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Figure S1. Procedures of root biomass mapping at the 1-km resolution. Root biomass mapping is 

performed in 3 major steps. Step 1: compile field measurements and prepare global gridded 

predictors; Step 2: train the model with data from Step 1 and select the model with best 

performance; and Step 3, map root biomass with selected model from Step 2 and gridded 

predictors from Step 1. We split the data into 3 size categories and selected among 47 predictors 

through 4 modeling methods (the allometric equation, the random forest, the artificial neural 

networks and multiple adaptive regression splines). The final root biomass map with a unit of 

weight per area is created through combining the prediction results (in unit of weight per 

individual tree) with the tree density (number of trees per area).   
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Figure S2. Geographical distribution of observation sites (blue circles) and biome classes from 

The Nature Conservancy1. Numbers after Biome from the legend are ordered incrementally by 

decreasing forest area of each biome (Table S3). Biome 1: tropical moist forests; Biome 2:boreal 

and taiga forests; Biome 3: tropical and subtropical grasslands, savannas and shrublands; Biome 

4: temperate broadleaf and mixed forests; Biome 5: temperate coniferous forests; Biome 6: 

tropical dry forests; Biome 7: tundra;  Biome 8: temperate grasslands, savannas and shrublands; 

Biome 9: montane grasslands and shrublands; Biome 10: Mediterranean forests, woodlands and 

scrubs; Biome 11: tropical and subtropical coniferous forests; Biome 12: deserts and xeric 

shrubland; Biome 13:  flooded grasslands, savannas; and Biome 14:  mangroves.  

   

 

 



3 
 

 

Figure S3. Spatial distribution of (a) root biomass and (b) mapping uncertainty (standard 

deviation) at 1 km spatial resolution, and (c) the scatter plot of root biomass vs. mapping 

uncertainty.   
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Figure S4. Standard deviations in root biomass mapping due to (a) random forest prediction (a) 

and (b) unit converting.    
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Figure S5. Cumulative distributions of predictors. Each panel corresponds to one predictor used 

in quantifying the contribution of random forest prediction uncertainty in root biomass mapping 

(Figure S4a). Different colors indicate different sources for each predictor. Detailed information 

of data sources is provided in Tables S1, S2.        
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Figure S6. Distributions of the predictors in the training dataset (blue) and in the global dataset 

(orange) used to derive the global map. Red dotted lines indicate breakpoints where we separated 

the datasets for random forest model training and prediction.  
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Figure S7. Heat plots of predicted root biomass vs. observation at the biome level. Biome 

classification is from The Nature Conservancy1 and is shown in Figure S2. The red line is the 1:1 

line. Predictions at each biome class were generated by random forest models. Random forest 

models were trained and assessed by samples in the corresponding biome classes through 4-fold 

cross-validation. 
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Figure S8. Heat plots of predicted root biomass vs. observation at different tree sizes. Predictions 

at each tree size class were generated by random forest models. Random forest models were 

trained and assessed by samples in the corresponding tree size classes through 4-fold cross-

validation. Values are plotted at the log-scale (base 10). The red line is the 1:1 line. 

 

 
Figure S9. Heat plots of predicted root biomass vs. observation at the continental level. 

Predictions at each continent are generated by random forest models. Random forest models 

were trained by samples excluding observations of the corresponding continent. The red line is 

the 1:1 line.  
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Figure S10. Semivariogram of the random forest prediction errors.  
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Figure S11. Partial dependence plots showing the dependence of root biomass on predictors for 

woody plant with shoot biomass > 10 kg. 10 kg is one threshold on which we split our datasets 

for the best model performance (see Methods). Note the y-axis of the last panel (shoot biomass) 

is different from other predictors.    
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Figure S12. Partial dependence plot showing the dependence of root biomass on predictors for 

woody plant with shoot biomass between [0.1 10] kg. 0.1 and 10 kg are thresholds on which we 

split our datasets for the best model performance (see Methods). Note the y-axis of the last panel 

(shoot biomass) is different from other predictors.    
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Figure S13. Partial dependence plot showing the dependence of root biomass on predictors for 

woody plant with shoot biomass smaller than 0.1 kg. 0.1 kg is one threshold on which we split 

our datasets for the best model performance (see Methods).  Note the y-axis of the last panel 

(shoot biomass) is different from other predictors.    
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Table S1. The source, unit, category, resolution, time coverage and reference of gridded global 

datasets used in building training model and predicting root biomass. BIO2-11 and BIO13-19 

corresponds to Bioclimatic variables from WorldClim version 2. All datasets were accessed in 

February 2019.      
Name  Source  Unit Type Res Time  Reference 

Age  Mixed  year Biological 1km Current See Methods for details 
Maximum 
Rooting 
Depth 

