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Abstract. Satellite observations of evapotranspiration (ET) have been widely used for water resources man-
agement in China. An accurate ET product with a high spatiotemporal resolution is required for research on
drought stress and water resources management. However, such a product is currently lacking. Moreover, the
performances of different ET estimation algorithms for China have not been clearly studied, especially under
different environmental conditions. Therefore, the aims of this study were as follows: (1) to use multisource
images to generate a long-time-series (2001–2018) daily ET product with a spatial resolution of 1 km× 1 km
based on the Surface Energy Balance Algorithm for Land (SEBAL); (2) to comprehensively evaluate the per-
formance of the SEBAL ET in China using flux observational data and hydrological observational data; and
(3) to compare the performance of the SEBAL ET with the MOD16 ET product at the point scale and basin
scale under different environmental conditions in China. At the point scale, both the models performed best in
the conditions of forest cover, subtropical zones, hilly terrain, or summer, respectively, and SEBAL performed
better in most conditions. In general, the accuracy of the SEBAL ET (rRMSE= 44.91 %) was slightly higher
than that of the MOD16 ET (rRMSE= 48.72 %). In the basin-scale validation, both the models performed bet-
ter than in the point-scale validation, with SEBAL obtaining results superior (rRMSE= 13.57 %) to MOD16
(rRMSE= 32.84 %). Additionally, both the models showed a negative bias, with the bias of the MOD16 ET be-
ing higher than that of the SEBAL ET. In the daily-scale validation, the SEBAL ET product showed a root mean
square error (RMSE) of 0.92 mmd−1 and an r value of 0.79. In general, the SEBAL ET product can be used for
the qualitative analysis and most quantitative analyses of regional ET. The SEBAL ET product is freely avail-
able at https://doi.org/10.5281/zenodo.4243988 and https://doi.org/10.5281/zenodo.4896147 (Cheng, 2020a, b).
The results of this study can provide a reference for the application of remotely sensed ET products and the
improvement of satellite ET observation algorithms.

Published by Copernicus Publications.

https://doi.org/10.5281/zenodo.4243988
https://doi.org/10.5281/zenodo.4896147


3996 M. Cheng et al.: Long time series of daily evapotranspiration in China

1 Introduction

Evapotranspiration (ET) is the process of transferring surface
water to the atmosphere, including soil evaporation and veg-
etation transpiration (Wang and Dickinson, 2012). This pro-
cess is a key node linking surface water and energy balance.
In the process of water balance, ET represents the consump-
tion of surface water resources, and in the process of energy
balance, the energy consumed by ET is called the latent heat
flux (λET, Wm−2, where λ is the latent heat vaporization),
which is an important energy component (Helbig et al., 2020;
Zhao et al., 2019). Approximately 60 % of global precipita-
tion ultimately returns to the atmosphere through evapotran-
spiration (Wang and Dickinson, 2012). Therefore, accurately
quantifying the ET of different land cover types is neces-
sary to better understand changes in regional water resources.
However, the methods for the estimation of ET based on
point-scale or small-area-scale analysis, such as lysimeters
and eddy covariance, cannot meet the requirement of global
climate change research and regional water resource man-
agement (Li et al., 2018). Since the United States success-
fully launched the first meteorological satellite in the 1960s,
hydrological remote sensing (RS) applications have devel-
oped rapidly and have led to huge breakthroughs (Karimi and
Bastiaanssen, 2015). Remote sensing technology with a high
spatiotemporal continuity provides an effective means for re-
gional ET estimation.

Satellite remote sensing provides a reliable direct esti-
mation of ground parameters; however, it cannot measure
ET directly (Wang and Dickinson, 2012). Therefore, sev-
eral RS-based algorithms for the estimation of ET have been
proposed and reviewed (Pôças et al., 2020; Senay et al.,
2020; Wang and Dickinson, 2012). These models can be di-
vided into three types according to their mechanism: those
based on surface energy balance residual (SEBR), those
based on semi-empirical formulas (SEFs), and statistic meth-
ods. SEBR-based models can be further divided into one-
source models and two-source models (Wang and Dickin-
son, 2012). One-source models do not distinguish vegeta-
tion from bare soil and regard the land surface as a sys-
tem that exchanges energy and water with the atmosphere.
Examples of one-source models include the Surface Energy
Balance Index (S-SEBI) (Roerink et al., 2000), the Surface
Energy Balance System (SEBS) (Su, 1999), and the Sur-
face Energy Balance Algorithm for Land (SEBAL) (Basti-
aanssen et al., 1998a, b). These models have a theoretical ba-
sis, a simple principle, and strong portability, and they have
been widely used (Bastiaanssen and Steduto, 2017; Elnmer
et al., 2019; Huang et al., 2015; Wagle et al., 2019). Two-
source models distinguish the surface water and energy ex-
change between vegetation and bare soil and calculate frac-
tional canopy coverage (Fc) using an empirical formula and
a vegetation index obtained from remote sensing data to di-
vide the land surface into vegetation and bare soil in each
single pixel. Examples of two-source models include the the

