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Abstract. This dataset contains input parameters for 12703 locations around the world to parameterize a
stochastic weather generator called CLIGEN. The parameters are essentially monthly statistics relating to daily
precipitation, temperature, and solar radiation. The dataset is separated into three sub-datasets differentiated
by having monthly statistics determined from 30-, 20-, and 10-year record lengths. Input parameters related
to precipitation were calculated primarily from the NOAA GHCN-Daily network. The remaining input param-
eters were calculated from various sources including global meteorological and land-surface models that are
informed by remote sensing and other methods. The new CLIGEN dataset includes inputs for locations in the
US, which were compared to a selection of stations from an existing US CLIGEN dataset representing 2648
locations. This validation showed reasonable agreement between the two datasets, with the majority of parame-
ters showing less than 20 % discrepancy relative to the existing dataset. For the three new datasets, differentiated
by the minimum record lengths used for calculations, the validation showed only a small increase in discrep-
ancy going towards shorter record lengths, such that the average discrepancy for all parameters was greater
by 5 % for the 10-year dataset. The new CLIGEN dataset has the potential to improve the spatial coverage of
analysis for a variety of CLIGEN applications and reduce the effort needed in preparing climate inputs. The
dataset is available at the National Agriculture Library Data Commons website at https://data.nal.usda.gov/
dataset/international-climate-benchmarks-and-input- parameters- stochastic- weather-generator-cligen (last ac-

cess: 20 November 2020) and https://doi.org/10.15482/USDA.ADC/1518706 (Fullhart et al., 2020a).

1 Introduction

Essential climate variables defined by the World Meteorolog-
ical Organization are physical, chemical, or biological vari-
ables, or groups of linked variables that critically contribute
to the characterization of Earth’s climate (Bojinski et al.,
2014). Aside from their use in climate studies, basic essential
climate variables like precipitation and temperature are im-
portant for water resource management, drought monitoring,
agricultural engineering, and other applications (Hollmann et
al., 2013). The temporal resolution of climate data varies for
these applications. Climate data reduced to monthly statistics
may facilitate analysis of multi-decadal climate trends and
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serve as benchmarks of climate normals (Menne et al., 2012;
Hollmann et al., 2013). In this paper, it is discussed how a
stochastic weather generator may be parameterized with a
new dataset of monthly climate statistics to simulate daily
weather outputs for locations around the world.

Stochastic weather generators are used for a variety of ap-
plications that include model forcing, statistical downscal-
ing of climate models, and study of climate change scenarios
(Vaghefi and Yu, 2017). CLImate GENerator (CLIGEN) is
one such point-scale weather generator that produces daily
outputs based on input parameters that are essentially ob-
served monthly statistics. CLIGEN is regularly used to pro-
vide soil erosion models with realistic trends and statisti-
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cal distributions of weather parameters (Kinnell, 2019). Such
models include the Rangeland Hydrology and Erosion Model
(RHEM), the Water Erosion Prediction Project (WEPP)
model, and the Revised Universal Soil Loss Equation 2
(RUSLE 2) model. CLIGEN can generate long-term realiza-
tions of stationary climate, subsequently enabling long-term
erosion simulations and ensuring that average annual ero-
sion rates reach convergence (Baffaut et al., 1996). CLIGEN
has been validated in a number of countries, under a variety
of climates, and for different outputs that include daily pre-
cipitation, peak intensity, time-to-peak intensity, storm dura-
tion, and storm frequency. For example, Mehan et al. (2017)
showed that the mean of all daily precipitation values was
within 0.1 mm of observations, and minimum and maximum
daily temperatures were within 0.1 °C for locations in the
western Lake Erie basin. A particularly important CLIGEN
output is precipitation intensity because of its high model
sensitivity in erosion and runoff modeling (Nearing et al.,
2005). Zhang et al. (2008) validated intensity for the loess
plateau of China based on distributions of maximum 30 min
intensities (/30) that were derived from CLIGEN’s peak in-
tensity. They found that differences with observed distribu-
tions were statistically insignificant, suggesting that rainfall
erosivity could be accurately estimated using CLIGEN.