GSDE m Biological 1km Current http://globalchange.bnu.edu.cn/research/s
oilw 

Biome The nature 
conservancy 

 Biological 1km Current http://maps.tnc.org/gis_data.html 

Height Simard m Biological 1km Current https://webmap.ornl.gov/wcsdown/dataset
.jsp?ds_id=10023 

Aboveground 
biomass 
density  

GlobBiomas
s 

Mg/ha Biological 1km Current http://globbiomass.org/wp-
content/uploads/GB_Maps/Globbiomass_
global_dataset.html 

Tree density Crowther per ha Biological 1km Current https://elischolar.library.yale.edu/yale_fes
_data/1/ 

Rooting 
depth 

Fan m Biological  Current https://wci.earth2observe.eu/thredds/catal
og/usc/root-depth/catalog.html 

Bulk Density GSDE g/cm3 Soil 1km Current  http://globalchange.bnu.edu.cn/research/s
oilw 

Soil Organic 
Matter 

GSDE % of 
weight  

Edaphic 1km Current http://globalchange.bnu.edu.cn/research/s
oilw 

Soil pH GSDE  Edaphic 1km Current http://globalchange.bnu.edu.cn/research/s
oilw 

Soil Sand GSDE % of 
weight 

Edaphic 1km Current http://globalchange.bnu.edu.cn/research/s
oilw 

Soil Clay GSDE % of 
weight 

Edaphic 1km Current http://globalchange.bnu.edu.cn/research/s
oilw 

Total 
Nitrogen 

GSDE % of 
weight 

Edaphic 1km Current http://globalchange.bnu.edu.cn/research/s
oilw 

Total 
Phosphorus  

GSDE % of 
weight 

Edaphic 1km Current http://globalchange.bnu.edu.cn/research/s
oilw 

Bray 
Phosphorus 

GSDE ppm Edaphic 1km Current http://globalchange.bnu.edu.cn/research/s
oilw 

Total 
Potassium 

GSDE % of 
weight 

Edaphic 1km Current http://globalchange.bnu.edu.cn/research/s
oilw 

Exchangeabl
e Aluminum 

GSDE cmol/kg Edaphic 1km Current http://globalchange.bnu.edu.cn/research/s
oilw 

Cation 
Exchange 
Capacity 

GSDE cmol/kg Edaphic 1km Current http://globalchange.bnu.edu.cn/research/s
oilw 

Base 
Saturation 

GSDE % Edaphic 1km Current http://globalchange.bnu.edu.cn/research/s
oilw 

Soil Moisture  ESA CCI m3/m3 Edaphic 0.25°  Average 
1982-
2005 

https://www.esa-soilmoisture-cci.org/ 
 

Water Table 
Depth 

Fan2013 m Edaphic 1km Current https://glowasis.deltares.nl/thredds/catalo
g/opendap/opendap/Equilibrium_Water_
Table/catalog.html 

Mean Annual 
Precipitation 

WorldClim 
V2.0 

mm Climatic 1km Average 
1970-
2000 

http://www.worldclim.org 

Mean Annual 
Temperature  

WorldClim 
V2.0 

°C Climatic 1km Average 
1970-
2000 

http://www.worldclim.org 

Aridity GA-ET  Climatic 1km Average 
1970-
2000 

https://figshare.com/articles/Global_Aridi
ty 
_Index_and_Potential_Evapotranspiration 
_ET0_Climate_Database_v2/7504448/3 

Potential 
Evapotranspi
ration 

GA-ET mm Climatic 1km Average 
1970-
2000 

https://figshare.com/articles/Global_Aridi
ty 
_Index_and_Potential_Evapotranspiration 
_ET0_Climate_Database_v2/7504448/3 

Solar 
Radiation  

WorldClim 
V2.0 

kJ/m2 
/day 

Climatic 1km Average 
1970-
2000 

http://www.worldclim.org 

Vapor WorldClim kPa Climatic 1km Average http://www.worldclim.org 

http://globalchange/
http://maps/
https://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10023
https://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10023
http://globbiomass.org/wp-content/uploads/GB_Maps/Globbiomass_global_dataset.html
http://globbiomass.org/wp-content/uploads/GB_Maps/Globbiomass_global_dataset.html
http://globbiomass.org/wp-content/uploads/GB_Maps/Globbiomass_global_dataset.html
http://globalchange/
http://globalchange/
http://globalchange/
http://globalchange/
http://globalchange/
http://globalchange/
http://globalchange/
http://globalchange/
http://globalchange/
http://globalchange/
http://globalchange/
http://globalchange/
https://www.esa-soilmoisture-cci.org/
https://figshare.com/articles/Global_Aridity
https://figshare.com/articles/Global_Aridity
https://figshare.com/articles/Global_Aridity
https://figshare.com/articles/Global_Aridity
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Pressure  V2.0 1970-
2000 

