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Abstract. Framed within the Copernicus Climate Change Service (C3S) of the European Commission, the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF) is producing an enhanced global dataset for the
land component of the fifth generation of European ReAnalysis (ERA5), hereafter referred to as ERA5-Land.
Once completed, the period covered will span from 1950 to the present, with continuous updates to support land
monitoring applications. ERA5-Land describes the evolution of the water and energy cycles over land in a con-
sistent manner over the production period, which, among others, could be used to analyse trends and anomalies.
This is achieved through global high-resolution numerical integrations of the ECMWF land surface model driven
by the downscaled meteorological forcing from the ERA5 climate reanalysis, including an elevation correction
for the thermodynamic near-surface state. ERA5-Land shares with ERA5 most of the parameterizations that
guarantees the use of the state-of-the-art land surface modelling applied to numerical weather prediction (NWP)
models. A main advantage of ERA5-Land compared to ERA5 and the older ERA-Interim is the horizontal res-
olution, which is enhanced globally to 9 km compared to 31 km (ERA5) or 80 km (ERA-Interim), whereas the
temporal resolution is hourly as in ERA5. Evaluation against independent in situ observations and global model
or satellite-based reference datasets shows the added value of ERA5-Land in the description of the hydrological
cycle, in particular with enhanced soil moisture and lake description, and an overall better agreement of river
discharge estimations with available observations. However, ERA5-Land snow depth fields present a mixed per-
formance when compared to those of ERA5, depending on geographical location and altitude. The description of
the energy cycle shows comparable results with ERA5. Nevertheless, ERA5-Land reduces the global averaged
root mean square error of the skin temperature, taking as reference MODIS data, mainly due to the contribution
of coastal points where spatial resolution is important. Since January 2020, the ERA5-Land period available has
extended from January 1981 to the near present, with a 2- to 3-month delay with respect to real time. The seg-
ment prior to 1981 is in production, aiming for a release of the whole dataset in summer/autumn 2021. The high
spatial and temporal resolution of ERA5-Land, its extended period, and the consistency of the fields produced
makes it a valuable dataset to support hydrological studies, to initialize NWP and climate models, and to support
diverse applications dealing with water resource, land, and environmental management.
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The full ERA5-Land hourly (Muñoz-Sabater, 2019a) and monthly (Muñoz-Sabater, 2019b) averaged datasets
presented in this paper are available through the C3S Climate Data Store at https://doi.org/10.24381/cds.
e2161bac and https://doi.org/10.24381/cds.68d2bb30, respectively.

1 Introduction

The land surface state plays a crucial role in the coupled
Earth system, especially on seasonal to interseasonal pre-
dictability and climate projections (Koster et al., 2004). The
development of land surface models has greatly benefited
from offline simulations to isolate the role of different land
surface processes and to increase the performance of hy-
drological and thermodynamic variables. Land surface mod-
els were initially used in offline mode for model develop-
ment with early intercomparison studies driven by either in
situ observations (Henderson-Sellers et al., 1995; Etchevers
et al., 2004) or global reanalysis datasets (Dirmeyer et al.,
1999). More recently, multi-model intercomparison studies
and datasets focusing on water resources monitoring (Hard-
ing et al., 2011; Schellekens et al., 2017) or climate mod-
elling (van den Hurk et al., 2016; Krinner et al., 2018) have
gained significant visibility. Offline simulations remain at-
tractive due to their computational affordability and the needs
that follow from the rapid evolution of land surface mod-
els (Pitman, 2003; Vereecken et al., 2019; Boussetta et al.,
2021).

A key advantage of using offline land surface estimates
is their temporal consistency, unlike in the case of coupled
land–atmosphere predictions (e.g. operational weather fore-
casts) that experience frequent updates. Atmospheric reanal-
yses also provide such a consistency. However, atmospheric
reanalysis can be affected by systematic biases, in partic-
ular in precipitation, which has led to the development of
bias correction methodologies (Weedon et al., 2011; Reichle
et al., 2017). Land data assimilation systems (LDASs) also
provide an important component of reanalyses, which can
mitigate model errors and enhance the representation of the
land surface state in regions and periods with available obser-
vations (Albergel et al., 2017). However, this can also result
in temporal and spatial inconsistencies (e.g. due to changing
observations’ availability) as well as limitations in the clo-
sure of the surface water budget (Zsoter et al., 2019). Exam-
ples of existing global offline datasets are the Global Offline
Land-surface Data-set (GOLD) (Dirmeyer and Tan, 2001),
MERRA-Land (Reichle et al., 2011), and ERA-Interim/Land
(Balsamo et al., 2015). The latter was motivated by important
updates to the European Centre for Medium-Range Weather
Forecasts (ECMWF) land surface scheme introduced in the
operational forecasting model in 2006, when the production
of ERA-Interim started. These changes embedded in ERA-
Interim/Land provided seasonal forecasting with more accu-
rate and consistent land initial conditions.

Compared to atmospheric reanalysis, offline land surface
reanalyses can be produced faster and at more affordable
computational cost. An arguable disadvantage compared to
high-resolution Earth observation data is the lack of small-
scale heterogeneity found in offline model-only based esti-
mates. However, observational datasets suffer from temporal
and spatial gaps, and only a few land variables are directly
“observable”, so complex algorithms that blend observations
and model output are needed to retrieve a complete esti-
mate of land variables. Furthermore, advances in land surface
modelling and the increase of computational resources now
make it feasible to run offline models at finer resolutions than
traditionally possible. Therefore, offline global simulations
are a valuable way to ensure continuity and completeness of
the land surface fields, which are two important aspects to
foster research at continental scales in climate studies.

Although the development of offline model estimates has
been motivated mainly by climate and weather research, new
user requirements are constantly emerging in society. The ef-
fects of climate change are pushing different economic sec-
tors to implement novel adaptation strategies to adjust to
the new reality. For example, crop production is already be-
ing affected by increasing temperatures and decreased wa-
ter availability (Lobell et al., 2011; Wheeler and von Braun,
2013; Zhao et al., 2017). This may induce changes to tradi-
tional watering crop strategies, harvesting periods, pest man-
agement, or even crop culture replacements. Likewise, in-
surance (and reinsurance) companies need reliable historical
data to assess the risk of severe droughts or flooding (Tadesse
et al., 2015; Jensen and Barrett, 2016), in particular for small-
holder agriculture. For public and private stakeholders, of-
fline land surface datasets can provide complementary infor-
mation needed to support decision makers.

This paper documents the new land component of the fifth
generation of European ReAnalysis (ERA5), hereafter re-
ferred to as the ERA5-Land dataset (Muñoz-Sabater, 2019a).
Unlike ERA-Interim/Land, which was produced as a one-
off single-simulation research dataset covering the period
of 1979–2010, ERA5-Land is now an integral and opera-
tional component of the Copernicus Climate Change Ser-
vice (C3S). This means, among others, that the production
is guaranteed with timely updates and synchronized with
ERA5 monthly updates. To investigate the added value of
ERA5-Land, the latter was compared to two other opera-
tional reanalysis products: ERA5 and ERA-Interim (opera-
tional until 31 August 2019). This comparison also makes it
possible to study the evolution of ECMWF operational re-
analyses. ERA-Interim/Land was not included in the com-
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parison as it was only available until 2010, and it was in-
tended to be a research dataset. As a reference for the evalua-
tion, in situ observations from different networks around the
globe have been used for comparison to the reanalyses esti-
mates. In addition, complementary global gridded model- or
satellite-based datasets have been incorporated into the eval-
uation exercise. Improvements in ERA5 compared to ERA-
Interim are mainly due to 10 years of additional research
and development (R&D) in the use of satellite data in nu-
merical weather prediction (NWP) and atmospheric mod-
elling (Hersbach et al., 2020). Differences between ERA5
and ERA5-Land are not so obvious. They both share quite
similar parameterizations of land processes; the main im-
provement of ERA5-Land is due to the non-linear dynamical
downscaling with corrected thermodynamic input.

Section 2 describes the main steps of the methodology
used to produce ERA5-Land; in Sect. 3, the data used to in-
vestigate the added value of ERA5-Land compared to ERA5
and ERA-Interim (mainly from the years 2000–2018) are de-
scribed. Section 4 shows the results of the evaluation exer-
cise, while information on access to the data is presented in
Sect. 5. A discussion of the results and the conclusions is pre-
sented in Sect. 6, followed by perspectives for future updates
in Sect. 7

2 Methodology

ERA5-Land produces a total of 50 variables describing the
water and energy cycles over land, globally, hourly, and at a
spatial resolution of 9 km, matching the ECMWF triangular–
cubic–octahedral (TCo1279) operational grid (Malardel
et al., 2016). For a full list of the available fields in the ERA5-
Land catalogue, see Table A2 in Appendix A. The production
is conducted in three segments or streams. The reason is two-
fold: (1) it allows the production of parallel streams, there-
fore accelerating the production and the public availability
of the data; (2) the atmospheric forcing necessary to produce
ERA5-Land is derived from ERA5, and thus the production
needs the corresponding segment of ERA5 completed for the
same time period. Figure 1 shows the different data streams
designed in the production of ERA5-Land. The production
started with data from the year 2001 (stream-1) aiming at
making available firstly the most recent data, while the back
extension from 1950 to 1980 (stream-3) is currently under
production.

Each segment or stream is initialized with meteorologi-
cal fields from ERA5. ERA5-Land does not assimilate ob-
servations directly. The observations influence the land sur-
face evolution via the atmospheric forcing. Forcing air tem-
perature, humidity, and pressure are corrected using a daily
lapse rate derived from ERA5. After that, the land surface
model is integrated in 24 h cycles providing the evolution of
the land surface state and associated water and energy fluxes.
In addition to the hourly data, monthly means are also com-

puted (Muñoz-Sabater, 2019b). Figure 2 shows a diagram of
the algorithm used for each 24 h production cycle. The most
important components of the production algorithm are pre-
sented in the following subsections.

2.1 Initialization

ERA5-Land is not produced as a single continuous simula-
tion for the entire period. The production is conducted in
three independent streams, as shown in Fig. 1. To avoid or
minimize discontinuities between streams, a careful initial-
ization procedure is needed for each of them. Particular at-
tention must be given to variables carrying long memory. As
an example, Fig. 3 shows time series of deep soil moisture in
a band of latitude between 60 and 20◦ S, where the averaged
annual soil moisture variability is low. This period includes
several production streams of ERA5. ERA5 initialized each
stream with ERA-Interim soil moisture initial conditions,
which has a different climatology than ERA5. In ERA5, a
1-year spin-up was used for each production stream and it is
normally long enough for atmospheric variables. However,
it is not sufficient for deep soil moisture to reach equilib-
rium, which leads to discontinuities between two production
streams, as shown in Fig. 3.

The strategy followed to initialize the ERA5-Land produc-
tion stream starting in 2001 (stream-1) was to use the latest
year of a long, prior ERA5 stream, and letting 3 further spin-
up years to allow a long spin-up period (see Fig. 1). While
this strategy provides satisfactory results for most continen-
tal masses around the world, discontinuities are still possible
at areas with very low variability of soil moisture (deserts and
polar regions). Particular attention was given to the treatment
of permanent snow-covered regions. The current model for-
mulation (as in ERA5) does not have an independent treat-
ment of glaciers. Grid points with glaciers are assigned with
a constant snow mass of 10 m. ERA5-Land streams are ini-
tialized on the 1 January, and a glacier mask is applied to
snow mass to guarantee the correct spatial representation of
glaciers. A threshold of 50 % of a grid box covered by ice
is used, below which the snow depth keeps the value com-
puted by the snow scheme of the land model. Values above
the threshold assign a snow water equivalent value of 10 m.
This condition is used to avoid grid points near glaciers with
large unrealistic snow depth that result from the interpola-
tion from ERA5 fields to ERA5-Land. For the stream start-
ing in 1981 (stream-2), a long, prior ERA5 stream was not
available. The strategy in this case was to initialize using a
ERA5-Land climatology of 1 January for the period 2001–
2018 and then allow the system to spin up for 3 years. A
similar strategy was used to initialize the stream starting in
1950 (stream-3), but in this case a 1981–2010 climatology
was used and only 1 spin-up year was feasible. The latter
was limited by the availability of forcing data.
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Figure 1. Diagram of the production streams of ERA5-Land. The dark blue lines correspond to the data that have already been produced and
are available through the C3S Climate Data Store. The light blue line corresponds to the back-extension period, and at the time of writing this
paper is under production. The 3-year spin-up period for stream-1 and stream-2 is presented with dashed rectangles. Stream-3 has a 1-year
spin-up (1949). The red diamond presents the end of each stream.