CLIGEN has location-specific input parameters for the
United States with dense coverage, but on a global scale,
input parameters are sparsely available. This is partly be-
cause of the labor-intensive nature of determining the param-
eters and because of numerous data requirements, e.g., high-
frequency precipitation measurements. For erosion model-
ing, the lack of widely available CLIGEN inputs has hin-
dered progress towards increasing the spatial scale and cov-
erage of analysis that other aspects of soil erosion research
have brought to the global scale, one example being the de-
velopment of global maps of annual rainfall erosivity (Pana-
gos etal., 2017). Hence, in the interest of increasing the avail-
ability of CLIGEN inputs for soil erosion modeling and other
applications, we present a dataset of CLIGEN input parame-
ter files. The dataset represents 12703 locations in 68 coun-
tries. Besides providing the necessary parameters to run CLI-
GEN simulations, the dataset also serves to provide statistics
for representing climate normals. The parameters are vali-
dated using an existing CLIGEN input dataset for the United
States, and differences are discussed.

2 Datasets

2.1 Overview

Three sets of CLIGEN v5.3 input files for international lo-
cations are presented, differentiated by having monthly pa-
rameters determined from minimums of 30-, 20-, and 10-
year records (note that assumptions were made to handle data
gaps which are discussed in Sect. 2.2) (Fullhart et al., 2020a).
The distribution of locations for the three datasets is in Fig. 1,
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which shows 7673 parameter sets based on 30-year records
(left panel), 2336 parameter sets based on 20-year records
(middle panel), and 2694 parameter sets based on 10-year
records (right panel). All locations are unique, with no over-
lap in locations between the three datasets. As may be seen in
Fig. 1, there is relatively sparse coverage for South America,
Africa, and southern Asia, while North America, Europe, and
Australia have relatively dense coverage. The spatial density
of all stations is shown in Fig. 2 so that density may be judged
in places where overcrowding of points occurs in Fig. 1, and
Table 1 enumerates the number of stations on each continent.
Furthermore, a .kmz map layer is available on the Ag Data
Commons website (link given in Sect. 4) that can be imported
into Google Earth as an interactive map and allows the CLI-
GEN station closest to an area of interest to be found.

As 30 years is traditionally the minimum record length
needed to represent climate, the 30-year dataset may be used
to characterize climate normals (Bojinski et al., 2014). The
20- and 10-year datasets, reflecting the most recent monthly
records available at each location, may be more represen-
tative of current climates in some cases considering the
non-stationarity of current and projected climate conditions
(IPCC, 2013). In soil erosion modeling, a 20-year record
has been suggested as the minimum length needed to repre-
sent rainfall erosivity (Wischmeier and Smith, 1978), which
may be estimated using CLIGEN (Lobo et al., 2015). It
should be noted that in non-stationary climates, CLIGEN in-
puts may be adjusted to represent departures from climate
normals (Pruski and Nearing, 2002; Zhang, 2005; Vaghefi
and Yu, 2016). For example, Zhang (2013) determined how
CLIGEN’s precipitation intensity and skewness factors scale
with monthly precipitation to correct for future changes in
precipitation.

A list of parameters and their definitions that were deter-
mined for each input file is given in Table 2. These param-
eters are used to model statistical distributions that are ran-
domly sampled by CLIGEN to derive daily outputs. Some
parameters such as TMAX AV and TMIN AV (refer to Ta-
ble 2 for definitions) are also typical climate benchmarks.
Another climate benchmark, average monthly precipitation,
may be determined by the following calculation from input
parameters:

avg. monthly precip. =n - Payg - {P(W|D)/[1
— P(WIW)+ P(WID)]}, ey

where 7 is the number of calendar days in the month being
considered, and P,y is the MEAN P CLIGEN parameter.
The various input parameters were derived from an assort-
ment of data sources. In general, there were two main cate-
gories of sources: (1) ground-based precipitation networks,
and (2) land-surface and meteorological models that assimi-
late remote sensing data and ground observations and which
reproduce historical time series of variables of concern. The
sources of data had various temporal resolutions. In most
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Figure 1. Coverage of the three international CLIGEN input datasets according to the record length used to produce the monthly input
parameters. The locations correspond to those of the GHCN-Daily stations accepted for use.

Table 1. Station counts for continent/region and each of the 30-, 20-, and 10-year datasets. Oceania is the region represented by South Pacific

islands and extending north to Hawaii.

Station counts  North America  South America Europe Africa Asia Australia Oceania  Antarctica Total
30 years 1860 170 2089 9 118 3423 4 0 7673
20 years 996 112 374 7 11 834 2 0 2336
10 years 1332 8 413 6 52 864 19 0 2694
Total 4188 290 2876 22 181 5121 25 0 12703

cases, the data were used to make direct calculation of pa-
rameters, but for parameters where the available data were in-
sufficient for direct calculation, parameter estimations were
done. Each data source and the resulting parameters are dis-
cussed in detail in the following sections.