Cumulative 
Water Deficit 

WorldClim 
V2.0 

mm Climatic 1km Average 
1970-
2000 

PET - MAP 

Wind Speed WorldClim 
V2.0 

m/s Climatic 1km Average 
1970-
2000 

http://www.worldclim.org 

BIO2-11 WorldClim 
V2.0 

 Climatic 1km Average 
1970-
2000 

http://www.worldclim.org 

BIO13-19 WorldClim 
V2.0 

 Climatic 1km Average 
1970-
2000 

http://www.worldclim.org 

Elevation  SRTM30_P
LUS v8 

m Topograph
ical 

1km Average 
1970-
2000 

https://eatlas.org.au/data/uuid/80301676-
97fb-4bdf-b06c-e961e5c0cb0b 

 

 

Table S2. Alterative global datasets for quantifying root biomass prediction uncertainty. All 

datasets were accessed in June 2019.      

Name Variables Res Time Reference 

AGB_Hu Shoot biomass 1km Current Hu, et al. 2 
AGB_Liu Shoot biomass 0.25° 1993-2012 Liu, et al. 3 

AGB_GeoC Shoot biomass 0.01 Current GEOCARBON, https://www.bgc-
jena.mpg.de/geodb/projects/Home.php 

SoilGrid CEC, Bulk density, Clay 
content, Sand content ,CEC, 

1km Current Hengl, et al. 4 

WISE30 Total nitrogen, pH, Bulk 
density, clay, sand, Base 
saturation, CEC, 

1km Current Batjes 5 

CHELSA MAT 1km Same as WorldClim http://chelsa-climate.org/ 
TerraClimate Aridity, MAP, Vapor pressure 4 km Same as WorldClim http://www.climatologylab.org/terracli

mate.html 
CRU_TS4.03 Vapor pressure, MAP, MAT, 

aridity 
0.5° Same as WorldClim https://crudata.uea.ac.uk/cru/data/hrg/ 

 

Table S3. Land area, land area occupied by woody plants (forest area), shoot biomass, root 

biomass and weighted R:S ratio (total shoot biomass/total root biomass) at the biome and global 

scales. The biome classification is from The Nature Conservancy1. Forest area covers land with 

canopy cover > 15%6.  Numbers after ± are 95% confidence intervals (see Methods).      
Biome 

number 

Name Land area 

(106 km2) 

Forest area 

(106 km2) 

Shoot biomass 

(Pg) 

Root biomass 

(Pg) 

Weighted R:S 

Ratio 

1 Tropical moist 19.8 15.6 295 71.7±23 0.24±0.08 

2 Boreal 16 11.2 77.5 19.5±6.5 0.25±0.08 

3 Tropical savanna 19.5 6.7 52 13.7±3 0.26±0.06 

4 Temperate broadleaf 12.9 5.8 66 16.6±4.6 0.25±0.07 

5 Temperate coniferous 4.4 2.5 32.2 8.2±2.1 0.25±0.07 

6 Tropical dry 3.8 1.4 13.7 3.8±4.2 0.28±0.31 

7 Tundra 8.0 0.9 3.9 1.1±0.7 0.28±0.18 

8 Temperate savanna 9.6 0.7 4.7 1.4±0.7 0.30±0.15 

9 Montane 5.2 0.5 4.3 1.3±1.1 0.30±0.26 

10 Mediterranean 3.3 0.5 4.8 1.5±0.7 0.31±0.15 

11 Tropical coniferous 0.6 0.4 3.3 0.9±0.4 0.27±0.12 
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12 Desert 27.9 0.4 2.9 0.9±0.6 0.31±0.21 

13 Flooded savanna 1.1 0.3 2 0.5±0.4 0.25±0.18 

14 Mangroves 0.3 0.2 2.1 0.4±0.2 0.19±0.10 

 Globe 132.4 47.3 566.2 141.6±25.1 0.25±0.04 

        

 

Table S4. Mean and median R:S from observations and predicted in this study. The mean R:S is 

the arithmetic average of individual R:S across site level observations (Obs) or gridcells 

(Gridded). The median is the 50th percentile across observations (Obs) or gridcells (Girdded). 

Note the mean and median R:S are different from the weighted R:S from the last column of 

Table S3 which shows the ratio between total root biomass and shoot biomass. The weighted R:S 

is weighted by biomass while the mean and median are not weighted by biomass.    