Figure 2. Diagram of the algorithm used in the production of ERA5-Land. The land surface model is integrated in 24 h cycles using short-
forecast meteorological forcing fields from ERA5.

2.2 Static and climatological fields

As in ERA5, the land characteristics are described using sev-
eral time-invariant fields. These consist of the land–sea mask,
the lake cover and depth, the soil and vegetation type, and the
vegetation cover. In addition, surface albedo and leaf area in-
dex are prescribed as monthly climatologies. The complete
list of time invariant fields with their information source is
provided in Table A1 of Appendix A.

2.3 Atmospheric forcing

ERA5-Land is driven by atmospheric forcing derived from
ERA5 near-surface meteorology state and flux fields. The
meteorological state fields are obtained from the lowest
ERA5 model level (level 137), which is 10 m above the sur-
face, and include air temperature, specific humidity, wind
speed, and surface pressure. The surface fluxes include
downward shortwave and longwave radiation and liquid and
solid total precipitation. These fields are interpolated from
the ERA5 resolution of about 31 km to ERA5-Land resolu-
tion of about 9 km via a linear interpolation method based on
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Figure 3. (a) Mean differences between ERA5-Land and ERA5 soil moisture (sm) time series for the fourth soil layer of the Carbon
Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land (CHTESSEL) land surface model (100–289 cm), averaged for the
latitudes 60–20◦ S. The temporal resolution is 12 h. Panel (b) is the same as (a) but showing the raw time series of ERA5 (dashed light grey
curve) and ERA5-Land (dark curve).

a triangular mesh. The atmospheric forcing built for ERA5-
Land is hourly and consistent over the entire production pe-
riod, and it is the result of the assimilation of a large num-
ber of conventional meteorological and satellite observations
through a four-dimensional variational assimilation system
(4D-Var) and simplified extended Kalman filter (SEKF) sys-
tems as described in Hersbach et al. (2020). Previous land re-
analyses have included corrections to the precipitation forc-
ing to address limitations of the precipitation fields of the
atmospheric reanalysis. This is not the case in ERA5-Land
mainly due to the (1) enhanced quality of ERA5 precipita-
tion when compared with previous atmospheric reanalyses
(e.g. Beck et al., 2019; Tarek et al., 2020; Nogueira, 2020)
and (2) reduced dependencies on external data that would
limit the near-real-time data availability. However, air tem-
perature, humidity, and pressure are corrected for the altitude
differences between ERA5 and ERA5-Land grids. This cor-
rection involves four steps: (i) relative humidity is computed
from interpolated, uncorrected fields; (ii) air temperature is
adjusted for the altitude differences using a daily environ-
mental lapse rate (ELR) field derived from ERA5 lower tro-
posphere temperature vertical profiles (Dutra et al., 2020);
(iii) surface pressure is corrected for the altitude differences
and correction of temperature; and (iv) specific humidity is
computed using the corrected temperature and pressure as-
suming that there is no change in relative humidity. Dutra
et al. (2020) present a detailed evaluation of this methodol-
ogy comparing the use of a constant (time and space) ELR
with daily ELR fields derived from ERA5. This methodol-
ogy was shown to reduce the mean absolute error (MAE)
of daily maximum temperature by 10 % and by 4 % for daily
minimum temperature with respect to ERA5 when compared
with 2941 stations over the western US. The importance of
the ELR correction is shown in the orography map of the
Alpine region around Switzerland in Fig. 4. ERA5 misses
many of the highest Alpine peaks due to the coarser resolu-

tion. Taking into account these orographic differences is im-
portant for other land variables such as surface temperature.
For instance, the middle and bottom rows show a more re-
alistic spatial pattern of surface temperature in ERA5-Land,
with a clear cold signal over the higher peaks. It is also re-
markable to see how ERA5-Land is able to resolve lakes such
as Geneva (Léman), Neuchâtel, and Constance. This is espe-
cially visible at 06:00 UTC, when the lake surface tempera-
ture is still significantly warmer than the land (Fig. 4f).

2.4 Land surface model

The core of ERA5-Land is the ECMWF land surface model:
the Carbon Hydrology-Tiled ECMWF Scheme for Surface
Exchanges over Land (CHTESSEL). The main updates with
respect to the land component of ERA-Interim are (a) a re-
vised soil hydrology, introducing an improved formulation of
the soil hydrologic conductivity and diffusivity (that now is
variable as a function of soil texture) and surface runoff based
on variable infiltration capacity (Balsamo et al., 2010); (b) a
fully revised parametrization of the snow scheme, changing
the hydrological and radiative properties of the snowpack
(Dutra et al., 2010); (c) the introduction of a climatologi-
cal seasonality of vegetation, in contrast to the fixed vege-
tation in ERA-Interim (Boussetta et al., 2013b); (d) a new
scheme for bare soil evaporation, allowing soil moisture to
reach values below the wilting point (Albergel et al., 2012);
(e) introduction of a lake model to represent the thermody-
namics of inland water bodies (Balsamo et al., 2012); and
(f) a parametrization that allows the estimation of land carbon
fluxes – net ecosystem exchange (NEE), gross primary pro-
duction (GPP), and ecosystem respiration (Reco) – in a mod-
ular way with the Jarvis approach that computes the stomatal
conductance without affecting the transpiration components
(Boussetta et al., 2013a).

The land surface model version used in ERA5-Land
was operational at ECMWF in 2018 with the model cycle
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Figure 4. ERA5 (a, c, e) and ERA5-Land (b, d, f) orography (a, b) of the Alpine region around Switzerland. Panels (c, d) and (e, f) show
the ERA5 and ERA5-Land land surface temperature (LST) estimates on 15 July 2018 at 06:00 UTC (c, d) and 15:00 UTC (e, f), respectively.
The locations of lakes Geneva (Léman), Neuchâtel, and Constance are indicated in panel (b).

Cy45r1. A detailed description of the model can be found
in chapter IV of the Integrated Forecasting System (IFS)
documentation (https://www.ecmwf.int/node/18714, last ac-
cess: December 2020). Compared with the model version of
ERA5, the differences are mostly technical, with the excep-
tion of (i) an updated parametrization of the soil thermal con-
ductivity following Peters-Lidard et al. (1998) that takes into
account the ice component in the case of frozen soil, (ii) a
fix to improve conservation for the soil water balance, and
(iii) rain over snow is accounted for and it does not accumu-
late in the snowpack. Potential evapotranspiration (PET) flux
in ERA5 suffers from a bug present in IFS cycle 41r2 that
affects PET computation over forests and deserts. This prob-
lem has been corrected in ERA5-Land, and unlike in ERA5,
ERA5-Land includes PET in the portfolio of products. Given
the importance of this variable for some applications, it is
worth clarifying that PET is computed by making a second
call to the surface energy balance assuming a vegetation type
of crops and no soil moisture stress. In other words, evapora-
tion is computed for agricultural land as if it is well watered
and assuming that the atmosphere is not affected by this arti-
ficial surface condition. The latter may not always be realis-
tic. Therefore, despite the fact that PET is meant to provide

an estimate of irrigation requirements, one has to be cautious
especially for arid conditions, since the method can give un-
realistic results due to too-strong evaporation forced by dry
air.

3 Data and evaluation strategy

To evaluate the quality of the ERA5-Land fields, several key
variables of the water and energy cycles were selected and
compared to available in situ observations and to a series of
reference datasets. Note that the list of evaluated variables
and reference datasets is not exhaustive and was based on
factors such as availability of data at the time of the evalu-
ation. ERA-Interim and ERA5 reanalyses were included in
the comparison, aiming at showcasing the progress of oper-
ational reanalyses at ECMWF. The variables evaluated are
soil moisture, snow depth, lake surface water temperature
and river discharge for the water cycle, the sensible and la-
tent heat fluxes (the latter also a component of the water cy-
cle), the Bowen ratio, and skin temperature for the energy
cycle. This section describes the supporting datasets used in
the evaluation exercise and the metrics employed to assess
the quality of ERA5-Land fields.
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3.1 ERA-Interim

ERA-Interim (Dee et al., 2011) is the former ECMWF
reanalysis providing estimates for the atmosphere, ocean
waves, and land surface. It had supported scientific progress
during the previous decade and is still widely used today by
the scientific community. It includes information on mul-
tiple land and atmospheric variables, and it is available
from January 1979 to August 2019. It used the IFS ver-
sion Cy31r2 (more detailed information available at https:
//www.ecmwf.int/en/publications/ifs-documentation, last ac-
cess: 27 August 2021), corresponding to the IFS 2006 re-
lease, with a spatial horizontal resolution of about 80 km and
60 levels in the vertical from the surface to 0.1 hPa. The sys-
tem includes a 4D-Var system (Rabier et al., 2000) providing
analyses fields at a temporal resolution of 6 and 3 h for short-
forecast fields (like for precipitation and fluxes). The main
difference between the land component of ERA-Interim and
those of both ERA5 and ERA5-Land is that the former is
based on TESSEL (van den Hurk et al., 2000), which is con-
sidered the precursor of the current CHTESSEL scheme. In
ERA-Interim, the soil moisture and soil temperature analyses
are based on a local optimal interpolation scheme (Mahfouf,
1991; Douville et al., 2000) that assimilates surface synoptic
(SYNOP) observations of temperature and relative humidity
at screen level (2 m). The snow depth analysis is indepen-
dent of the soil wetness and is based on a Cressman analysis
that assimilates SYNOP snow reports and snow-free satellite
observations (Drusch et al., 2004).

3.2 ERA5

ERA5 is the latest comprehensive ECMWF reanalysis and
has replaced ERA-Interim. It is based on a version of the
ECMWF IFS (Cy41r2) that was operational in 2016. ERA5
provides hourly estimates of the global atmosphere, land sur-
face, and ocean waves from 1950 and is updated daily with
a latency of 5 d. Its state estimates are based on a high-
resolution (HRES) component at a horizontal resolution of
31 km and with 137 levels in the vertical spanning from the
surface up to 0.01 hPa. Information on uncertainties in these
are provided by a 10-member ensemble of data assimila-
tions (EDA) at half the horizontal resolution. Both the HRES
and EDA ERA5 data assimilation use background-error es-
timates that utilize the output from the EDA. The land com-
ponent of ERA5 is, like ERA5-Land, based on the CHTES-
SEL model, though at a resolution of 31 km rather than 9 km.
ERA5 uses new analyses of sea-surface temperature and sea-
ice concentration, variations in radiative forcing derived from
CMIP5 specifications, and various new and reprocessed ob-
servational data records.

The data assimilation system consists of an incremental
4D-Var component (Courtier et al., 1994) for upper-air and
near-surface components, an ocean-wave optimal interpola-
tion scheme, and a dedicated LDAS. The LDAS comprises a

two-dimensional optimal interpolation scheme for the anal-
ysis of screen-level 2 m temperature and relative humidity,
and for snow (depth and density), a point-wise simplified ex-
tended Kalman filter (de Rosnay et al., 2013) for three soil
moisture layers in the top 1 m of soil, and a one-dimensional
optimal interpolation for soil, ice, and snow temperature. De-
tails of the ERA5 configuration are given in Hersbach et al.
(2020), which also contains a basic evaluation of charac-
teristics and performance for the segment from 1979 on-
ward. The performance of the component from 1950 to 1978,
the back extension which was made available later, is de-
scribed in Bell et al. (2021), and a detailed analysis for
surface temperature and humidity is provided by Simmons
et al. (2021). Technical details are also provided in the online
documentation (https://confluence.ecmwf.int/display/CKB/
ERA5:+data+documentation, last access: 23 August 2021).

Both ERA5 and ERA5-Land are produced as part of the
Copernicus Climate Change Service that ECMWF operates
on behalf of the European Commission and are available
from the C3S Climate Data Store (CDS). ERA5 and ERA5-
Land have a large and diverse user base (more than 40 000
users at the end of 2020). Table 1 summarizes the main char-
acteristics of ERA-Interim, ERA5, and ERA5-Land.