2.2 Precipitation accumulation

The primary source of precipitation data is the Global Histor-
ical Climate Network-Daily (GHCN-Daily) maintained by
NOAA (Menne et al., 2012). The locations shown in Fig. 1
correspond to those of selected stations from GHCN-Daily.
These ground-based records enabled direct calculation of five
parameters related to precipitation accumulation: MEAN P,
S DEV P, SKEW P, P(W /W), and P(W/D) (see Table 2 for
their definitions). The GHCN-Daily dataset undergoes rigor-
ous quality control, both to check for consistency of format-
ting and for the integrity of daily values. Values are removed
that fail any test in a suite of quality tests which identify a
variety of problems. Durre et al. (2010) outlined 19 of the
quality tests in detail.

Short record lengths and missing data precluded a wide
majority (~ 90 %) of GHCN-Daily stations from being used
to create CLIGEN input parameters. A substantial number
of data gaps necessitated an assumption for the calculation
of the five monthly parameters related to accumulation. To
handle gaps, records were queried starting with the most re-
cent year available and going backwards in each time se-
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ries until the number of months needed could be produced
by replacing gaps with existing records from earlier in the
time series. Therefore, it was assumed that time series do not
need to be temporally continuous. This means that records
were accepted which did not necessarily come from sequen-
tial months, but which had at least 30, 20, and 10 complete
individual months for each calendar month, in order to derive
the 30-, 20-, and 10-year monthly statistics, respectively. As
a result, record lengths were queried that were often longer
than the number of years needed. Also, since representing
recent data was a priority, 96 % of stations included at least
some data after the year 2000, and 81 % included some data
after the year 2010. Ranges of years queried for each sta-
tion are given in an extensive table available on the Ag Data
Commons website (link given in Sect. 4). The ranges are de-
fined by the first and last years with at least one monthly
record accepted for use. Ranges in excess of the 30-, 20-,
and 10-year minimum record lengths are due to data gaps for
respective datasets. The longest viable record length (of 30,
20, and 10 years) was used for each station, such that if a 30-
year record was possible, 10- and 20-year records were not
created. Therefore, no stations have multiple datasets created
for them. This treatment of data gaps complicates the vali-
dation of the determined climate benchmarks against other
datasets with similar temporal ranges, and the effect of non-
stationarity and long-term climate cycles should also be con-
sidered.
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Figure 2. Station density map representing all stations combined. The cell size is defined by lat-long degree lines (1° x 1°). Densities are
calculated inside of circular neighborhoods with radii of 3° from the center of each cell.

Table 2. A list of CLIGEN input parameters determined for each station. The temporal resolution column indicates the resolution of the
data used to derive each parameter. Parameters that require sub-daily resolutions at various frequencies of measurement are denoted with
“High-res” in the temporal resolution column. Sub-daily resolution data were not available for High-res. parameters, and it is discussed how

their values were estimated.

Variable (12 values per station) Label Unit Temporal resolution
Monthly average of daily precipitation for wet days MEAN P in. Daily
Monthly standard deviation of daily precipitation for wet days SDEV P in. Daily
Monthly skewness of daily precipitation for wet days SKEW P - Daily
Monthly transition probability of a wet day given a wet day P(W/W) - Daily
Monthly transition probability of a wet day given a dry day P(W/D) - Daily
Monthly mean maximum 30 min precipitation intensity MX.5P in./h High-res.
Cumulative distribution function interval values of normalized time-to-  TimePk - High-res.
peak intensity

Monthly mean of daily maximum temperatures TMAX AV °F Daily
Monthly mean of daily minimum temperatures TMIN AV °F Daily
Monthly standard deviation of daily maximum temperatures SD TMAX °F Daily
Monthly standard deviation of daily minimum temperatures SD TMIN °F Daily
Monthly mean dew point DEW PT °F Monthly
Monthly mean of daily solar radiation SOL.RAD langley/d ~ 3-hourly
Monthly standard deviation of daily solar radiation SD SOL langley/d  3-hourly
Monthly averages of wind speed and direction WIND (Various) — High-res.