 
Biome  

number 

Name Mean 

(Obs) 

Median 

(Obs) 

Mean 

(Gridded) 

Median 

(Gridded) 

1 Tropical moist 0.37 0.32 0.26 0.24 

2 Boreal 0.45 0.32 0.27 0.26 

3 Tropical savanna  0.44 0.36 0.29 0.27 

4 Temperate broadleaf 0.58 0.38 0.28 0.26 

5 Temperate coniferous 0.29 0.25 0.29 0.26 

6 Tropical dry   0.33 0.30 

7 Tundra   0.34 0.29 

8 Temperate savanna  0.74 0.45 0.36 0.33 

9 Montane 0.42 0.42 0.41 0.35 

10 Mediterranean  0.43 0.35 0.39 0.35 

11 Tropical coniferous 0.67 0.55 0.35 0.31 

12 Desert   0.40 0.35 

13 Flooded savanna   0.33 0.32 

14 Mangroves 0.47 0.40 0.26 0.25 

 Globe 0.50 0.36 0.29 0.26 

 

    

Comparison with published results  

There are few studies quantifying large scale vegetation root biomass. We searched 

through the literature and compared our study with earlier studies7-10. We grouped here forests 

into mega-biomes of tropical, temperate and boreal systems to enable a comparison between 

different studies that used different forest biome definitions and areas (see Table S5). The three 

mega-biomes together hold  ~68% of the global total root biomass7 (forest and non-forest 

together), and are also commonly reported and therefore convenient to compare across studies. It 

is unclear whether forest in tropical/subtropical grasslands, savannas and shrublands (Biome 3, 
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Figure S2) should be treated as a tropical forest across studies. Similarly, it is unclear whether 

forest in temperate grasslands/savannas and shrublands (Biome 8) should be treated as a 

temperate forest, and forest in tundra (Biome 7) as a boreal forest. We therefore conducted two 

series of comparisons with and without the above-mentioned ambiguous forest classes. In series 

1 (S1), Biomes 1, 6, 11 and 3 (Biome distribution is displayed in Figure S2) are aggregated to 

represent tropical systems; Biomes 3, 5, 8 are grouped into temperate forest; and Biomes 6 and 7 

are grouped into boreal forest. In series 2 (S2), we grouped Biomes 1,2,3 into tropical forest, 

Biomes 4 and 5 into temperate forest and Biomes 6 as boreal forest. Together, root biomass from 

tropical, temperate and boreal forests is 44-183% higher in earlier studies than in S1 and 65-

226% higher than in S2 (Table S5).      

This over-estimation from earlier studies is largely explained by an over-estimation of 

shoot biomass by earlier studies. To demonstrate this, we compiled additional studies (Table S6) 

that reported shoot biomass at the global, tropical, temperate and boreal forests.  

The global forest root biomass ranges between 154 – 210 Pg if root biomass was 

upscaled through different allometric equations collected from literature (Table S7). A prediction 

of root biomass after fitting our site-level data with an allometric equation (fitted equation: 𝑅 =

0.289𝑆0.974,  𝑅2 = 0.79, Table S7) yielded a global forest root biomass of 155 Pg (tree-level-

upscaling) or 172 Pg (stand-level-upscaling), which is larger than 147 Pg from the RF up-scaling 

model. For stand-level-upscaling, we followed the practice in literature11,12  and assumed an 

allometric equation is equally applicable to stand level data (weight per area) despite being 

derived from individual-level data. Root biomass density (weight per area) was directly 

estimated from GlobBiomass-AGB13 shoot biomass density through the allometric equations. In 

tree-level upscaling, similarly to the RF upscaling procedure, GlobBiomass-AGB13 shoot 

biomass density was firstly downscaled to individual tree level through tree density14. Allometric 

equations were applied to estimate tree level root biomass (weight per plant), which is then 

transferred into per area level through the same tree density. Whether it is upscaled from the 

individual-tree-level or the stand-level is unlikely to explain the overestimation as there is no 

systematic difference between these two approaches (Table S7). 

     

Table S5. Comparison between studies quantifying root biomass in tropical, temperate and 

boreal forests. This table expands upon Table 1 in the main text with shoot biomass, land area, 

biomass density and R:S. 
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 This studyS1 This studyS2 Jackson19977 Saugier200115 Robinson200710 

Method Machine 

learning  

Machine 

learning 

Biome 

average root 

biomass 

density, area 

Biome average 

R:S ratio, shoot 

biomass density, 

area 

Biome average 

R:S ratio, shoot 

biomass density, 

area 

Root 

biomass 

 