3.3 Soil moisture

To evaluate the quality of the soil moisture estimates from
the various reanalyses, a large number (> 800) of in situ
sensors in the period 2010 to 2018, many providing hourly
measurements, were used. These sensors belong to the net-
works that are listed in Table 2. The networks are located
in North America, Europe, Africa, and Australia, and all
the observations were retrieved from the International Soil
Moisture Network (Dorigo et al., 2011, 2021). Three reanal-
ysis soil layer estimates were compared to measurements by
sensors at three different depths. ERA5 and ERA5-Land top
layer soil moisture estimates (0–7 cm) were compared to in
situ sensors at 5 cm depth in North America, Africa, Eu-
rope, and Australia. A more in-depth study was performed
in North America, where most of the sensors are located.
For this region, surface soil moisture from ERA-Interim was
also evaluated. In addition, ERA5, ERA5-Land, and ERA-
Interim soil moisture for the second (7–28 cm) and third lay-
ers (28–100 cm) were evaluated against in situ measurements
at 20 and 50 cm depth, respectively. In situ measurements
were compared to the closest grid point of the ERA5, ERA5-
Land, and ERA-Interim grids if the closest grid point was
not farther than the respective model resolution. In situ time
samples were selected in a ±1 h window with respect to the
reanalysis timestamp. If several observations were retrieved
in a single window, the average was computed. In order to
consider an observed time series suited for the comparison,
a minimum of 150 samples was required for the study pe-
riod. To remove the seasonal cycle, anomaly time series were
also computed. The soil moisture anomaly values at time
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Table 1. Overview of the main characteristics of ERA-Interim, ERA5, and ERA5-Land.

ERA-Interim ERA5 ERA5-Land

Period publicly available∗ 1979–Aug 2019 1950 onwards 1981 onwards
(1950–1980, in 2021)

Spatial resolution 79 km/60 levels 31 km/137 levels 9 km

Land surface model IFS (+TESSEL) IFS (+CHTESSEL) CHTESSEL

Model cycle (year) Cy31r2 (2006) Cy41r2 (2016) Cy45r1 (2018)

Output frequency 6-hourly (analyses) Hourly Hourly
3-hourly (forecasts)

Uncertainty estimate None Based on a 10-member 4D-Var As for ERA5
ensemble at 63 km

Availability behind real time n/a 2–3 months (final product) 2–3 months (final product)
5 d (preliminary product) 5 d (preliminary product, in 2021)

∗ Availability at the time of submitting this paper. n/a – not applicable.

t (SMAN(t)) were computed from the original time series
(SM(t)) computing the mean (SM) and the standard devia-
tion (σSM) of soil moisture a ±17 d window as follows:

SMAN(t)=
SM(t)−SM

σSM
. (1)

The following metrics were computed between the reanal-
yses estimates and the in situ time series: the standard de-
viation of the difference (STDD, equivalent to the unbiased
RMSD), the bias, and the Pearson correlation coefficient (R).
The latter was also computed for the anomaly time series
(RAN). The results were grouped per continent and their dis-
tribution presented in box plots. Values are considered out-
liers if they are greater than q75+ 1.5× (q75− q25) or less
than q25− 1.5× (q75− q25), with q25 and q75 the 25th and
75th percentiles, respectively.

3.4 Snow

Snow depth estimates from reanalyses were compared to two
sets of observational data. The first one comprises 10 sites
distributed among North America, Europe, and Japan. They
were selected as reference sites to evaluate cold processes
by models participating in the Earth System Model – Snow
Model Intercomparison Project (ESM-SnowMIP) (Krinner
et al., 2018; Ménard et al., 2019). These sites provide bench-
marking data for cold processes in maritime, Alpine, and
taiga types of snow cover and on different types of climates.
Table 3 presents these stations.

The second dataset is retrieved from the Global Historical
Climatology Network-Daily (GHCN-daily) (Menne et al.,
2012b) from 1 July 2010 to 30 June 2018. The version used
is v3.24 (Menne et al., 2012a). This network integrates thou-
sands of land surface stations across the globe. The daily ob-
served snow depth product was compared to the daily av-

eraged snow depth estimates from ERA-Interim, ERA5, and
ERA5-Land at 00:00 and 12:00 UTC. To compare the reanal-
ysis data with the snow depth observations, the prognostic
snow water equivalent (SWE, in units of m water equivalent)
and snow density (ρsnow, kg m−3) from the reanalysis were
combined to compute the actual snow depth (SD, m):

SD= ρwater
SWE
ρsnow

, (2)

where ρwater = 1000 kg m−3 is the reference density of the
water. The GHCN observations were only considered if snow
depth values were positive and missing values were lower
than 50 % of the recorded time series. Also stations where
the snow depth reported is lower than 1 cm in more than 5 %
of the total number of days were removed. Finally, stations
located in coastal areas with more than 50 % water in the
pixel and on permanent snow area (glaciers) were removed.
More than 6000 stations passed the quality filters, and their
locations can be found in Fig. 9. The quality of the snow
depth from the reanalyses was evaluated at the hemispheric
scale by computing the mean bias (here defined as reanalysis
estimate minus in situ observation) and root mean square er-
ror (RMSE) for the months between December and June of
the 2010–2018 period.

3.5 Lakes

In 2015, the CHTESSEL land surface scheme of the oper-
ational IFS introduced a lake tile, which represents lakes,
reservoirs, rivers, and coastal (subgrid) waters, and is based
on the FLake (Fresh-water Lake) model of Mironov et al.
(2010a). FLake is a one-dimensional model, which uses an
assumed shape for the lake temperature profile including the
mixed layer (uniform distribution of temperature) and the
thermocline (its upper boundary located at the mixed-layer
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Table 2. In situ measurement networks used to evaluate soil moisture. The different columns contain the region and the name of the network,
the depths of the probes used, and the bibliographic reference to the network.

Network Region Sensor depth Number of Reference
used (cm) sensors used

at each depth

SCAN North America 5, 20, 50 185, 189, 190 Schaefer et al. (2007)
USCRN North America 5, 20, 50 98, 75, 75 Bell et al. (2013)
SNOTEL North America 5, 20, 50 290, 300, 297 Leavesley et al. (2008)
SOILSCAPE North America 5, 20 94, 74 Moghaddam et al. (2010b)
TERENO Europe 5 10 Zacharias et al. (2011)
SMOSMANIA Europe 5 21 Calvet et al. (2007)
FMI Europe 5 8 Ikonen et al. (2016)
Remedhus Europe 5 22 Martínez-Fernández and Ceballos (2005)
Oracle Europe 5 5 Tallec et al. (2015)
VAS Europe 5 2 Lopez-Baeza et al. (2009)
HOBE Europe 5 39 Bircher et al. (2012)
AMMA-Catch Africa 5 9 Lafore et al. (2010)
DAHRA Africa 5 1 Tagesson et al. (2015)
Oznet Australia 5 19 Young et al. (2008), Smith et al. (2012)

Table 3. List of ESM-SnowMIP sites used for the evaluation of the snow parameters, adapted from Krinner et al. (2018).

Station Short name Years Biome Elevation (m) Coordinates

Col de Porte cdp 1994–2014 Alpine 1325 45.30◦ N, 5.77◦ E
Reynolds Mt. East rme 1988–2008 Alpine 2060 43.06◦ N, 116.75◦W
Weissfluhjoch wfj 1996–2016 Alpine 2540 46.83◦ N, 9.81◦ E
Swamp Angel swa 2005–2015 Alpine 3371 37.91◦ N, 107.71◦W
Senator Beck snb 1995–2015 Alpine 3714 37.91◦ N, 107.73◦W
Sapporo sap 2005–2015 Maritime 15 43.08◦ N, 141.34◦ E
Sodankylä sod 2007–2014 Arctic 179 67.37◦ N, 26.63◦ E
Old Aspen oas 1997–2010 Boreal forest 600 53.63◦ N, 106.20◦W
Old Black Spruce obs 1997–2010 Boreal forest 629 53.99◦ N, 105.12◦W
Old Jack Pine ojp 1997–2010 Boreal forest 579 53.92◦ N, 104.69◦W

bottom, and the lower boundary at the lake bottom). To run
FLake, the lake location (or fractional cover), lake depth
(most important parameter, preferably bathymetry), and lake
initial conditions are required. For the best performance, lake
depth should be updated with the latest available information
to ensure that depths are close to observed values, as over-
estimated depths can be blamed for cold biases in summer
temperatures or lack of ice. The state of lakes in FLake is de-
scribed by seven prognostic variables: mixed-layer tempera-
ture, mixed-layer depth, bottom temperature, mean temper-
ature of the water column, shape factor (with respect to the
temperature profile in the thermocline), temperature at the ice
upper surface, and ice thickness. In this paper, the lake sur-
face water temperature (LSWT) estimates from the FLake
model embedded in ERA5 and ERA5-Land were compared
to in situ observations from three different sources of data,
during ice-free periods:

– The Alqueva reservoir in Portugal, from the Portuguese
University of Évora, provided hourly data from 2017

and 2018. In addition, daily averaged values were also
computed.

– In total, 27 Finnish lakes monitored by Finnish Environ-
ment Institute (SYKE) provided daily data (one mea-
surement per day at 08:00 LT) from 2000 to 2016. In
addition, summer month (June, July, and August) aver-
age values were calculated.

– Summer month average values were provided from
the global inventory “Globally distributed LSWT
collected in situ and by satellites; 1985–2009”
(https://portal.edirepository.org/nis/mapbrowse?
packageid=knb-lter-ntl.10001.3, last access: 29 Au-
gust 2021). In total, there were 348 lakes over the globe
with in situ data for 15 years (1995–2009).

Figure 5 provides the location of all the sources of in situ
data used in this study. Considering the above observations
as the truth, the MAE of ERA5 and ERA5-Land LSWT es-
timates was computed. The significance of these results was
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tested using the Kruskal–Wallis test by ranks. In addition,
the bias distribution was also calculated and presented in 2-
D bar graphs. It should be noted that the Alqueva reservoir
and the 27 Finnish lake depths were verified (in situ vs. op-
erational values) and are in good agreement; the lake depths
provided by the “Globally distributed LSWT collected in situ
and by satellites; 1985–2009” global inventory were only
randomly verified (e.g. by comparison with scientific publi-
cations), which might add some uncertainty when interpret-
ing the results.

3.6 River discharge

The current version of CHTESSEL does not directly pro-
duce river discharge at the river basin scale. Instead, grid-
ded surface and subsurface runoff from CHTESSEL is cou-
pled to the LISFLOOD hydrological and channel routing
model (Van Der Knijff et al., 2010). Coupling ERA5/ERA5-
Land runoff with LISFLOOD allows for lateral connectiv-
ity of grid cells with runoff routed through the river chan-
nel to produce river discharge (m3 s−1). This is the process
used within the Global Flood Awareness System (GloFAS;
https://www.globalfloods.eu/, last access: 29 August 2021).
More details can be found in Harrigan et al. (2020). River
discharge estimates from ERA5 (GloFAS-ERA5) and ERA5-
Land (GloFAS-ERA5-Land) were obtained for the period
January 2001 to December 2018. This is the common period
for which reanalysis data were available at the time of this
study. Estimates were resampled to the GloFAS 0.1◦ grid-
ded river network at a daily time step. As part of GloFAS,
a database of global hydrological observations for 2042 sta-
tions is held, consisting predominantly (i.e. ∼ 75 %) of the
Global Runoff Data Centre (GRDC) and supplemented by
data collected through collaboration with GloFAS partners
worldwide to improve spatial coverage. The locations of the
stations have been matched to the corresponding cells on the
0.1◦ GloFAS river network. Following Harrigan et al. (2020),
a number of criteria were used to select stations for the eval-
uation:

– at least 4 years of data available between 2001 and 2018
(not necessarily contiguous),

– minimum upstream area of 500 km2,

– difference in catchment area supplied by the data
provider and upstream area for the corresponding cell
on the GloFAS river network must be within 20 %, and

– station with the longest record retained when multiple
observation stations were matched to the same GloFAS
river cell.