2.3 Precipitation intensity

In soil erosion and runoff modeling, precipitation intensity
is a critical factor (Pruski and Nearing, 2002; Nearing et
al., 2005). The two parameters related to precipitation inten-
sity, MX.5P and TimePk (refer to Table 2 for definitions),
require data with high-frequency measurements such that
hyetographs for a single precipitation event may be resolved.
Since GHCN-Daily did not have adequate temporal resolu-
tion, MX.5P was estimated from the daily data using a tem-
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poral downscaling model, and TimePk was assumed to fol-
low representative TimePk values for given Koppen—Geiger
climate classifications. The development of these procedures
is discussed in Fullhart et al. (2020b, 2021). High-resolution
data needed for these procedures came from the Automated
Surface Observing System (ASOS) maintained by NOAA
with stations distributed across the United States and its ter-
ritories (Doesken et al., 2002).
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Table 3. The 11 predictor variables for the gradient-boosting regression model used to temporally downscale MX.5P from GHCN-Daily
data. Units were changed to metric for the purposes of the downscaling model.

Variable Label Unit Values per station
Monthly mean maximum 30 min precipitation intensity MX.5P mm/h 12
Modified Fournier index Fournier Coeff mm 1
Monthly average of daily precipitation for wet days MEAN P mm 12
Monthly standard deviation of daily precipitation for wet days S DEV P mm 12
Monthly skewness of daily precipitation for wet days SKEW P - 12
Monthly transition probability of a wet day given a wet day P(W/W) - 12
Monthly transition probability of a wet day given a dry day P(W/D) - 12
Station elevation Elev m 1
Station latitude Lat ° 1
Station coastal proximity Coastal Prox km 1
Calendar month (categorical variable) Month - 12
In CLIGEN, the MX.5P input parameter is used to param- lows:
eterize statistical distributions of normalized peak intensity. N
The definition of MX.5P is as follows: TimePk (i) = ]\;L(l)y 3)
tot

n=k
MX.SP = % Zmaxlmi, ...,max/3g,, 2)

i=1

where k is the number of times (years) a record for a given
month exists in the dataset, and max/3y is the maximum
30min intensity (mmh~!) for each monthly record (Yu,
2005). Since maximum 30 min intensity is most accurately
determined from data with as high frequency of measurement
as possible, deriving values from data with lower resolutions
results in underestimation bias, therefore necessitating use
of the temporal downscaling model for MX.5P. The down-
scaling model took GHCN-Daily data to estimate the MX.5P
value that would be expected if derived from the 1 min data.
The downscaling model is a machine learning regression us-
ing gradient boosting trained with 609 ASOS stations (Full-
hart et al., 2020b). The model requires 11 predictor variables
shown in Table 3, which are statistics that may be determined
from daily data and geographic information, some of which
are already CLIGEN inputs. While MX.5P from 1 min res-
olution was estimated by the model, the predictor variable
with the single most predictive power was MX.5P derived
from daily data, which was calculated based on an assump-
tion that intensity was constant for the duration of daily in-
tervals (and was therefore grossly underestimated). MEAN
P and S DEV P were also important predictors. The MX.5P
values estimated by the model were found to have an RMSE
of 0.148 in. (3.76 mm) (Fullhart et al., 2020b).

The second intensity parameter, TimePk, represents values
at 12 equal intervals along the cumulative distribution func-
tion (CDF) of normalized time-to-peak intensity for events
recorded at a given station (TimePk is the only input pa-
rameter that does not represent monthly values, though there
are 12 values per station, each representing quantiles of the
CDF). For a given TimePk interval, the definition is as fol-
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where TimePk(i) is the TimePk value at interval i, tp is time-
to-peak intensity normalized to the event duration, Ny, is
the number of events where tp <=1, and Ny is the total
number of events. Interval, i, ranges between 1/12 and 12/12
and varies by increments of 1/12 (Yu, 2005). Events were
separated by >=6h of no precipitation.

In Fullhart et al. (2021), it was shown that using climate-
average TimePk values for the Koppen—Geiger climate clas-
sification of a given station resulted in < 10 % error relative
to true TimePk values, suggesting little variation in TimePk
within climate classifications. In this previous study, a dif-
ferent weather station network was used — the U.S. Climate
Reference Network (USCRN) at 5 min resolution (Diamond
etal., 2013). For the new dataset of CLIGEN inputs, the anal-
ysis was repeated for the climate classifications represented
by the 1 min ASOS network, though in some cases, climate
classifications exclusive to the USCRN were used. Table Al
shows the assumed TimePk values for each climate classi-
fication. Of the 30 highest-order climate classifications, 19
were represented by ASOS and USCRN. The remaining 11
classifications were assumed to be the averages of the other
TimePk values within respective first-order groups (of which
there are five, where A is tropical, B is arid, C is temperate,
D is cold, and E is polar). As such, the climate classifica-
tion of each station was used to index the assumed TimePk
values used in the CLIGEN input files. The climate classifi-
cation of each station was determined based on the K&ppen—
Geiger climate map of Beck et al. (2018) representing the
1980-2016 time period at 0.083° resolution.