Tropical (Tr, Pg) 92 76 114 147 246 

Temperate (Te, Pg) 26 25 51 59 98 

Boreal (Bo, Pg) 21 20 35 30 50 

Tr + Te + Bo (Pg) 139 121 200 236 394 

RDS1
* 0%  44% 70% 183% 

RDS2
&  0% 65% 95% 226% 

Shoot 

biomass 

(Pg) 

Tropical  364 312  532 532 

Temperate  102.9 98.2  218.4 218.4 

Boreal  81.4 77.5  83.6 83.6 

Forest 

area 

(106 

km2) 

Tropical  24.1 17.4 24.5 17.5 17.5 

Temperate  9 8.3 12 10.4 10.4 

Boreal  12.1 11.2 12 13.7 11.2 

Root 

density 

(kg/m2) 

Tropical  3.8 4.4 4.6 8.4 14.0 

Temperate  2.9 3.0 4.2 5.7 9.4 

Boreal  1.7 1.8 2.9 2.2 4.5 

Shoot 

density 

(kg/m2) 

Tropical  15.1 17.9  30.4 30.4 

Temperate  11.4 11.8  21 21 

Boreal  6.73 6.9  6.1 7.5 

 

Average 

R:S 

Tropical  0.25 0.24  0.28 0.46 

Temperate  0.25 0.25  0.26 0.45 

Boreal  0.26 0.26  0.37 0.6 

S1. Tropical moist forest (Biome 1), tropical dry forest (Biome 6), tropical/subtropical coniferous forest (Biome 11) and forest in 

tropical/subtropical grasslands/savannas and shrublands (Biome 3) are aggregated to represent tropical systems (Tr). Temperate 

broadleaf/mixed forest (Biome 4), temperate coniferous forest (Biome 5) and forest in temperate grasslands/savannas and 

shrublands (Biome 8) are merged together as temperate systems (Te). Boreal forest (Biome 2) and woody plants in tundra region 

(Biome 7) are aggregated as boreal forest (Bo). Biome classification is from The Nature Conservancy1 and is shown in Figure S2. 

S2. Tropical systems (Tr): Biomes 1,6,11; Temperate systems (Te) : Biomes 4,5; Boreal systems (Bo) : Biome 2. 
* RDS1, the relative difference of Tr + Te + Bo between this study (S1) and previous quantifications. RDS1 = (previous study – 

this study)/this study x 100%. For example, in the column with the head Jackson, RDS1 =  (200-139)/139*100% = 44%. 
& RDS2, the same as RDS1, but with the S2 definition of tropical, temperate and boreal systems.     

 

 

Table S6. Comparison between shoot biomass used in this study13 and other estimates for 

tropical, temperate, boreal forests and the globe.   

 This studyS1 This studyS2 Pan201116,17  Saatchi11 Liu20153 Bacchini201718 Hu20162 

Method GlobBiomass- 

AGB 

GlobBiomass- 

AGB 

Inventory Satellite Satellite 

VOD 

Satellite Satellite 

LiDAR 
Time  Current Current Current ~2000 ~2000 ~2007/8 Current  

Shoot 

biomass 
(Pg) 

Tropical  364 312 410 346-424 360-416 318  

Temperate  102.9 98.2 88  74-132   
Boreal  81.4 77.5 72.4  48-78   

Globe  566 566     533 

S1. Tropical moist forest (Biome 1), tropical dry forest (Biome 6), tropical/subtropical coniferous forest (Biome 11) and forest in 

tropical/subtropical grasslands/savannas and shrublands (Biome 3) are aggregated to represent tropical systems (Tr). Temperate 

broadleaf/mixed forest (Biome 4), temperate coniferous forest (Biome 5) and forest in temperate grasslands/savannas and 

shrublands (Biome 8) are merged together as temperate systems (Te). Boreal forest (Biome 2) and woody plants in tundra region 

(Biome 7) are aggregated as boreal forest (Bo). Biome classification is from The Nature Conservancy1 and is shown in Figure S2. 

S2. Tropical systems (Tr): Biomes 1,6,11; Temperate systems (Te) : Biomes 4,5; Boreal systems (Bo) : Biome 2. 

 

 

Table S7. Global forest root biomass estimated from allometric equations. 
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 Fit Jiang19 Niklas20 Robinson9 Cairns21 

α 0.289 0.332 0.372 0.384 0.338 

β 0.974 0.920 0.924 0.954 0.926 

Global Totalt (Pg) 155 165 186 199 167 

Global Totals (Pg) 172 154 176 210 161 

Fit: Observed root (R) and shoot (S) biomass were fitted into an allometric equation, 𝑅 = 𝛼𝑆𝛽 where 𝛼 and 𝛽 are allometric 

coefficients. 

Jiang, Niklas and Robinson: coefficients of the allometric equation were taken from corresponding literature. 
t: tree-based estimation. GlobBiomass-AGB shoot biomass was firstly transferred to individual tree level through tree density. 