In addition to the above conditions, a first-order visual qual-
ity check on observed river discharge time series removed
stations with erroneous data (for example, time series trun-
cated above a threshold, showing several inhomogeneities or

series monitoring an artificial canal instead of a river). This
filtering procedure resulted in the selection of 1285 stations
with drainage areas ranging between 575 and 4 664 200 km2,
and a median of 29 963 km2. Following the methodology of
Harrigan et al. (2020), hydrological performance was as-
sessed using the modified Kling–Gupta efficiency (KGE′)
metric (Gupta et al., 2009; Kling et al., 2012). The KGE′ is
an overall summary measure consisting of three components
important for assessing hydrological dynamics: temporal er-
rors through correlation, bias errors, and variability errors:

KGE′ = 1−
√

(R− 1)2− (β − 1)2− (γ − 1)2 (3)

β =
µs

µo
γ =

σs/µs

σo/µo
, (4)

where R is the Pearson correlation coefficient between re-
analysis simulations (s) and observations (o), β is the bias
ratio, γ is the variability ratio, µ the mean discharge, and σ
the discharge standard deviation. The KGE′ and its three de-
composed components (correlation, bias ratio, and variabil-
ity ratio) are all dimensionless, with an optimum value of 1.
To evaluate the hydrological skill of GloFAS-ERA5-Land,
the KGE′ can be computed as a skill score, KGESS, with
GloFAS-ERA5 used as the benchmark:

KGESS=
KGE′GloFAS−ERA5-Land−KGE′GloFAS−ERA5

KGE′perf−KGE′GloFAS−ERA5
, (5)

where KGE′GloFAS−ERA5-Land is the KGE′ value for
the GloFAS-ERA5-Land reanalysis against observations,
KGE′GloFAS−ERA5 is the KGE′ value for the GloFAS-ERA5
benchmark against observations, and KGE′perf is the value
of KGE′ for a perfect simulation, which is 1. KGESS=
0 means the GloFAS-ERA5-Land reanalysis is no better
than the GloFAS-ERA5 benchmark and thus has no skill,
KGESS> 0 indicates when GloFAS-ERA5-Land is consid-
ered skilful, and KGESS< 0 is when the performance is
worse than the GloFAS-ERA5 benchmark.

3.7 Energy fluxes

3.7.1 FLUXNET data

The evaluation of the ERA5-Land turbulent fluxes estimates
was conducted mostly following the method of Martens et al.
(2020). Surface sensible and latent heat fluxes (also denoted
in this paper as H and λρE, respectively) derived from
ERA reanalyses, as well as their ratio (i.e. the Bowen ra-
tio, hereafter denoted as β), were compared to measurements
from the FLUXNET 2015 synthesis dataset (Pastorello et al.,
2020). The period under evaluation was based on the avail-
ability of reanalysis data at the time of the comparison, and
therefore, unlike in Martens et al. (2020), the evaluation pe-
riod is constrained to 2001–2014. Following Martens et al.
(2017), the in situ flux data were subjected to quality control,
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Figure 5. Location of lakes with in situ data used in this study; green dots are for hourly and daily data for the Alqueva reservoir (Portugal),
red for daily and 3-summer-month averaged data (Finnish lakes), blue for the 3-summer-month average data for lakes all over the globe.

including (1) the removal of rainy intervals, during which
eddy-covariance measurements are typically unreliable, and
(2) the removal of gap-filled records to retain only the actual
measurements from the eddy-covariance sites. After quality
control, only sites with a minimum record of 5 years were
retained too. In total, 65 eddy-covariance sites remained af-
ter quality control and were used as in situ reference data.
Note that the measured energy fluxes used as reference in
this paper were not corrected for energy balance closure be-
cause the number of towers used for validation would be
drastically reduced, as the ground-heat flux is also needed
and is not available from many towers. Some authors have
already highlighted the lack of closure in the energy balance
at eddy-covariance sites and a consequential tendency to un-
derestimate the latent heat flux (Wilson et al., 2002; Ershadi
et al., 2014; Jiménez et al., 2018). The reference sites are
mainly distributed across the continental US, Europe, and
Australia (see their locations in Fig. 17a, b, and c, respec-
tively). For each eddy-covariance site, the in situ measure-
ments were aggregated from their native temporal resolution
to hourly, 3-hourly, and daily intervals. In addition, standard-
ized anomalies were calculated by subtracting for each time
interval the climatological expectation (i.e. the average value
across the entire record for that interval) and dividing by the
standard deviation of that climatology. While the compari-
son to raw time series may mask the influence of short-term
meteorological anomalies on surface energy partitioning (as
the temporal variability of turbulent fluxes typically depends
strongly on the seasonality of its main drivers), the compari-
son to anomaly time series reflects the response to short-term
meteorological conditions. The Bowen ratio was only calcu-
lated at daily temporal resolution for numerical instability
reasons. As described in Martens et al. (2020), outliers in the
time series of the Bowen ratio, for both the reanalyses and in

situ data, were masked using a quantile-based approach. The
bias, i.e. the difference between raw in situ time series and re-
analysis estimates, the standardized MAE, and the anomaly
Pearson correlation coefficient (RAN) were computed. The
results are shown in the form of violin plots in Sect. 4.5.1.

3.7.2 GLEAM

The Global Land Evaporation Amsterdam Model (GLEAM;
Miralles et al., 2011; Martens et al., 2017) is used in this
study with two objectives: (a) to compare the GLEAM evap-
oration estimates directly to the ERA5 and ERA5-Land es-
timates, which in turn will assess the skill of the underly-
ing land surface model to simulate turbulent heat fluxes, and
(b) as an intermediate tool to assess the quality differences of
key input meteorological drivers of the turbulent fluxes com-
puted by GLEAM. GLEAM is a process-based, yet semi-
empirical, model that computes total evaporation and its sep-
arate components over continental masses at global scale. A
detailed description of this model can be found in Martens
et al. (2017) and Miralles et al. (2010, 2011). In this pa-
per, version 3 (v3) of the GLEAM algorithm is used and
forced with the same database as in the official v3.4a dataset
(see https://www.gleam.eu, last access: 29 August 2021),
including near-surface air temperature and surface net ra-
diation from ERA5; this dataset is hereafter referred to
as GLEAM+ERA5. Likewise, a version of GLEAM run
with ERA5-Land air temperature and surface net radiation
is referred to as GLEAM+ERA5-Land. Analogous com-
parisons between GLEAM+ERA5 and GLEAM+ERA-
Interim (using forcing fields from ERA-Interim) can be
found in Martens et al. (2020). Surface latent heat flux,
surface sensible heat flux, and the Bowen ratio from
GLEAM+ERA5 and GLEAM+ERA5-Land were evalu-
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ated against the eddy-covariance data described in Sect. 3.7.1
at daily timescales.

3.8 Skin temperature

The skin temperature is the theoretical temperature of the
Earth’s surface that is required to satisfy the surface en-
ergy balance. It represents the temperature of the upper-
most surface layer, which has no heat capacity and thus
can respond instantaneously to changes in surface fluxes.
The top surface layer of the ECMWF’s land surface model,
CHTESSEL, covers the top 7 cm. In order to evaluate the
skill of ERA5-Land land surface temperature (LST), NASA’s
Moderate Resolution Imaging Spectroradiometer (MODIS)
MYD11C3/MOD11C3 version 6 product was used in this
study. It provides monthly LST and emissivity values for
Aqua and Terra in a 0.05◦ (5600 m at the Equator) latitude–
longitude climate modelling grid (CMG), for day and night
overpasses. Chen et al. (2017) recommended the use of
the MODIS LST average ensemble (i.e. from Aqua-day,
Aqua-night, Terra-day, and Terra-night) for climate stud-
ies and reported validation with 156 flux tower measure-
ments (RMSE= 2.65, mean bias<±1 K). In this study, the
MODIS observational LST ensemble was constructed fol-
lowing Chen et al. (2017) and used as a reference for com-
parison with ERA-Interim, ERA5, and ERA5-Land monthly
averaged LST data for the period January 2003 to Decem-
ber 2018 (16 years). MODIS data were firstly averaged to
monthly timescales and then upscaled at two spatial resolu-
tions: to 0.1◦ for comparison to ERA5-Land, and to 0.25◦ for
comparison to ERA5 and ERA-Interim data. Bias, Pearson’s
correlation (R), and RMSE were computed on the full time
series, and correlation was also computed on the anomalies
(RAN), calculated as departures from the monthly climatol-
ogy.

4 Evaluation results

4.1 Soil moisture

Figure 6 shows the evaluation results for ERA5-Land and
ERA5 top soil moisture layer against 5 cm depth measure-
ments for sites in Europe, Africa, and Australia. For sites
in Europe, both ERA5-Land and ERA5 show similar STDD
and bias distributions (Fig. 6a, c). The distribution of R is
also similar but the median value obtained for ERA5-Land is
slightly higher than for ERA5 (Fig. 6b). In contrast, ERA5
shows a slightly higher median for the anomaly correlation,
although ERA5-Land shows a more compact distribution
(Fig. 6d). In Africa, only 10 sensors at a depth of 5 cm were
available. The STDD shows a larger distribution for ERA5-
Land (Fig. 6e); however, the latter shows slightly lower bias
and better R (Fig. 6f, g). The anomaly correlation is largely
improved (Fig. 6h). Finally, in Australia, ERA5-Land box
plots (Fig. 6i–l) clearly show lower STDD and bias, and

higher R than ERA5 (both for the original time series and the
anomaly times series). The evaluation obtained over Europe,
Africa, and Australia shows an overall slightly better perfor-
mance of ERA5-Land over ERA5; in particular, the anomaly
correlation of the top layer is improved predominantly in the
warmest climates. Nonetheless, these results for the top soil
layer are not conclusive, partly because of the insufficient
number of available stations.

To get more insight into the soil moisture evaluation,
ERA5-Land and ERA5 were also evaluated over North
America, where most of the in situ sensors are available, in-
cluding several hundreds of sensors at 20 and 50 cm depths.
In addition, the same evaluation was performed for ERA-
Interim to address the evolution of ERA5 and ERA5-Land
with respect to the previous reanalysis generation. Figure 7
shows the evaluation results for ERA5-Land, ERA5, and
ERA-Interim soil moisture top three layers against measure-
ments for sites in North America at 5 cm (Fig. 7a–d), 20 cm
(Fig. 7e–h), and 50 cm depth (Fig. 7i–l). ERA5 and ERA5-
Land surface soil moisture obtains quite similar results for
all the metrics, although the median of the correlation and
anomaly correlation are slightly better in ERA5-Land. ERA-
Interim obtains lower values for these last two metrics, mean-
ing that the land improvements in CHTESSEL compared to
the old TESSEL scheme lead to better representation of the
soil moisture dynamics. In deeper layers, the performance
of ERA5-Land is better than that of ERA5, in particular for
the third layer, for which ERA5-Land shows lower STDD
(Fig. 7i) and higher correlation (Fig. 7j, l) than ERA5. It is
worth mentioning that for the third soil layer of the model,
ERA5 performs quite similarly to ERA-Interim, which is
likely due to the initialization of the ERA5 streams with
ERA-Interim soil moisture conditions.

Finally, the results were also analysed site per site taking
into account the confidence interval of the Pearson correla-
tion obtained for ERA5 and ERA5-Land versus the in situ
measurements. A correlation difference is considered signif-
icant if the confidence intervals do not overlap. The Pearson
correlation difference for ERA5 and ERA5-Land at 5 cm is
significant for 382 sensors, of which 64 % shows higher cor-
relation for ERA5-Land. The correlation difference at 20 cm
is significant for 417 sites, of which 72 % show a higher cor-
relation for ERA5-Land. Finally, the correlation difference
at 50 cm is significant for 479 sites, of which 88 % show a
higher correlation for ERA5-Land.

4.2 Snow

Figure 8 shows the mean bias and RMSE of the SWE nor-
malized by the mean value and standard deviation of the
observations, respectively, for the 10 sites of Table 3. Each
column displays the statistics of the nearest neighbour point,
whereas the vertical bars represent the minimum and max-
imum values of the metrics computed over the four nearest
points. Hence, this enables the characterization of the spatial
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Figure 6. Box plots showing the evaluation of ERA5-Land and ERA5 top layer soil moisture against in situ measurements at 5 cm for sites
in Europe (a–d), Africa (e–h), and Australia (i–l). Panels (a), (e), and (i) show the standard deviation of the difference (STDD), (b), (f),
and (j) the Pearson correlation coefficient (R), (c), (g), and (k) the bias, and (d), (h), and (l) the Pearson correlation of the anomaly time
series (RAN). On each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th (q25) and 75th
(q75) percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers.

variability of the errors given that many sites are located in
complex terrains or coastal area.