2.4 Temperature

The five temperature-related parameters, TMAX AV, TMIN
AV, SD TMAX, SD TMIN, and DEW PT (refer to Table 2
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for definitions), have straightforward calculations. However,
the required data were only available for a subset of GHCN-
Daily stations. To avoid limiting the analysis to this subset
of stations, these data were instead derived from the model
outputs of the ERAS global meteorological/climate analy-
sis (“ECMWF ReAnalysis”, with ERAS being the fifth ma-
jor global reanalysis). The ERAS analysis was created by
The European Centre for Medium-Range Weather Forecasts
and the Copernicus Climate Change Service (Albergel et al.,
2018; Hersbach et al., 2020). Google Earth Engine was used
to download maximum and minimum temperatures at daily
resolution and average dew point temperatures at monthly
resolution from a grid with 0.25° x 0.25° spatial resolution
(see Table A3 for more information). Values obtained from
the grid were unchanged, without any weighting based on
proximity to neighboring cells or other forms of interpola-
tion. The monthly dew point temperature was a convenient
aggregation of data equivalent to the DEW PT CLIGEN pa-
rameter, while daily resolution was needed for the remaining
CLIGEN temperature parameters to determine both the aver-
age and standard deviation of daily max—min temperatures.
Use of the ERA5 model also allowed continuous time se-
ries to be obtained without gaps for the 30-, 20-, and 10-year
datasets (from 1990 through 2019, 2000 through 2019, and
2010 through 2019, respectively).

2.5 Solar radiation

Incoming shortwave radiation is represented in CLIGEN
by the SOL.RAD and SD RAD parameters (refer to Ta-
ble 2 for definitions) that require solar radiation with units
of langley/d where 1 langley =41 840J/m?. These param-
eters were calculated with relatively high-frequency (3 h)
estimates that captured daily and day-to-day variability of
radiation taken from the Global Land Data Assimilation
System (GLDAS) model produced by NASA (Fang et al.,
2009) at 0.25° x 0.25° resolution (see Table A3 for more
information). The outputs of the reprocessed GLDAS 2.0
and GLDAS 2.1 versions were used and downloaded from
Google Earth Engine (again, no weighting of values was
done based on proximity to neighboring cells). The most re-
cent data available were used to create continuous time series
with temporal ranges being the same as those for the temper-
ature parameters. For an individual day, incoming solar radi-
ation was modeled by fitting a Gaussian curve through the 3 h
time-averaged data points. Doing this avoided underestima-
tion caused by time-averaging, which would have occurred
by considering the 3 h data points alone. Also, if the 3 h inter-
vals did not coincide with the time of peak intensity, compar-
ison to ground observations from AmeriFlux data (discussed
more later) showed that the Gaussian curve tended to better
approximate peak radiation than the greatest 3 h data point.
A number of stations that existed on coasts or on small is-
lands, particularly in the Pacific Ocean, did not have solar ra-
diation data coverage for their locations because the GLDAS
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product covers only locations beyond a certain coastal prox-
imity. In total, 390 stations had this problem. For these sta-
tions, data from the nearest station with existing data were
used. A total of 300 of the stations with missing data were
within 100 km of a station with data. Some proximities, how-
ever, were much further, with islands in the South Pacific be-
ing examples. Similarly, some locations in the existing US
CLIGEN input dataset used for validation created by Srivas-
tava et al. (2019) did not have observed solar radiation, and
their parameter values were taken from the nearest station
with available data, which in some cases were at considerable
distances, potentially leading to poor validation in Sect. 3.

To ensure locations are matched for validation, a sepa-
rate validation from that of Sect. 3 was done for solar ra-
diation parameters. In this, GLDAS output was compared
to 10 ground-based AmeriFlux stations that monitor ecosys-
tem fluxes including solar radiation (Hargrove et al., 2003).
The AmeriFlux network has stations distributed across the
North and South American continents, and the 10 stations
were selected from a range of latitudes and climates as a rep-
resentation of global variability. From these stations, a sin-
gle year was selected that had the fewest data gaps. Com-
parison to corresponding GLDAS outputs showed reason-
able agreement with an RMSE of 36.6 langley/d and with
GLDAS being overestimated by < 1 % for monthly values
of SOL.RAD. Error was more evident for SD RAD, sug-
gesting that GLDAS was not optimum for capturing the
day-to-day variability of radiation. The RMSE for SD RAD
was 38.6 langley/d with GLDAS being underestimated by
24.1 %.