Tree level root biomass was estimated from the allometric equation and the derived tree level shoot biomass. Tree level root 

biomass was then transferred into per area level through tree density. This approach takes the similar procedure as the machine 

learning approach.      
s: stand-based estimation. Per area root biomass was directly estimated from GlobBiomass-AGB shoot biomass through the 

allometric equation. This approach mimics practice in literature11,12.       

 

Table S8. Performance of 3 machine learning method and the allometric fitting. 

 Random 

Forest 

Artificial 

Neural 

Networks 

Multiple 

Adaptive 

Regression 

Splines 

Allometric 

Fitting 

R2 0.85 0.77 0.82 0.79 

Mean Absolute Error 

(kg) 

2.18 16.06 7.77 6.34 

Allometric Fitting: Observed root (R) and shoot (S) biomass were fitted into an allometric equation, 𝑅 = 𝛼𝑆𝛽 where 𝛼 and 𝛽 are 

allometric coefficients. 

 

 

 

Preliminary estimation of fine root biomass 

Broadly speaking, leaf and fine root biomass are highly linked22. Ref22 derived an relationship 

between annual leaf biomass production and annual root biomass production (Table 1 of Ref22). 

Assuming an annual turnover of leaves and fine roots, we approximate fine root biomass through 

above mentioned relationship and leaf biomass. Leaf biomass is estimated through the remote 

sensed leaf area index (LAI)23,24 and the observation-based leaf mass per area (or the inverse of 

specific leaf area)25. We apply two LAI datasets, the GIMMS3g24 and the GlobMAP23. We 

estimate the total global fine root biomass in forest (with 15% canopy cover threshold as in the 

main text) to be 6.7 Pg (GIMMS3g) or 7.7 Pg (GlobMAP). We acknowledge leaves and fine 

roots may not be in sync 26 temporally and/or locally. Our estimation here is preliminary and can 

be improved with a better understanding of fine roots in the future.  

 

Arithmetic mean R:S is always larger than shoot-biomass weighted mean R:S 

The general form of the allometric equation is given by:       
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𝑅/𝑆 = 𝛼𝑆𝛽−1        (SI1) 

We prove here that if root and shoot biomass are related by Equation SI1, the arithmetic 

mean R:S is always larger than the biomass weighted mean. Suppose that we have two classes of 

trees or forest stands that differ in shoot biomass, one with size x, and the other is y. We assume 

the number of x is m if we look at the individual-tree-level, or the area is m if we look at the 

stand or larger level, and n is the number or area of y.  

The (shoot) biomass weighted mean R:S is:  

𝛼𝑚𝑥𝛽 + 𝛼𝑛𝑦𝛽

𝑚𝑥 + 𝑛𝑦
 

 

The arithmetic mean R:S is: 

𝛼𝑚𝑥𝛽−1 + 𝛼𝑛𝑦𝛽−1

𝑚 + 𝑛
 

The difference between the weighted and arithmetic mean is:  

𝑑𝑒𝑙𝑡𝑎𝑀𝑒𝑎𝑛 =
𝛼𝑚𝑥𝛽 + 𝛼𝑛𝑦𝛽

𝑚𝑥 + 𝑛𝑦
−

𝛼𝑚𝑥𝛽−1 + 𝛼𝑛𝑦𝛽−1

𝑚 + 𝑛
 

By algebraic transformations, this equation can be transformed into: 

𝑑𝑒𝑙𝑡𝑎𝑀𝑒𝑎𝑛 =
𝛼𝑚𝑛

(𝑚 + 𝑛)(𝑚𝑥 + 𝑛𝑦)
(𝑥 − 𝑦)(𝑥𝛽−1 − 𝑦𝛽−1)        (𝑆𝐼2) 

Since we have 𝛼, 𝑚, 𝑛, 𝑥, 𝑦 > 0,  Equation SI2 tells 𝑖𝑓 𝛽 = 1, 𝑑𝑒𝑙𝑡𝑎𝑀𝑒𝑎𝑛 = 0; 𝑖𝑓 𝛽 <

1, 𝑑𝑒𝑙𝑡𝑎𝑀𝑒𝑎𝑛 < 0;  𝑖𝑓 𝛽 > 1, 𝑑𝑒𝑙𝑡𝑎𝑀𝑒𝑎𝑛 > 0. Both theory and empirical evidence across 

world’s forests lead to R:S vs. S relationships like Equation SI1 with  𝛽 < 1,8,27,28, which proves 

that the arithmetic mean R:S always overestimate the (shoot) biomass weighted mean R:S. 