Considering the mountain sites, ERA5-Land shows lower
RMSE over the sites with moderate altitude, i.e. between
1300 and 2500 m (cdp, rme, wfj). ERA5-Land also clearly
presents the lowest errors in the Arctic site (sod) and in the
boreal forest sites (oas, obs, and ojp). Overall, the biases are
smaller in ERA5-Land than in ERA5 (and ERA-Interim) at
these sites. For the mountain sites, all reanalyses are char-
acterized by a negative bias, which is very likely due to the
smoothing of the orography at the resolution of the reanal-
ysis. The higher horizontal resolution of ERA5-Land, com-
pared to ERA5, helps to reduce the bias at cdp, rme, and
wfj caused by a better orographic representation. However,
the agreement with in situ observations at the sites located in
very high mountains (snb and swa, located at altitudes greater
than 3300 m) is slightly better with ERA5 than with ERA5-
Land. It should be noted that the four nearest grid points indi-
cate a much larger spread of errors for ERA5 than for ERA5-
Land. Therefore, compensating errors could lead to better
performance of ERA5 at the nearest grid point. The maritime
site (sap) also shows lower RMSE in ERA5. At this site, the
data assimilation can help in adding/removing snow mass for
the right reason (snow density is overall well represented at

this site; see time series in Fig. S1 in the Supplement), even
though the spatial variability is higher in ERA5. On the con-
trary, at the forest sites (oas, obs, ojp), snow depth assimila-
tion can remove snow mass to compensate for errors in snow
density, the latter which are not considered in the assimila-
tion system. Finally, noteworthy are the improvements in the
transition between ERA-Interim and ERA5, in particular at
Sodankylä (sod), which is caused by improved parameteri-
zations of the snow model introduced between ERA-Interim
and ERA5 productions (Dutra et al., 2010).

Figure 9 shows the maps of the RMSE difference be-
tween ERA5-Land and ERA5 snow depth estimates when
compared to in situ observations of the GHCN network, for
both North America and Europe. Over the US, and partic-
ularly over the Rockies region, ERA5-Land generally out-
performs ERA5 in terms of lower RMSE (see Fig. 9a). In
these highly complex terrain regions, the higher horizontal
resolution of ERA5-Land adds value by providing more real-
istic orographic contours. However, over Europe (i.e. mainly
Scandinavia; see Fig. 9b), where ERA5 uses a dense SYNOP
network of observations in the snow assimilation system,
ERA5 performs better than ERA5-Land.

To further quantify the impact of the higher horizontal res-
olution of ERA5-Land on snow depth simulation, Fig. 10
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Figure 7. Box plots showing the evaluation of ERA5-Land, ERA5, and ERA-Interim against in situ measurements at 5 (a–d), 20 (e–h), and
50 cm (i–l) over North America. Panels (a), (e), and (i) show the standard deviation of the difference (STDD), (b), (f), and (j) the Pearson
correlation, (c), (g), and (k) the bias, and (d), (h), and (l) the Pearson correlation of the anomaly time series (RAN). On each box, the central
mark indicates the median, and the bottom and top edges of the box indicate the 25th (q25) and 75th (q75) percentiles, respectively. The
whiskers extend to the most extreme data points not considered outliers.

Figure 8. Summary statistics of the normalized mean bias (a) and
RMSE (b) of snow water equivalent (SWE) at each ESM-SnowMIP
site for ERA5-Land (red), ERA5 (green), and ERA-Interim (cyan).
ESM-SnowMIP sites are described in Table 3. Each reanalysis box
has a vertical line representing the variability at the four nearest grid
points to the site location.

shows the RMSE as a function of the height of each sta-
tion. The stations were binned in height ranges of 250 m (0–
250, 250–500, etc.) and the distribution of the RMSE is dis-
played for each height range using box plots. For heights
below ≈ 1500 m a.s.l., ERA5 performs slightly better than

ERA5-Land, while for heights between ≈ 1500 m a.s.l. and
≈ 3000 m a.s.l. ERA5-Land outperforms ERA5, as a result of
the better resolution. For stations above 3300 m a.s.l., ERA5
performs better, which can be due to compensating errors,
similarly to the ESM-SnowMIP sites. In addition, it should
be noted that the number of sites at these very high altitudes
is small, and therefore the statistical results should be inter-
preted with caution.

4.3 Lakes

The ERA5 and ERA5-Land hourly estimates of LSWT com-
pared to the hourly data of the Alqueva reservoir showed that
ERA5-Land obtained statistically significant MAE reduction
by 2.2 % (see Table 4). While this is a positive result, ERA5-
Land data showed some rapid changes in the lake mixed-
layer depth (up to 5 m), which led to a quick rise of the
lake surface water temperature (up to 20 ◦C). The left plot
of Fig. 11 shows the bias distribution for hourly data; even
though the frequency of bias around zero is larger for ERA5-
Land (indicating more accurate estimates of LSWT), errors
due to unrealistic temperature rise are also visible at higher
frequency between 3–4 ◦C.
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Figure 9. Snow depth RMSE difference between ERA5-Land and ERA5 (with respect to GHCN observations) for the months of December
to June between 2010 and 2018. Negative values indicate better matching of ERA5-Land averaged snow depth with in situ measurements of
the GHCN network; positive values indicate that ERA5 averaged snow depth estimates are matching better in situ measurements.

Figure 10. Box plot of the snow depth RMSE distribution as func-
tion of the site altitude, for North America (30–80◦ N, 60–160◦W,
a) and Europe (25–80◦ N, 10◦W–40◦ E, b), for ERA5-Land (red),
ERA5 (green), and ERA-Interim (cyan). Boxes extend between the
lower (25 %) and upper quartiles (75 %), and the horizontal lines
within each box represent the median value of the distribution. The
black line represents the number of stations grouped at each bin.

The comparison of the ERA5 and ERA5-Land daily av-
eraged LSWT with Alqueva reservoir and the 27 Finnish
lakes data also showed statistically significant reduction of
ERA5-Land MAE (among 28 lakes) by 1.2 % (from 2.71
to 2.68 ◦C; see Table 4). It should be noted that the lake
parametrization scheme relies heavily on the lake depth in-
put data. With the increase of resolution in ERA5-Land, lake
depth values change as well. For only those lakes whose
depth became more realistic in ERA5-Land as result of the
higher resolution, the MAE was statistically significantly re-
duced by 23.8 %; however, for only those lakes whose depth
remained unchanged despite the change of resolution, the
MAE was still statistically significantly reduced by 9.6 %,
showing the positive influence of higher-resolution atmo-
spheric input. The right plot of Fig. 11 shows, for daily data, a
reduced amount of large positive errors (cold bias) in ERA5-
Land and a larger frequency of errors around zero bias. Fi-
nally, only 272 lakes with averaged in situ measurements
for the summer months, with 10- to 15-year data records,
could be used for comparison with ERA5 and ERA5-Land
LSWT estimates. The comparison showed statistically sig-
nificant MAE increase by 1.0 % for ERA5-Land compared to
ERA5 (see Table 4). If one bears in mind that FLake was not
designed for saline, fed by glaciers or mountains and warm
lakes (that excludes 26 exceptional lakes) the MAE of the
remaining 246 lakes is similar in ERA5 and ERA5-Land.
The right plot of Fig. 12 shows the geographical distribu-
tion of the 26 exceptional lakes and their averaged ERA5-
Land MAE, which shows large LSWT errors, even beyond
10 ◦C. Note that errors for these lakes are very similar for
ERA5. If, as a result of the higher resolution, only lakes
whose depth became more realistic in ERA5-Land compared
to ERA5 are taken into account, the MAE is statistically sig-
nificantly reduced by 1.4 % in ERA5-Land. FLake was spe-
cially designed for medium depth (under 50 m) lakes. Sev-
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Table 4. MAEs of the ERA5 and ERA5-Land LSWT estimates compared to in situ hourly, daily, and 3-summer-month average LSWT data.
Hourly data correspond to data from the Alqueva reservoir in Portugal (2017 and 2018); daily data are from the Finnish lakes (2000–2016)
and averaged hourly data from the Alqueva reservoir; summer month average data are from a global inventory (1985–2009) and the Finnish
lakes. The first column is for the data type (hourly/daily/summer month average), second column provides the number of lakes for each
category, third column shows the MAE (◦C) of ERA5 LSWT estimates compared to in situ measurements, and fourth column is the same as
third column but for ERA5-Land.

Data type Data amount (number of lakes) MAE (ERA5) MAE (ERA5-Land)

Hourly All (1) 3.29 3.22

Daily All (28) 2.71 2.68

Only with unchanged depths; differences due to increased atmospheric
horizontal resolution (10)

2.59 2.34

Only with more realistic depths in ERA5; differences due to decreased
surface horizontal resolution (12)

2.38 2.93

Only with more realistic depths in ERA5-Land; differences due to in-
creased surface horizontal resolution (6)

3.56 2.71

Summer months All (272) 3.04 3.07

All except exceptional lakes (glacier-fed, saline, and warm lakes) (246) 2.32 2.32

Non-exceptional lakes with unchanged depths; differences due to in-
creased atmospheric horizontal resolution (107)

2.22 2.25

Non-exceptional lakes with more realistic depths in ERA5; differences
due to decreased surface horizontal resolution (91)

2.45 2.41

Non-exceptional lakes with more realistic depths in ERA5-Land; differ-
ences due to increased surface horizontal resolution (41)

2.56 2.52

Non-exceptional lakes with unchanged depths that are< 50 m deep; dif-
ferences due to increased atmospheric horizontal resolution (92)

2.32 2.39

Non-exceptional lakes with more realistic depths in ERA5 that are
< 50 m deep; differences due to decreased surface horizontal resolution
(70)

2.30 2.45

Non-exceptional lakes with more realistic depths in ERA5-Land that are
< 50 m deep; differences due to increased surface horizontal resolution
(34)

2.52 2.49

Figure 11. LSWT bias (observations minus ERA5 or ERA5-Land estimates) distribution (◦C) for hourly data from the Alqueva reservoir (a)
and daily data from the Alqueva reservoir and the Finnish lakes (b). The dark red colour represents the area where both ERA5 (pink colour)
and ERA5-Land (violet colour) bias distribution overlap.
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eral lakes from this database are however very deep. Nev-
ertheless, computing the statistics for only medium depth
lakes did not show any extra improvement in ERA5-Land
data. The left plot of Fig. 12 presents the bias distribution of
non-exceptional lakes (246) that shows wider error distribu-
tion for both ERA5 and ERA5-Land compared to hourly and
daily distributions.

4.4 River discharge

Results of river discharge performance for GloFAS forced
with ERA5 and ERA5-Land are shown in Fig. 13. The over-
all global median KGE′ across 1285 observation stations im-
proves from 0.26 (with an interquartile range of −0.04 to
0.49) for GloFAS-ERA5 to 0.37 (0.08, 0.57) for GloFAS-
ERA5-Land (Fig. 13a). In the decomposition of the KGE′,
the global median Pearson correlation also improves from
0.60 (0.43, 0.75) to 0.64 (0.49, 0.77) (Fig. 13b), and global
median bias ratio improves from 0.73 (0.50, 1.13) to 0.89
(0.66, 1.15) (Fig. 13c), which is equivalent to a 16 % reduc-
tion in overall bias. There is very little difference in variabil-
ity errors between GloFAS-ERA5 and GloFAS-ERA5-Land
(Fig. 13d).

Figure 14 shows the spatial distribution of river discharge
skill, measured by the KGESS. GloFAS-ERA5-Land shows
positive skill compared to the GloFAS-ERA5 benchmark
in 65 % of stations with a global median KGESS of 0.08
(−0.06, 0.25). Largest improvements in skill are found in
North America, Europe, northern Russia, southern Africa,
and Australian catchments. There is a substantial decrease
in skill (i.e. KGESS<−0.2) when forcing GloFAS with
ERA5-Land runoff instead of ERA5 in 11 % of stations,
mainly located in the western US and South America. Care
must be taken in spatial representativeness of these results,
as the observation network is sparse in some regions of the
world, particularly in large parts of Africa and Asia.

4.5 Energy fluxes

4.5.1 Evaluation against eddy-covariance sites

The left panel of Fig. 15 shows the violin plots of the ERA-
Interim and ERA5-Land turbulent fluxes (compared to in situ
eddy-covariance measurements).