2.6 Wind

Very few applications of CLIGEN have used wind data in
the past, perhaps the only one being the blowing snow com-
ponent in WEPP (Nicks et al., 1989). CLIGEN inputs require
high-frequency measurement of wind speed (m/s) and az-
imuthal wind direction. This includes mean, standard devi-
ation, and skewness of daily wind speed on a monthly ba-
sis, and determinations of the average daily percentage of
time with wind directions coming from the four cardinal
directions, four intercardinal directions, and the eight sub-
divisions of these (e.g., NNE, ENE) on a monthly basis.
However, wind data were not obtainable for the locations
corresponding to the GHCN-Daily stations with the level of
detail needed for creating CLIGEN input files. The solution
to this was to use the “International Conversion Programs”
tool (availability given in Sect. 4), which takes the known
daily precipitation accumulation and temperature parameters
from an international station of interest and finds the exist-
ing station in the US CLIGEN dataset with the most similar
climate, allowing its wind parameters to be used (and other
remaining parameters, if needed). Information regarding the
locations from where wind parameters were taken from is
given at the bottom of each input file.
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Table 4. Summary of the validation of parameters to the 2015 US CLIGEN dataset created by Srivastava et al. (2019).

30-year dataset ‘

20-year dataset ‘

10-year dataset

RMSE PBIAS PERROR ‘ RMSE PBIAS PERROR ‘ RMSE PBIAS PERROR
MEAN P 0.08 —12.16 19.95 0.07 1.18 14.76 0.08 1.13 21.17
SDEV P 0.10 —-2.70 15.06 0.10 2.92 16.45 0.14 1.08 24.17
SKEW P 1.35 8.05 20.15 1.11 7.13 22.93 1.29 15.98 30.36
P(W/W) 0.07 2.48 10.35 0.06 —1.35 10.32 0.09 —-3.70 16.66
P(W/D) 0.05 —11.80 19.20 0.06 —-9.06 25.32 0.06 —14.27 29.25
TMAX AV 3.49 3.18 3.97 543 —0.41 6.77 3.75 0.66 4.28
TMIN AV 4.56 —8.55 15.79 6.23 —10.62 13.67 4.76 —7.93 11.33
SD TMAX 1.07 7.93 9.01 1.37 11.56 13.28 1.30 9.62 11.85
SD TMIN 1.53 6.87 11.34 1.22 7.80 13.01 1.04 4.45 10.98
SOL.RAD 22.55 —1.08 5.85 29.10 —-2.90 5.87 26.91 —2.75 5.65
SD SOL 51.85 —135.54 146.33 68.09 —193.42 202.42 63.04 —173.21 181.51
MX 5P 0.23 24.91 29.91 0.27 28.36 31.90 0.31 33.25 37.28
DEW PT 3.66 5.62 8.94 2.00 0.45 5.14 2.56 0.48 5.85
Time Pk 0.33 30.92 33.43 0.30 28.33 31.08 0.30 28.77 31.66

3 Validation Error was also considerable for the two parameters re-

Each parameter except for the wind parameters was com-
pared to an existing dataset for the US and its territories cre-
ated in 2015 using NOAA NCDC DSI-3260 data at 15 min
resolution and consisting of 40-year records for 2648 sta-
tions (Srivastava et al., 2019). This limited the validation to
only stations for the US, and from those, only the new sta-
tions within 10 km of an existing CLIGEN station were ac-
cepted. This resulted in the validation of 61 stations for the
30-year dataset, 53 stations for the 20-year dataset, and 204
stations for the 10-year dataset. For each of the validated pa-
rameters, RMSE, percent bias, and percent error were de-
termined, where it was assumed that values from the ex-
isting US dataset were the true values (performance metric
definitions are given in Table A2). A summary of the val-
idation is seen in Table 4. Inconsistencies between the two
datasets were attributed to differences of data sources, dif-
ferences in temporal resolution of data used, differences in
record lengths, and whether data were interpolated or taken
from nearby stations.