Allometric upscaling overestimates R:S at 1km resolution   

If we assume root and shoot biomass follow a universal allometric equation at different 

scales (Equation SI1), we show here we would always overestimate root biomass from the 

average shoot biomass at the pixel level. Here, we take the 1-km resolution as an example and 

upscaling to other resolutions follow the same logic. We start from upscaling from individual 

trees and discuss later the case for the stand-level. Suppose we have two classes of trees or forest 

stands that differ in shoot biomass, one with size x, and the other is y. In tropical forest, the 

number of individuals (𝑁) generally follows a tight power law distribution, with the dominant 

power function of the form 𝑑−(𝜃+1) , where 𝑑 is the tree diameter and 𝜃 is related to the 
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allometric exponent of the crown area to diameter29, which is relatively consistent across tropical 

forests. Reported value of 𝜃 is around 1.27-1.31. In temperate or boreal forests, sometimes there 

may lack the above power law size structure, and we will discuss this case later. The relationship 

between tree diameter and biomass is highly conserved, with idealized trees exhibiting a general 

allometric function where 𝐴𝐺𝐵 ∝ 𝑑𝜔 30. The range of 𝜔 is between 1.1 and 3.37 from China’s 

tree biomass equation database which consists of 5,924 biomass component equations for nearly 

200 species. Together, 

𝑁 = 𝜇 𝐴𝐺𝐵−
𝜃+1

𝜔  

where 𝜇 is a parameter with a positive value. We use 𝛾 to replace 
𝜃+1

𝜔
 for simplicity, and can 

write  

𝑁 = 𝜇 𝐴𝐺𝐵−𝛾 

The real R:S ratio is, 

𝑅𝑆𝑟𝑒𝑎𝑙 =  
𝛼𝜇𝑥𝛽−𝛾 +  𝛼𝜇𝑦𝛽−𝛾

𝜇𝑥1−𝛾 + 𝜇𝑦1−𝛾
 

Which is the same as:  

𝑅𝑆𝑟𝑒𝑎𝑙 =
𝛼(𝑥𝛽−𝛾 +  𝑦𝛽−𝛾)

𝑥1−𝛾 + 𝑦1−𝛾
 

The estimated R:S is:  

𝑅𝑆𝑒𝑠𝑡𝑖 = 𝛼(
𝜇𝑥1−𝛾 + 𝜇𝑦1−𝛾

𝜇𝑥−𝛾 +  𝜇𝑦−𝛾
)𝛽−1 

Which is the same as: 

𝑅𝑆𝑒𝑠𝑡𝑖 = 𝛼(
𝑥1−𝛾 + 𝑦1−𝛾

𝑥−𝛾 +  𝑦−𝛾
)𝛽−1 

Therefore, the difference between estimated and real R:S is,  

𝑑𝑒𝑙𝑡𝑎𝑅𝑆 = 𝑅𝑆𝑒𝑠𝑡𝑖 − 𝑅𝑆𝑟𝑒𝑎𝑙 = 𝛼 (
𝜇𝑥1−𝛾 + 𝜇𝑦1−𝛾

𝜇𝑥−𝛾 +  𝜇𝑦−𝛾
)

𝛽−1

−  
𝛼(𝑥𝛽−𝛾 +  𝑦𝛽−𝛾)

𝑥1−𝛾 + 𝑦1−𝛾
       (𝑆𝐼3) 

With the condition 𝛽 < 1, 𝛼 > 0, 𝜇 > 0,   𝑥 > 0, 𝑦 > 0, 𝛾 > 0,  𝑑𝑒𝑙𝑡𝑎𝑅𝑆 is always bigger than 0, 

as shown in Figures S14, S15 numerically. 

For forests without the power law structure or when we upscale from the stand-level 

measurement, we use m and n to denote the number of trees or the area of stands with the size of 

shoot biomass x and y.  
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The difference between estimated and real R:S is,  

𝑑𝑒𝑙𝑡𝑎𝑅𝑆 = 𝑅𝑆𝑒𝑠𝑡𝑖 − 𝑅𝑆𝑟𝑒𝑎𝑙 = 𝛼 (
𝑚𝑥 + 𝑛𝑦

𝑚 +  𝑛
)

𝛽−1

− 
𝛼(𝑚𝑥𝛽 +  𝑛𝑦𝛽)

𝑚𝑥 +  𝑛𝑦
       (𝑆𝐼4) 

With the condition 𝛽 < 1, 𝛼 > 0, 𝜇 > 0,   𝑥 > 0, 𝑦 > 0, 𝑚 > 0, 𝑛 > 0, 𝛾 > 0,   𝑑𝑒𝑙𝑡𝑎𝑅𝑆 is 

always bigger than 0 as illustrated in Figures S16, S17 numerically.  