ERA5-Land compares systematically better to in situ mea-
surements than ERA-Interim, with higher RAN values for the
heat fluxes and the Bowen ratio and for both subdaily and
daily temporal resolutions, as well as presenting lower bias
and MAE. This result is expected, as the land surface model
used in ERA5-Land benefits from many improvements com-
pared to that of ERA-Interim (see Sect. 2.4). The right panel
of Fig. 15 shows the same plot but comparing ERA5 and
ERA5-Land. The violin plots are much more similar, biases
for both fluxes are only marginally better in ERA5-Land
(the median of the distribution is nearly the same, but the
75 % percentile is always lower), and MAE is typically lower

for λρE in ERA5-Land (except at 1-hourly resolution) but
higher for H . On average, correlations for ERA5-Land are
only better for λρE at daily resolution and for the Bowen ra-
tio. It also should be noted that all statistics are on average
better for H than for λρE, both in ERA5 and in ERA5-Land
(with lower bias, lower MAE, and higher RAN); this matches
the results reported by Balsamo et al. (2015) and Martens
et al. (2020). To investigate potential areas of significant im-
provement/degradation, the left panel of Fig. 16 shows the
maps of RAN differences of λρE between ERA5-Land and
ERA5, over the continental United States (CONUS). RAN is
typically better for ERA5-Land across most US stations, es-
pecially near the coasts and around the lakes, where high res-
olution is more important. In Europe (Fig. 16, middle panel),
results are very mixed, but for most of the stations in the
Alps ERA5-Land performs worse than ERA5. Although for
Australia ERA5-Land is slightly better than ERA5 (see right
panel of Fig. 16), it is not the case for all stations. The re-
sults for the Bowen ratio are aligned with those of λρE (see
Fig. S3), whereas those of H are more favourable for ERA5
(see Fig. S2).

To study the influence of the eddy-covariance sites’ alti-
tude and air temperature in the heat fluxes, Fig. 17 shows the
standardized mean RAN (circles) and MAE (squares) of H
and λρE as a function of the station altitudes and air temper-
ature. The results are in line with those presented in the vi-
olin plots. ERA5-Land clearly performs better for λρE and
the Bowen ratio, and the largest differences between ERA5
and ERA5-Land are obtained for the sites located at high al-
titudes, where more extreme values are obtained and forc-
ing errors are increased. Although for H the differences are
smaller, ERA5 performs overall better than ERA5-Land and
the strongest differences are also seen at high-altitude sites.

4.5.2 Evaluation using GLEAM

The turbulent fluxes estimated from GLEAM forced with
temperature and surface net radiation from ERA5 and ERA5-
Land were also computed. ERA5-Land surface fluxes per-
form better than GLEAM+ERA5-Land when confronted to
in situ measurements (see the violin plots in Fig. S4), except
in terms of bias, in agreement with Martens et al. (2020). This
result reflects the quality of the CHTESSEL land surface
model, which has greatly improved the parametrization of
turbulent energy fluxes and evidences the added value com-
pared to a simpler model as in GLEAM, designed to con-
sider only input variables that can be observed from satel-
lite. Figure 18 is similar to Fig. 17 but comparing ERA5-
Land and GLEAM+ERA5-Land, as a function of elevation
and air temperature, at daily resolution. As expected, almost
for all stations temperature and elevation, ERA5-Land heat
fluxes match better the in situ reference measurements. The
exceptions are towers at the highest altitudes where forcing
errors are generally larger. Comparing GLEAM+ERA5 and
GLEAM+ERA5-Land, the differences are very small, sug-
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Figure 12. LSWT bias (observations minus ERA5 or ERA5-Land estimates) distribution (◦C) for the 3-summer-month average data based
on non-exceptional lakes (a), and geographical distribution of the 26 exceptional lakes (glacier-fed, saline, and warm lakes) ERA5-Land
MAE (b) with colour bar in ◦C.

Figure 13. Cumulative distribution functions (CDFs) of hydrologi-
cal performance metrics across 1285 observation stations. Modified
Kling–Gupta efficiency (KGE′) (a) with decomposition of KGE′

into Pearson correlation (b), bias ratio (c), and variability ratio (d)
for GloFAS-ERA5-Land (red line) and GloFAS-ERA5 (blue line).
The red dot marks the optimum value for each metric.

gesting that the near-surface air temperature and net radia-
tion are quite similar in both reanalyses for the locations of
the eddy-covariance sites.

4.6 Skin temperature

Figure 19 shows global maps of ERA5-Land and ERA-
Interim mean LST for the time period 2003–2018, as well
as global maps of their correlation and RMSE with respect
to the MODIS LST average ensemble, constructed as indi-
cated in Sect. 3.8. While differences in mean LST are appar-
ently minimal among the two simulated products, there is a
better correlation of ERA5-Land with MODIS in the tropical
band. The low correlation obtained between the simulated
and the remotely sensed LST over tropical forests should

be taken with caution since persistent cloud cover as well
as cloud contamination effects are known to have an impact
on remotely sensed observations, leading to important differ-
ences in their absolute values (Jiménez-Muñoz et al., 2016;
Gomis-Cebolla et al., 2018). Notably, ERA5-Land systemat-
ically compares better than ERA-Interim to MODIS LST in
terms of RMSE, particularly at high latitudes. As shown in
the averaged statistical scores on Table 5, there is an over-
all improvement of ERA5 and ERA5-Land LST simulations
with respect to ERA-Interim, yet only modest improvements
are achieved in ERA5-Land compared to ERA5 LST, mainly
on bias and RMSE. The better correlation of MODIS with
ERA5 and ERA5-Land than with ERA-Interim is more evi-
dent in RAN maps (see Table 5 and Fig. S5).

To further scrutinize the impact of the ERA5-Land higher
horizontal resolution on LST simulation, ERA5 LST was
resampled to 0.1◦ and then global maps of the RMSE dif-
ference (1RMSE) between ERA5 and ERA5-Land with re-
spect to the MODIS LST average ensemble were calculated.
The improvement of ERA5-Land on LST in coastal areas is
clearly visible in the 1RMSE maps, as shown in Fig. 20 for
the European domain. The time series at the coastal pixel in
Norway illustrates how ERA5-Land LST simulations com-
pare better to the observational record by capturing more
closely the annual cycle in its whole range of variability, and
therefore decreasing bias and RMSE, while the correlation
with the MODIS product is very good and almost similar for
both reanalyses. The time series at the other two specific lo-
cations illustrate regions of complex topography exhibiting
slightly lower RMSE of ERA5-Land (Iceland), and of ERA5
(Alps), with respect to the MODIS LST average ensemble.
These results highlight improved LST simulations of ERA5-
Land on coastal regions.

5 Data availability

ERA5-Land data are available through the C3S CDS,
and at the time of writing this paper the data are avail-
able from January 1981. The data are accessible ei-
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Figure 14. Modified KGESS for GloFAS-ERA5-Land river discharge reanalysis against the GloFAS-ERA5 benchmark across 1285 obser-
vation stations. Optimum value of KGESS is 1. Blue (red) dots show catchments with positive (negative) skill.

Figure 15. Violin plots showing the temporally and spatially averaged statistics of the surface latent heat flux (λρE), surface sensible heat
flux (H ), and Bowen ratio (β) from (a) ERA-Interim (green) and ERA5-Land (yellow) and (b) ERA5 (green) and ERA5-Land (yellow).
Statistics are calculated with respect to in situ eddy-covariance measurements at both 3-hourly and daily (24 h) temporal resolutions. Violin
plots represent the distribution of the individual validation statistics with indication of the median and interquartile range, and are calculated
using a kernel density estimation approach. Statistics include the bias, standardized MAE, and anomaly correlation coefficient (RAN). The
scale used to show the bias distribution of β is that of the right y axis at the top row of each panel.

Table 5. Spatially and temporally averaged bias, RMSE, R,
and anomaly correlation coefficient (RAN) between ERA-Interim,
ERA5, and ERA5-Land estimates and the MODIS land surface tem-
perature average ensemble for the time period 2003–2018.

Bias (K) RMSE (K) R RAN

ERA-Interim – MODIS 3.65 5.87 0.91 0.49
ERA5 – MODIS 1.64 3.96 0.94 0.75
ERA5-Land – MODIS 1.36 3.78 0.94 0.75

ther via the user interface (https://cds.climate.copernicus.
eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview, last
access: 29 August 2021, Muñoz-Sabater, 2019a) or through
the CDS application program interface (API). The data are
updated with 2–3 months’ delay with respect to real time.
However, a close-to-real-time facility is planned to be imple-
mented in 2021. The atmospheric forcing used to drive the
land simulations is also available and already interpolated to
the ERA5-Land grid. Note that in the CDS, and for user con-
venience, the data have been interpolated to a regular lat–
long grid of 0.1◦ resolution.
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Figure 16. Standardized anomaly correlation (RAN) difference of
the surface latent heat flux between ERA5-Land and ERA5 with
respect to eddy-covariance data. Blue colours indicate that the
anomaly correlation of ERA5-Land with respect to eddy-covariance
measurements is higher than for ERA5, whereas red colours indi-
cate the opposite.

All ERA5-Land fields are made available at hourly tem-
poral resolution and post-processed as monthly means.
Monthly means are easier to handle and faster to retrieve,
which is especially well suited for climate studies and also
addresses an important requirement of reanalysis users. Two
types of monthly means are post-processed:

– monthly means of daily means (average over all the
hourly fields in a month):

〈x〉 =
1
Nd

1
Ns

Nd∑
d=1

24∑
s=1

M(x)d,s; (6)

– monthly means of synoptic means (averaged for a spe-
cific time of the day in a month):

〈xs〉 =
1
Nd

Nd∑
d=1

M(x)d,s, (7)

with 〈x〉 the estimate of the monthly average for the field x,
Nd the number of days in a month,Ns the number of forecast
steps in a day, M the forecast model, d the day, and s the
forecast step from 00:00 UTC in a 24 h cycle. Note that the
water and energy fluxes are accumulated from the beginning
of the forecast time at 00:00 UTC with a maximum of 24 h
accumulation period. For example, the monthly mean of sur-
face runoff at 12:00 UTC will provide the monthly averaged
runoff accumulated from 00:00 to 12:00 UTC. Therefore, for
water and energy fluxes, Eq. (6) becomes

– monthly means of daily means for water and energy
fluxes

〈x〉 =
1
Nd

Nd∑
d=1

M(x)d,s=24. (8)

Further technical details are also provided in the online
documentation (https://confluence.ecmwf.int/display/CKB/

ERA5-Land:+data+documentation, last access: 31 August
2021).

ERA-Interim surface data used in this study are freely
available through the ECMWF catalogue: https://apps.
ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ (Dee
et al., 2011).

ERA5 hourly data on single levels used in this
study are also freely available through the C3S CDS
(https://doi.org/10.24381/cds.adbb2d47, Hersbach et al.,
2018).

All soil moisture data used for validation are available
through the International Soil Moisture Network, https://
ismn.earth (last access: 29 August 2021, Dorigo et al.,
2011, 2021).

Access to the lake data used for evaluation in this paper is
provided as follows:

– The Alqueva reservoir hourly data were provided by the
Portuguese University of Évora, data are provided on
demand (personal communication with Miguel Potes,
Maksim Iakunin, and Rui Salgado).

– The 27 Finnish lakes’ daily data provided by
Finnish Environment Institute (SYKE) are open ac-
cess and available at http://rajapinnat.ymparisto.fi/api/
Hydrologiarajapinta/1.0/ (SYKE, 2017).

– Summer month (June, July, and August) aver-
aged values from the global inventory “Globally
distributed lake surface water temperatures col-
lected in situ and by satellites; 1985–2009” are
freely available at https://doi.org/10.6073/pasta/
379a6cebee50119df2575c469aba19c5 (Sharma et al.,
2014).

The ESM-SnowMIP dataset used for the
evaluation of the snow fields is available at
https://doi.org/10.1594/PANGAEA.897575 (Ménard and
Essery, 2019; see also Ménard et al., 2019). The snow
depth dataset from the GHCN-daily network is available at
https://www.ncdc.noaa.gov/ghcnd-data-access; the version
used is v3.24 (Menne et al., 2012b).

The majority (i.e. 75 %) of river discharge observation sta-
tions used in the evaluation are openly available from GRDC:
https://www.bafg.de/GRDC/EN/Home/homepage_node.
html (last access: 29 August 2021). The remaining stations
have been shared by GloFAS partners worldwide to improve
spatial coverage. The benchmark river discharge reanalysis
dataset, GloFAS-ERA5 (version 2.1), is openly available
from the CDS: https://cds.climate.copernicus.eu/cdsapp#!/
dataset/cems-glofas-historical?tab=overview (last access: 29
August 2021) with https://doi.org/10.24381/cds.a4fdd6b9
(Harrigan et al., 2019).

GLEAM data were accessed from https://www.gleam.eu/
(last access: 29 August 2021, Martens et al., 2017; Miralles
et al., 2011), and the FLUXNET2015 Tier2 dataset can be
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Figure 17. Standardized anomaly correlation difference (circles) and standardized mean absolute differences (squares) between ERA5-Land
and ERA5 latent heat flux (a), sensible heat flux (b), and Bowen ratio (c), grouped as a function of stations temperature and altitude. The size
of circles and squares is proportional to the number of eddy-covariance towers. Green values denote better matching of ERA5-Land with in
situ data.