Overall, reasonable agreement was found, with PERROR
being below 20 % for the majority of parameters. As ex-
pected, record length is a factor in the comparison to the
40-year US dataset. Percent error increased slightly on av-
erage (~ 5 %) with decreasing record length, going from the
30- to 10-year datasets. Though a small increase, this dif-
ference likely reflected the potential for capturing short-term
climate dynamics by the 20- and 10-year datasets. For the
five parameters related to daily accumulation, the parameter
with the highest error was SKEW P, with error up to 30 %.
The sign of PBIAS for SKEW P was consistently positive,
suggesting that the GHCN-Daily data showed less skewness
towards high daily accumulation.

https://doi.org/10.5194/essd-13-435-2021

lated to precipitation intensity, MX.5P and TimePk. The dis-
crepancies were due to multiple issues including the fact
that the DSI-3260 dataset uses 15 min resolution compared
to the 1 min resolution that the MX.5P downscaling model
and TimePk distributions were based on. As mentioned, the
downscaling model was previously shown to produce an av-
erage error of 0.1481in. (3.76 mm) (Fullhart et al., 2020b).
In the comparison to the DSI-3260 dataset, downscaled
MX_.5P values resulted in discrepancy of up to 37 % error for
MX.5P. Interval values for TimePk distributions were gener-
ally smaller in magnitude and approached unity later in the
distribution, meaning that the peak intensity of storms gen-
erally happened later in their duration than in the DSI-3260
data. This may be expected given the relatively coarse 15 min
resolution of DSI-3260, and particularly when considering
shorter storms, such as convective storms, the apparent peak
intensity may have considerable uncertainty.

Temperature parameters were generally in agreement with
no consistent estimation bias, except for DEW PT, which was
slightly underestimated on average by up to 6 %. Errors for
SOL.RAD were up to 6 %, with a slight overestimation bias
of up to 3 %. While SOL.RAD was in good agreement, SD
SOL indicated up to 193 % more day-to-day variability of so-
lar radiation. The GLDAS data for solar radiation generally
agreed better with the variability of the AmeriFlux network
that was discussed in Sect. 2.5, with GLDAS showing 24 %
less variability than AmeriFlux. Given the reasonable agree-
ment between GLDAS and AmeriFlux, and good agreement
of SOL.RAD with the DSI-3260 data, the substantial under-
estimation bias of SD SOL may be the result of errors in the
existing US inputs.

While the US represents a wide range of climate types,
limitation of the validation to only the US is a hinderance to
quality assurance of the new dataset. However, each of the
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source data have their own quality assurances prior to go-
ing to product. Particularly for the ERAS and GLDAS global
products, biases are documented and are known to happen
on regional and continental spatial scales and may relate
to extremes in temperature, moisture, geographic location,
etc. (Zhou et al., 2013; Ji et al., 2015; Urraca et al., 2018;
Wang et al., 2019). Therefore, the uncertainty of each CLI-
GEN parameter also depends on the particular source data.

4 Data availability

The new international ~CLIGEN input dataset
is available at the National Agriculture Li-
brary Online Repository - Ag Data Commons

- at https://data.nal.usda.gov/dataset/international-
climate-benchmarks-and-input-parameters-stochastic-
weather-generator-cligen  (last  access: 11  Febru-
ary 2021) (Fullhart et al., 2020a; DOI:
https://doi.org/10.15482/USDA.ADC/1518706) and
is separated into three datasets according to 30-,
20-, and 10-year record lengths. To run the CLI-
GEN inputs, CLIGEN may be downloaded at
https://www.ars.usda.gov/midwest-area/west-lafayette-in/
national-soil-erosion-research/docs/wepp/cligen/ (last ac-
cess: 11 February 2021). Additional resources and materials
are available at this website including the “International
Conversion Programs” tool. The international CLIGEN
dataset will also be added to the web interface for running
the hillslope-scale erosion and runoff model, RHEM,
available at https://apps.tucson.ars.ag.gov/rhem/ (last access:
11 February 2021). The station of interest will be selectable
in the input parameter panel under “Climate Station” and
under “International”.
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5 Conclusions

Validation of CLIGEN inputs in the new international dataset
showed reasonable agreement with parameter values for ex-
isting US CLIGEN inputs. The 30-, 20-, and 10-year datasets
are generally in close agreement, and in some cases, the
methods used to create this dataset may offer an improve-
ment over existing CLIGEN input files. However, issues arise
due to the assumptions that were taken for addressing perva-
sive data gaps in NOAA-GHCN records. Validation of the
climate benchmarks by comparison to other records is com-
plicated by use of discontinuous time series, and uncertainty
is higher in places with non-stationary climates or long-term
cycles.