 

The magnitude of overestimation is related to 𝛽, 𝛼, 𝜇, 𝑥, 𝑦, 𝑚, 𝑛 (𝑜𝑟 𝛾 in case of forests with 

power law size structure).   

 
Figure S14, 𝑑𝑒𝑙𝑡𝑎𝑅𝑆 in responses to changes in tree sizes in x (x-axis) and y (y-axis). Size x and 

size y are randomly chosen with log 𝑥, 𝑙𝑜𝑔𝑦 ∈ [−5,4]. Here we fix 𝛼 𝑎𝑛𝑑 𝜃  with typical values    

𝛼 = 0.31, 𝜃 = 1.3.  (a) and (c) show 𝑑𝑒𝑙𝑡𝑎𝑅𝑆 with ω=1.1, β=0.95. (b) and (d) show 𝑑𝑒𝑙𝑡𝑎𝑅𝑆 

with ω=2, β=0.95. (a) and (b) display 𝑑𝑒𝑙𝑡𝑎𝑅𝑆 in a 3-dimentional space and the (c) and (d) are 

corresponding projections into the x-y space. 𝑑𝑒𝑙𝑡𝑎𝑅𝑆 is always bigger than 0 with different 

values of 𝑥, 𝑦, 𝛼, 𝜃, 𝜔, 𝛽 in literature. We choose fixed values for demonstration purpose here. 

See Equation SI3 for details.             
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Figure S15. 𝑑𝑒𝑙𝑡𝑎𝑅𝑆 in responses to changes in α (a, alpha), β (b, beta), γ (c, gamma) and 

difference in tree size (d, delta_size). In panels (a), (b) and (c), the parameter in x-axis varies in a 

range that is broader than typically reported in literature while other parameters are fixed at a 

typical value. Panel (d) shows changes in 𝑑𝑒𝑙𝑡𝑎𝑅𝑆 in response to differences in size x and size y 

where size x and size y are randomly generated with a uniform distribution of logx and logy with 

log 𝑥, 𝑙𝑜𝑔𝑦 ∈ [−5,4]. Note, in (d) Delta RS_ratio = 0 when delta_size = 0, but varies largely in a 

small region around 0. See Equation SI3 for details.   
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Figure S16. 𝑑𝑒𝑙𝑡𝑎𝑅𝑆 in responses to changes in tree sizes in x (x-axis) and y (y-axis). Size x and 

size y are randomly chosen with log 𝑥, 𝑙𝑜𝑔𝑦 ∈ [−5,4]. Here we fix 𝛼 𝑎𝑛𝑑 𝜃  with typical values    

𝛼 = 0.31, 𝜃 = 1.3.  (a) and (c) show 𝑑𝑒𝑙𝑡𝑎𝑅𝑆 with m=100, n=10, β=0.95. (b) and (d) show 

𝑑𝑒𝑙𝑡𝑎𝑅𝑆 with m=10,n=100, β=0.95. (a) and (b) display 𝑑𝑒𝑙𝑡𝑎𝑅𝑆 in a 3-dimentional space and (c) 

and (d) are their corresponding projection into the x-y space. 𝑑𝑒𝑙𝑡𝑎𝑅𝑆 is always bigger than 0 

with different values of 𝑥, 𝑦, 𝛼, 𝜃, 𝑚, 𝑛, 𝛽 in literature. We choose fixed values for demonstration 

purpose here. See Equation SI4 for details.                     
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Figure S17. 𝑑𝑒𝑙𝑡𝑎𝑅𝑆 in responses to changes in α (a, alpha), β (b, beta), number of trees or stand 

area of shoot biomass class x (c, m) and difference in tree size (d, delta_size). This figure is the 

same as Figure S15 except the exponent controlling the number of trees (γ) is replaced by the 

number of trees or stand area of each biomass size (m and n). Note, in (d) Delta RS_ratio = 0 

when delta_size = 0, but varies largely in a small region around 0. See Equation SI4 for details.    

 

 

Root biomass prediction with age as a predictor  

When age is fixed as a predictor in the random forest model, the “best” trained model 

incorporates 14 additional predictors which are shoot biomass, height, soil nitrogen, pH, bulk 

density, clay content, sand content, base saturation, cation exchange capacity, vapor pressure, 

mean annual precipitation, mean annual temperature, aridity and water table depth. This model 

slightly reduced the mean absolute error (MAE = 2.16 vs. 2.18). Global total root biomass from 

this model is similar to the model without age. The age map is merged from several different 

sources (see Method), which likely introduce additional uncertainty in our estimation. We 

therefore prefer the prediction without age as a predictor. 
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