Figure 18. Standardized anomaly correlation difference (circles) and standardized mean absolute differences (squares) between ERA5-Land
and GLEAM+ERA5-Land latent heat flux (a), sensible heat flux (b), and Bowen ratio (c), grouped as a function of stations’ temperature
and altitude. The size of circles and squares is proportional to the number of eddy-covariance towers. Green values denote better matching
of ERA5-Land with in situ data.

accessed from the FLUXNET data portal at https://fluxnet.
org/data/fluxnet2015-dataset (last access: 29 August 2021,
Pastorello et al., 2020). This work used eddy-covariance
data acquired and shared by the FLUXNET community,
including these networks: AmeriFlux, AfriFlux, AsiaFlux,
CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, Chi-
naFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA,
NECC, OzFlux-TERN, TCOS-Siberia, and USCCC. The
FLUXNET eddy-covariance data processing and harmoniza-
tion was carried out by the ICOS Ecosystem Thematic Cen-
ter, AmeriFlux Management Project, and Fluxdata project
of FLUXNET, with the support of CDIAC, and the OzFlux,
ChinaFlux, and AsiaFlux offices.

MODIS LST data from Aqua and Terra
(https://doi.org/10.5067/MODIS/MOD11C3.006, Wan et al.,
2015) platforms are available through the Land Processes
Distributed Active Archive Center (https://lpdaac.usgs.gov/,
last access: 27 August 2021).

FLUXNET-2015 data used for the evaluation of GPP,
NEE, and Reco are available from the Drought-2018 ecosys-
tem eddy-covariance flux product in FLUXNET-Archive for-
mat – release 2019-1 (version 1.0); ICOS Carbon Portal,
https://doi.org/10.18160/PZDK-EF78 (ICOS-ETC Drought
2018 Team, 2019).

6 Discussion and conclusions

This paper presents the new global ERA5-Land reanalysis.
When the historical part is completed, it will provide a de-
tailed record of the land surface evolution from 1950 to the
present through a series of key land surface variables rep-
resenting the water and energy cycles. The temporal resolu-
tion is hourly and the horizontal resolution is 9 km, making
it unique and suitable for a growing number of land surface
applications. The quality of ERA5-Land fields was evaluated
by direct comparison to a large number of in situ observa-
tions collected mainly for the period 2001–2018, as well as
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Figure 19. Global statistics of ERA5-Land (a, c, e) and ERA-Interim (b, d, f) LST (in K) for the time period 2003–2018. Panels (a) and (b)
are the global maps of mean LST, (c) and (d) are the correlation maps, and (e) and (f) are the RMSE maps, with respect to the MODIS LST
average ensemble. Note that the LST here refers to the skin temperature.

by comparison to additional model or satellite-based global
reference datasets. The evolution of the operational ERA se-
ries of reanalyses was also assessed by adding ERA-Interim
and ERA5 global reanalyses to the evaluation exercise. Key
components of the water and energy cycles were analysed.
Overall, the water cycle is improved in ERA5-Land com-
pared to ERA5 according to the different variables evalu-
ated, whereas the energy cycle variables show similar per-
formance; both ERA5 and ERA5-Land perform substantially
better than ERA-Interim. The main evaluation findings are as
follows:

a. Soil moisture: the box plots show a consistent improve-
ment of the statistical metric distributions of ERA5-
Land with respect to those of ERA5, in particular the
improvement is more marked for the root-zone soil
moisture. The root zone is characterized by a slow tem-
poral variation and thus a good initialization is crucial to
reach equilibrium on relatively short timescales. ERA5
root-zone soil moisture is penalized by initialization
from ERA-Interim, which leads to a multi-annual arti-
ficial trend of the time series over arid to semi-arid cli-
mates, where the standard deviation of soil moisture is

low. On the contrary, the shallow surface layer responds
quickly to short-term meteorological forcing variables,
and hence, for the top layer, ERA5-Land only improves
slightly on ERA5 estimates at the reference stations.
The main added value of high resolution at the top layer
is to account for the correct soil type that changes the
saturation level and the minimum level at which evap-
otranspiration no longer occurs. Consequently, ERA-
Interim, with coarser resolution, shows the lowest per-
formance of the three reanalyses datasets. Supporting
these findings, ERA5-Land participated in a soil mois-
ture intercomparison of 18 products against large num-
ber (826) of in situ stations and performed strongly
(Beck et al., 2021).

b. Snow: ERA5-Land snow mass and snow depth esti-
mates are improved on mid-altitude mountains, where
the higher resolution provides better orographic con-
tours and the temperature correction is also impor-
tant. However, ERA5 snow depth estimates match
measurements slightly better at the highest mountains
(> 3300 m). At these altitudes, uncertainties in both the
forcing and in the model parametrization are larger and
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Figure 20. Map of RMSE differences (1RMSE (K)) between ERA5 and ERA5-Land with respect to the MODIS LST average ensemble
for the time period 2003–2018. Red values denote lower RMSE of ERA5-Land with respect to the observational record. Time series of
ERA5, ERA5-Land, and MODIS time series at selected pixels: coast of Norway (61.6◦ N, 5.3◦ E), the Alps (47.4◦ N, 11.15◦ E), and Iceland
(64.5◦ N, 20.26◦W). The differences in RMSE (1RMSE) and R (1R) between ERA5 and ERA5-Land with respect to MODIS LST at each
location are reported.

can contribute to the growth of errors; processes like
snow transport and sublimation, which are not con-
sidered in the current snow scheme formulation, can
be important at these altitudes, as well as errors in
the amount of solid precipitation. It is also worth not-
ing that for high-altitude stations, the spread of er-
rors is larger in ERA5 compared to ERA5-Land, which
could lead to error compensation. The results per con-
tinent show the best performance of ERA5-Land snow
fields in the US, especially in complex orographic ar-
eas, where spatial resolution is foremost. It implies a
more accurate near-surface air temperature, especially
over mountains, which leads to a better representation
of the sensible heat flux and therefore better estimates
of the snow depth. Also, there is a limited number of
snow depth in situ observations assimilated in ERA5
over the US (de Rosnay et al., 2015), and therefore
the assimilation system hardly compensates for system-
atic model/snowfall biases. Contrarily, ERA5 performs
better over Scandinavian countries. In general, snow-
fall in the IFS suffers from a systematic positive bias
(snow overestimation) in Europe. Although data assim-
ilation is intended to correct for random errors, snow
depth reports assimilated in ERA5 alleviate the system-

atic snow excess where these reports are assimilated.
The improvement of the snow scheme over the previ-
ous decade is also reflected in the overall better scores
of ERA5 compared to ERA-Interim.

c. Lakes: LSWT is slightly improved in ERA5-Land at
hourly and daily averaged steps with respect to in situ
data at sites in Portugal and Finland. Note however that
at punctual times of the warm period in Alqueva, sud-
den jumps of the ERA5-Land mixed-layer depth lead to
unrealistic LSWT. For instance, on 3 August 2018, from
08:00 to 09:00 LT, the mixed-layer depth jumped 5.3 m,
leading to a 17.6 ◦C increase and increasing the Alqueva
reservoir LSWT to 40.7 ◦C. Jumps are caused by a sim-
plistic parametrization of the summer stratification in
the lake scheme, as temperature is computed differently
in calm and turbulent conditions. Ways to limit these
jumps and to enable a smoother and more realistic tran-
sition are currently being investigated at ECMWF. The
lake parametrization scheme relies heavily on accurate
lake depth input data, and therefore poor data impact
its ability to accurately simulate lake parameters such
as LSWT. The higher resolution of ERA5-Land allows,
in many cases, a more accurate specification of lake
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depth. Thus, isolating lakes whose depth is more real-
istic using the ERA5-Land grid (i.e. only lakes whose
depth in the ERA5-Land grid matches better in situ ob-
servations), the LSWT MAE is reduced by more than
20 %. The positive influence of a higher-resolution at-
mospheric forcing was also verified by isolating lakes
whose depth remained unchanged either using ERA5 or
ERA5-Land.

Both reanalysis LSWT estimates were also compared
using as reference a global inventory (1995–2009)
based on summer observations from satellite sensors. In
this case, the performance of both reanalyses is quite
similar (excluding exceptional lakes where FLake per-
forms poorly). The uncertainty of lake depths in the
global inventory is larger and it could have an impact on
these results. However, even when comparing only lakes
with a depth less than 50 m (FLake was designed for
medium-depth lakes), the performance of ERA5-Land
LSWT does not show significant improvement com-
pared to ERA5 (based on MAE). This might be due to
the averaging technique used for the in situ measure-
ments, which uses satellite measurements representing
one instant in time rather than continuous hourly data.
Nevertheless, in summer months, ERA5 LSWT biases
are on average 2.2 ◦C cooler than observations, whereas
ERA5-Land LSWT is just 1.3 ◦C cooler.

d. River discharge: river discharge integrates the various
components of the water cycle. With improved soil
moisture, snow, and lake characterization in ERA5-
Land, all these being physical inputs of river discharge
generation, it is not surprising that the GloFAS river dis-
charge obtained overall better scores when used with in-
put data from ERA5-Land (GloFAS-ERA5-Land). This
improvement in the skill is likely due to a number fac-
tors, such as higher horizontal resolution (from which
smaller catchments benefit), improved representation of
root-zone soil moisture and temperature (which con-
tributes to increase the correlation and reduce biases
with river discharge observations), and snow processes
(which should be an advantage in northern latitude
catchments). Also, the fact that ERA5-Land does not
directly assimilate any observation, as is the case for
ERA5, has shown to have positive impacts on the clo-
sure of the water balance (Zsoter et al., 2019). They
have shown that the snow data assimilation is detrimen-
tal to the hydrology in large parts of the snow-impacted
Northern Hemisphere in the ERA5 experiment, com-
pared with the offline simulation without coupling and
land data assimilation (such as ERA5-Land). The aver-
age snow increments in ERA5 are negative, due mainly
to the too-slow snowmelt in CHTESSEL, which con-
sequently removes water from the hydrological system.
This contributes to decreasing the dominantly negative
biases in a large area with subsequently deteriorating

the hydrological performance. The exceptions are in the
western US and Amazonian basins. For the former, a
later and larger snowmelt due to an excess of accumu-
lated snow over high peaks could lead to a decrease in
correlation and increased biases with respect to in situ
observations. The degradation in the Amazonian basin
is small, linked to an underestimation of the surface and
subsurface runoff (not shown), which in turn is likely
caused by a slight overestimation of evaporation.

e. Energy fluxes: ERA5-Land shows modest improve-
ments in λρE and the Bowen ratio compared to ERA5
estimates, although the H is slightly better in ERA5,
with the largest disagreements mainly found at high al-
titudes, where values are more extreme and errors are
accumulated. The high resolution of ERA5-Land seems
to be the reason for providing better fluxes at stations
near the coasts or lakes. Under water stress conditions
(e.g. the central US, California, and Australia) the λρE
in ERA5-Land appears to be more accurate than the
ERA5 counterpart. In Europe, the results are mixed.
Nonetheless, the fluxes in the Alpine region are better in
ERA5. This result coincides with a lower performance
of ERA5-Land (compared to ERA5) in terms of snow
and river discharge estimates in this area when com-
pared to in situ measurements. A possible cause may be
the overestimation of snow depth in high-altitude peaks
in ERA5-Land (which does not benefit from the partial
removal of snow by data assimilation), which in turn
may lead to a late snowmelt and vegetation exposure
to the atmosphere which would influence transpiration.
Both ERA5 and ERA5-Land outperform GLEAM esti-
mations of turbulent fluxes. The advantage of GLEAM
over reanalysis lies in its simplicity and its ability to run
on remote sensing forcing. However, through the use of
common reanalysis forcing, the higher realism of the
more complex model in ERA5-Land (CHTESSEL) is
evident. The latter includes multiple processes that ap-
pear relevant for the surface energy partitioning and are
not explicitly represented in simpler models designed
for the remote sensing of evaporation, such as GLEAM.
Altogether, this paper did not provide clear evidence of
an overall superior performance of ERA5-Land surface
energy fluxes over ERA5. While these results are in-
conclusive, one should bear in mind that they are only
evaluated over 65 eddy-covariance sites. To better un-
derstand the possible added value of ERA5-Land turbu-
lent fluxes, a more detailed evaluation based on towers
located in contrasted climatic conditions and including
other global reference datasets is recommended.

f. Skin temperature: the skin temperature (in this paper re-
ferred to as LST), as a variable reacting quickly to any
change in surface fluxes, shows modest improvements
in ERA5-Land compared to ERA5. However, as it has
been the case for all variables evaluated in this paper,
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ERA5 and ERA5-Land LST are improved when com-
pared to ERA-Interim. ERA5-Land obtains the lowest
global averaged RMSE with respect to MODIS data,
which is partly due to the contribution of the coastal
points that better simulate the amplitude of the annual
cycle of LST, and is a consequence of the higher spatial
resolution of ERA5-Land. Other small disagreements
between ERA5 and ERA5-Land are found over com-
plex terrains, but they do not seem to favour any partic-
ular reanalysis.