The new dataset of CLIGEN inputs allows the CLIGEN
weather generator to be more readily applied to its various
applications. The input files also serve to represent climate
benchmarks for a selection of variables that are generally un-
obtainable from a single source. The coverage of stations is
particularly dense in Europe, Australia, and North America
and offers the potential to improve the spatial analysis of pro-
cesses in different fields that require climate records. For a
number of CLIGEN’s applications, the production of climate
data is a secondary concern but is often a labor-intensive task.
The use of this dataset may allow researchers to put more
effort and resources towards their primary study or area of
focus without needing to address the production of climate
inputs.
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Appendix A

Table A1. TimePk distribution interval values for global Koppen—Geiger climate classifications.

Interval 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12 12/12
Af 022 030 036 044 050 058 063 070 077 083 090  1.00
Am 025 036 043 051 058 066 073 079 084 090 094  1.00
Aw 027 039 048 056 063 071 077 08 08 090 095 100
Bwh 016 026 035 043 052 061 069 076 084 090 095 100
Bwk 0.5 026 036 045 053 062 069 076 08 08 096  1.00
BSh 0.16 027 036 046 054 064 071 077 08 08 095 100
BSk 012 022 032 040 048 057 065 074 08 08 096  1.00
Csa 007 017 026 036 045 054 062 070 078 08 094  1.00
Csb 007 017 025 034 043 052 061 069 077 08 094 100
Csc 007 017 026 035 044 053 061 070 078 08 094  1.00
Cwa 0.10 020 029 038 046 055 064 072 080 087 094  1.00
Cwb 0.10 020 029 038 046 055 064 072 08 087 094  1.00
Cwe 010 020 029 038 046 055 064 072 080 087 094  1.00
Cfa 020 031 040 048 056 065 072 078 084 090 096  1.00
Cfb 007 015 024 032 040 051 060 069 078 08 094  1.00
Cfc 013 023 032 040 048 058 066 074 081 08 095 100
Dsa 0.7 027 037 045 053 061 068 075 08 08 094 100
Dsb 008 017 025 034 042 052 060 069 078 08 093 100
Dsc 027 038 048 056 064 070 076 081 087 091 095 100
Dsd 0.7 027 037 045 053 061 068 075 08 08 094 100
Dwa 0.16 029 040 049 058 067 074 080 08 091 096 100
Dwb 0.16 027 037 046 055 063 070 078 083 090 095 100
Dwc 016 028 038 048 056 065 072 079 08 091 096  1.00
Dwd 0.16 028 038 048 056 065 072 079 08 091 096 100
Dfa 015 026 035 045 053 062 070 077 084 090 096  1.00
Dfb 013 023 032 041 050 059 067 075 08 08 095 100
Dfc 025 036 045 053 060 067 072 079 08 090 095 100
Dfd 018 028 037 046 054 063 070 077 084 090 095 100
ET 028 041 051 058 066 074 078 082 087 091 094  1.00
EF 028 041 051 058 066 074 078 08 087 091 094  1.00

Table A2. Statistical measures of performance. Observed (O) and predicted (P) values are compared by each metric.

https://doi.org/10.5194/essd-13-435-2021

Performance metric Abbreviation  Equation
Root-mean-square error  RMSE v/ % >(O-P )2
Percent bias PBIAS [ Z(ZOBP) ] x 100
Percent error PERROR % [Z W] x 100
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Table A3. Google Earth Engine climate model sources.

Climate model Description website

Version

Date accessed

Original source

ERAS daily aggregates https://developers.google.com/
earth-engine/datasets/catalog/
ECMWF_ERAS5_DAILY

v5.0 (IFS cycle 41r2)

18 Feb 2020

C3S/ECMWF

ERAS monthly aggregates  https://developers.google.com/
earth-engine/datasets/catalog/
ECMWF_ERA5_MONTHLY

v5.0 (IFS cycle 4112)

13 Feb 2020

C3S/ECMWF

GLDAS 2.0 reprocessed https://developers.google.com/
earth-engine/datasets/catalog/
NASA_GLDAS_V20_NOAH_
G025_T3H

v2.0

21 Mar 2020

NASA

GLDAS 2.1 https://developers.google.
com/earth-engine/datasets/
catalog/NASA_GLDAS_
V021_NOAH_GO025_T3H

v2.1

21 Mar 2020

NASA

Earth Syst. Sci. Data, 13, 435-446, 2021
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