Chi-
nese Academy of Sciences, and is available at http://en.
tpedatabase.cn (last access: 21 January 2021).

A5 NTSG ET

The Numerical Terradynamic Simulation Group (NTSG) ET
data are based on an algorithm that estimates transpiration
from the canopy and evaporation from soil using a modified
Penman–Monteith model and evaporation from open water
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using a Priestley–Taylor model. These algorithms were ap-
plied globally using the Advanced Very High-Resolution Ra-
diometer (AVHRR) Global Inventory Modeling and Map-
ping Studies (GIMMS) NDVI, NCEP/NCAR (National Cen-
ters for Environmental Prediction/National Center for At-
mospheric Research) Reanalysis daily surface meteorology,
and NASA GEWEX (Global Energy and Water Exchanges)
Surface Radiation Budget Release-3.0 solar radiation inputs
(Zhang et al., 2009, 2010). NTSG estimates cover a period
from 1982 to 2013 at a spatial resolution of 8km× 8km and
a monthly temporal resolution. It is produced by NTSG at
the University of Montana and can be retrieved from http:
//files.ntsg.umt.edu/ (last access: 21 January 2021).

A6 GLEAM

The Global Land Evaporation Amsterdam Model (GLEAM)
is physically based on an algorithm that estimates ET com-
ponents separately (i.e., transpiration, interception loss, bare
soil evaporation, snow sublimation, and open-water evapora-
tion). The potential evaporation is estimated by the Priestley–
Taylor equation based on observations of surface net radia-
tion and near-surface air temperature and is then converted
into actual evaporation based on the evaporative (soil) stress
factor. The soil stress factor is based on microwave vege-
tation optical depth and simulated root-zone soil moisture
calculated from a multilayer water balance model. Sepa-
rately, interception loss is calculated based on vegetation and
rainfall observations. There are two datasets available for
GLEAM (i.e., v3.3a, and v3.3b) that differ only in their forc-
ing and temporal coverage. GLEAM v3.3a spans from 1980
to 2018 and relies on reanalysis radiation and air temperature,
a combination of gauge-based, reanalysis, and satellite-based
precipitation, and satellite-based vegetation optical depth,
while v3.3b spans from 2003 to 2018, and its forcing factors
are the same as v3.3a except for radiation and air temper-
ature which are based on remotely sensed data. Both v3.3a
and v3.3b estimates are provided at a monthly temporal res-
olution and a 0.25◦× 0.25◦ (≈ 25 km) spatial resolution (Mi-
ralles et al., 2011a, b; Martens et al., 2017).

A7 GLDAS ET

The Global Land Data Assimilation System (GLDAS) gen-
erates optimal fields of land surface states and fluxes us-
ing advanced land surface modeling and data assimilation
techniques by ingesting satellite and ground-based obser-
vational data products. GLDAS version 2 has two com-
ponents (GLDAS-2.0 and GLDAS-2.1) at a 0.25◦× 0.25◦

(≈ 25 km) spatial resolution and a 3 h temporal resolu-
tion. GLDAS-2.0 is reprocessed with the updated Prince-
ton Global Meteorological Forcing Dataset and upgraded
Land Information System version 7. The model simulation
was initialized from 1 January 1948 to 31 December 2010
using soil moisture and other state fields from the LSM

climatology for that day of the year. The simulation used
the common GLDAS datasets for land cover (MCD12Q1),
land-water mask (MOD44W), and soil texture and eleva-
tion (GTOPO30). The GLDAS-2.1 simulation started on
1 January 2000 and lasted until 31 December 2019 using
the conditions from the GLDAS-2.0 simulation. This sim-
ulation was forced with the National Oceanic and Atmo-
spheric Administration (NOAA)/Global Data Assimilation
System (GDAS) atmospheric analysis, disaggregated Global
Precipitation Climatology Project (GPCP) precipitation, and
Air Force Weather Agency’s AGRicultural METeorological
modeling system (AGRMET) radiation. The MODIS-based
land surface parameters were used in the current GLDAS-
2.x products, while the AVHRR base parameters were used
in previous GLDAS-2 products before October 2012 (Rodell
et al., 2004).

A8 FLDAS ET

The Famine Early Warning Systems Network (FEWS NET)
Land Data Assimilation System (FLDAS) dataset uses re-
motely sensed and reanalysis inputs to drive land surface
models. It includes information on many climate-related
variables, including evapotranspiration, moisture content,
humidity, average soil temperature, and total precipitation
rate. For forcing data, this FLDAS dataset uses a combina-
tion of the new version of Modern-Era Retrospective analy-
sis for Research and Applications version 2 (MERRA-2) data
and Climate Hazards Group InfraRed Precipitation with Sta-
tion (CHIRPS) data, a quasi-global rainfall dataset designed
for seasonal drought monitoring and trend analysis (McNally
et al., 2017). FLDAS is provided at a 0.1◦× 0.1◦ (≈ 10 km)
spatial resolution and monthly temporal resolution during the
period 1982–2019.

A9 TerraClimate ET

TerraClimate ET is estimated based on a monthly one-
dimensional soil water balance for global terrestrial surfaces,
which incorporates evapotranspiration, precipitation, temper-
ature, and interpolated plant extractable soil water capacity.
The water balance model is very simple and does not ac-
count for heterogeneity in vegetation types or their phys-
iological responses to changing environmental conditions
(Abatzoglou et al., 2018). TerraClimate estimates are pro-
vided at a monthly temporal resolution from 1958 to 2018
and 0.041◦× 0.041◦ (≈ 5 km) grid cells.
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