With the above results, one can conclude that the horizon-
tal resolution matters and is a very important aspect in the
accurate simulation of the spatial and temporal evolution of
the hydrological cycle. However, this paper could only pro-
vide evidence of a modest improvement of the surface fluxes
of ERA5-Land compared to ERA5. The latter conclusion
is based on an evaluation with respect to a small number
of available samples. Other important aspects of the added
value of ERA5-Land are the production speed (that allows
cutting-edge land surface modelling advances to be incor-
porated more rapidly) and the consistency presented over
multi-decadal timescales (that could set the basis to enable
reliable trend analyses), all of them making ERA5-Land a
state-of-the-art dataset for multiple land applications. The re-
duced impact of discontinuities by using longer spin-up pe-
riods could also be a crucial factor to obtain accurate trends
over multi-decadal periods for variables slowly changing in
time, for instance, the root-zone soil moisture (see bottom
panel of Fig. 3). Finally, it is important to emphasize that
an exhaustive evaluation of all land variables simulated in
ERA5-Land is not feasible in a single paper. While this pa-
per provides significant validation elements to demonstrate
the added value of ERA5-Land, the wider scientific com-
munity is invited to carry out more detailed evaluations of
individual components. For example, a more extensive vali-
dation of soil moisture following internationally agreed best
practice (Gruber et al., 2020) is highlighted as an area for
further research. While, in wider terms, we recommend the
use of ERA5-Land fields over ERA5 for all types of land ap-
plications, one should factor in their choice elements such as
available computer and data handling resources, importance
of spatial resolution versus data volume, area of application,
temporal consistency, etc. With the public release of ERA5-
Land, research and development have already shown some
caveats of the dataset, such as the treatment of soil temper-
ature in permafrost regions (Cao et al., 2020). Further stud-
ies comparing with alternative well-referenced sites, as well
as with regional and global datasets is encouraged. For in-
stance, Pelosi et al. (2020) compared UERRA regional re-
analysis (Copernicus Climate Change Service, 2020) forced
by ERA-Interim and ERA5-Land to assess the performance
of evapotranspiration estimates based on weather data in the
south of Italy.

7 Perspectives

The ERA5-Land dataset presented in this paper is the first
operational land reanalysis of the ERA series. This paper has
demonstrated its added value by comparing ERA5-Land es-
timates to a wide range of in situ observations, ERA-Interim,
and ERA5 reanalyses. Despite the overall observed improve-
ment of the land states in ERA5-Land, there is scope for im-
provement for several components, which will be the focus
for the construction of future enhanced versions. They are
discussed below.

In the context of C3S, all operational products require an
estimate of the associated uncertainty. Currently, estimates of
uncertainty of ERA5-Land variables are those correspond-
ing to the ERA5 counterpart. ERA5 uncertainties are ob-
tained by running a 10-member EDA, which also provides
the background-error estimates for the deterministic HRES
4D-Var data assimilation system (Hersbach et al., 2020). The
first tests conducted at ECMWF running an ensemble of of-
fline simulations with an ensemble of initial conditions and
atmospheric forcing provided by the 10-member EDA of
ERA5 indicate that the spread of the land surface variables
is unrealistically low (not shown). The likely reason is that in
the production of the ERA5 ensemble the physics of the sur-
face model is not perturbed; i.e. the surface model is assumed
to be perfect. To obtain realistic uncertainties, not only input
and forcing parameters to the land surface model should be
perturbed but also key variables and parameters of the surface
scheme (e.g. MacLeod et al., 2016; Orth et al., 2016), adding
the contribution of land surface model error to the ensemble
spread. Future studies are envisaged to investigate this path
to provide meaningful uncertainties to land reanalysis.

One of the most important driving variables of ERA5-
Land is precipitation. Systematic model-based precipitation
biases can potentially spread into the land state estimates.
ERA5 precipitation (used as input forcing of ERA5-Land)
benefits from a much improved data assimilation system as-
similating millions of extra observations compared to its pre-
decessor ERA-Interim. Indirectly, ERA5-Land benefits from
these extra observations as well. However, ERA5 still has
large precipitation biases, especially in tropical regions. A re-
cent bias-adjusted dataset based on ERA5 has been produced
for impact studies with a 0.5◦ resolution (WFDE5, Cucchi
et al., 2020). That study demonstrated the added value of
the bias corrections on large-scale hydrological modelling.
Future versions of ERA5-Land could consider similar ap-
proaches, taking into account such bias-corrected coarser-
resolution forcing datasets as well as their availability in
near-real time. In addition to coarse-scale near-real-time bias
correction, high-resolution downscaling could be also ex-
plored. Such a correction could be based on a climatological
rescaling of precipitation based on a high-resolution refer-
ence climatology (e.g. Karger et al., 2017).

The land surface model used in ERA5-Land, CHTESSEL,
also has the option to estimate carbon fluxes and its coupling
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with plants transpiration through the A-gs formulation (Ja-
cobs et al., 1996; Calvet et al., 1998; Boussetta et al., 2013a).
This module is operationally active for the vegetation, and it
allows estimates for the carbon fluxes in a modular approach
with evaporation being computed through a resistance ap-
proach (Jarvis et al., 1976). This choice is adopted since its
integration in the operational numerical weather prediction
still requires further developments (Boussetta et al., 2013a).
Although carbon fluxes are an actual output of ERA5-Land,
they are not made available because of persistent biases.
Agustí-Panareda et al. (2016) implemented a biogenic flux
adjustment scheme (BFAS), which uses the Copernicus At-
mosphere Monitoring Service (CAMS) inversion by Cheval-
lier et al. (2010) to correct for the biases in the 10 d budget of
the modelled carbon fluxes at continental scales. This is cur-
rently being extended for usage in the FLUXCOM product
(Jung et al., 2020) in order to bias correct the two compo-
nents of the biogenic fluxes (gross primary production and
ecosystem respiration) separately. Figure 21 shows carbon
fluxes from the ERA5-Land simulation with and without the
BFAS bias correction compared to observations from the
ICOS-ETC network (ICOS-ETC Drought 2018 Team, 2019).
The impact of the bias correction is largest during boreal
summer when the vegetation is most active and the soil respi-
ration is also largest. A future version of land reanalysis may
include the bias-corrected carbon fluxes which will also ben-
efit from the ongoing and future land surface model develop-
ments associated with the representation of the vegetation.

Another important research path with large potential is the
revision and use of dynamic auxiliary data. Currently, ERA5-
Land assumes a fixed land cover, whereas leaf area index
(LAI) and albedo are based on a static monthly climatology.
The former assumes that land cover remains unaltered for the
complete reanalysis period and that cities are non existent,
whereas the latter will not be able to accurately represent
more frequent LAI anomalies. Based on the research con-
ducted in the ESA-CCI programme, C3S provides (through
the CDS) climate data records of land cover at yearly fre-
quency, as well as a close-to-real-time global map of LAI
with 10 to 20 d latency. Moreover, recent studies have iden-
tified errors in the diurnal cycle of land surface temperature
over the Iberian Peninsula associated with the current land
cover used in CHTESSEL and 1 h model time steps (Jo-
hannsen et al., 2019; Nogueira et al., 2020). Therefore, the
revision of the land cover and LAI to a new database as well
as the introduction of their interannual variability is expected
to provide more realistic land conditions as input to the sur-
face scheme. There are also ongoing efforts to revise the ver-
tical discretization of the vegetation roots and soil layers dis-
tribution (e.g. Mueller-Quintino et al., 2016; Stevens et al.,
2020), which could complement the land cover and vegeta-
tion updates.

Finally, the coupling of the offline simulations to an of-
fline data assimilation system is a promising approach. The
advantages are multiple, in particular the assimilation of lo-

Figure 21. Mean seasonal cycle of weekly CO2 biogenic fluxes
µmol [m−2 s−1] from ERA5-Land (in cyan), bias-corrected ERA5-
Land (in blue), and the CAMS atmospheric in situ inversion product
(v18r3, https://atmosphere.copernicus.eu/data, last access: 27 Au-
gust 2021, Chevallier et al., 2010) minus fossil fuel emissions (in or-
ange) for 2015 at 25 ICOS-ETC sites over Europe (in black) (ICOS-
ETC Drought 2018 Team, 2019). The shading shows the standard
deviation of each dataset across the 25 sites. (a) NEE; (b) GPP;
(c) ecosystem respiration (Reco).
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cal datasets (precipitation radar observations, local soil mois-
ture networks, etc.), permitting small adjustments of land
state estimates. Undoubtedly, this will go accompanied by an
increase in computational cost. Ongoing efforts to improve
the parallelization of the land model will allow global high-
resolution simulations for several decades to be performed at
affordable computational costs.

All the components discussed above are currently under
research, but they are not the only ones. ECMWF is currently
working with a flexible, modular system called ECLand
(Boussetta et al., 2021) which allows us to separately de-
velop several modelling aspects of the land surface, such as
the increase in the number of soil layers or the introduction
of a multi-layer snow scheme, as well as make progress on
other longer-term perspectives such as the introduction of a
groundwater storage or the reduction of the model time step.
All the above ongoing developments will provide the basis
for a future new version with improved accuracy for the land
states at multi-decadal timescales.
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Appendix A: List of ERA5-Land input and output
fields

Table A1. List of climatological (invariant) fields used as input in the production of ERA5-Land.

Field Data Reference

Land–sea mask Global Land Cover service (GLOBCOVER 2006) Arino et al. (2007)
Orography Shuttle Radar Topography Mission (SRTM 30) Farr et al. (2007)
Land cover/land use Global Land Cover Characteristics (GLCCv1.2) Loveland et al. (2000)
Leaf area index Moderate Resolution Imaging Spectroradiometer (MODIS Collection 5) Myneni et al. (1992)
Albedo Moderate Resolution Imaging Spectroradiometer (MODIS) Schaaf et al. (2002)
Soil type Digital Soil Map of the World (DSMW) FAO (2003)
Lake depth Global Lake Database (GLDB) Kourzeneva (2010), Balsamo et al. (2012)

Table A2. Portfolio of ERA5-Land data fields available through the Copernicus CDS. The left column shows the atmospheric forcing fields
from ERA5 that have been interpolated to the ERA5-Land spatial resolution. The right column shows all fields generated by ERA5-Land. A
short description of each field is available in the CDS (Muñoz-Sabater, 2019a, b).

Atmospheric forcing fields Units ERA5-Land generated fields Units

10 m u component of wind m s−1 2 m dew-point temperature K

10 m v component of wind m s−1 2 m temperature K

Surface pressure Pa Evaporation from bare soil m of water equivalent
Surface solar radiation downwards J m−2 Evaporation from open water surfaces excluding oceans m of water equivalent
Surface thermal radiation downwards J m−2 Evaporation from the top of canopy m of water equivalent
Total precipitation m Evaporation from vegetation transpiration m of water equivalent
Surface net solar radiation J m−2 Forecast albedo dimensionless
Surface net thermal radiation J m−2 Lake bottom temperature K

Lake ice depth K
Lake ice temperature K
Lake mixed-layer depth m
Lake mixed-layer temperature K
Lake shape factor dimensionless
Lake total layer temperature K
Potential evaporation m
Runoff m
Skin reservoir content m of water equivalent
Skin temperature K
Snow albedo dimensionless
Snow cover %
Snow density kg m3

Snow depth m
Snow depth water equivalent m of water equivalent
Snow evaporation m of water equivalent
Snowfall m of water equivalent
Snowmelt m of water equivalent
Soil temperature level 1 K
Soil temperature level 2 K
Soil temperature level 3 K
Soil temperature level 4 K
Subsurface runoff m
Surface latent heat flux J m−2

Surface runoff m
Surface sensible heat flux J m−2

Temperature of snow layer K
Total evaporation m of water equivalent
Volumetric soil water layer 1 m3 m−3

Volumetric soil water layer 2 m3 m−3

Volumetric soil water layer 3 m3 m−3

Volumetric soil water layer 4 m3 m−3
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