Two-Source Energy Balance (TSEB) model (Kustas et al.,
2003), the Two-source Trapezoid Model for Evapotranspira-
tion (TTME) (Long and Singh, 2012), and the Hybrid Dual-
source Scheme and Trapezoid Framework-based Evapotran-
spiration Model (HTEM) (Yang and Shang, 2013). Com-
pared to one-source models, two-source models have a su-
perior theoretical mechanism. SEF-based models using tradi-
tional semi-empirical formulas calculate λET and are simpler
than SEBR-based models. Examples of SEF-based models
include the Surface Temperature and Vegetation Index (Ts–
VI) space model (Carlson, 2007) and the Global Land Evap-
oration Amsterdam Model (GLEAM) based on the Priestley–
Taylor (P–T) equation (Miralles et al., 2011). Another well-
known SEF-based model is based on the Penman–Monteith
(P–M) equation, which has been improved and applied to re-
mote sensing data to estimate regional ET (Mu et al., 2007,
2011). Moreover, statistic methods for ET estimation by us-
ing statistical regression or machine learning to fit multiple
indicators (e.g., meteorological data or remote sensing data)
and in situ ET are also being widely used (Mosre and Suárez,
2021; Yamaç and Todorovic, 2020).

Since ET plays a critical role in the study of hydrology
and ecology, ET products with a high spatiotemporal resolu-
tion are required. Therefore, a growing number of ET prod-
ucts have been generated to meet research needs. These in-
clude MOD16, which is generated by NASA based on the
Penman–Monteith algorithm and has a spatial resolution of
500 m× 500 m and a temporal resolution of 8 d (Mu et al.,
2007, 2011). The GLEAM daily ET product with a spatial
resolution of 0.25◦× 0.25◦ has been generated by the Uni-
versity of Bristol, UK, based on the Priestley–Taylor method
(Miralles et al., 2010). Additionally, Chen generated long-
time-series daily ET datasets with a spatial resolution of
0.1◦× 0.1◦ based on the SEBS algorithm (X. Chen et al.,
2014; Chen, 2019). However, there are few ET products
that simultaneously meet the current research needs in terms
of temporal and spatial resolution. Therefore, generating a
kilometer-level daily ET product that can minimize the influ-
ence of mixed pixels is critical.

Water resources management is essential for China as it
has an unbalanced spatial and temporal distribution of water
resources. ET, as a crucial component of the terrestrial water
cycle, is critical for understanding the water resources budget
in China. Therefore, spatiotemporally continuous ET data are
needed. Several studies evaluated the performance of vari-
ous remote-sensing-based algorithms in China. For example,
Y. Chen et al. (2014) used 23 eddy covariance (EC) sites to
evaluate the performance of the Penman–Monteith method
(used for generating the MOD16 product) and the Priestley–
Taylor method (used for generating the GLEAM product)
in China; however, these models can only explain approx-
imately 61 %–80 % of the variability in ET. Li et al. (2017)
used an SEBR-based model – SEBS – to map the ET in Heihe
River Basin, northwestern China, and evaluated its perfor-
mance in different land cover types. In general, SEBS outper-
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formed the Priestley–Taylor method, but SEBS showed sig-
nificant bias in several land cover types, e.g., village (mainly
croplands). Sun et al. (2020) evaluated the performance of
Shuttleworth–Wallace–Hu (SWH) and SEBAL in northwest-
ern China and showed better accuracy than the MOD16 prod-
uct. In general, the accuracy of ET derived from satellite im-
agery is affected by spatiotemporal conditions (Wagle et al.,
2017). Several studies have indicated that RS-based methods
for modeling ET have errors of 15 %–50 % (Velpuri et al.,
2013; Xue et al., 2020). RS-based models have different ap-
plicable conditions, and understanding the variation in accu-
racy between such models is important for their reasonable
application. However, few studies have validated the robust-
ness of different models using long time series and at a large
spatial scale. For China with a large area and complex terrain,
few studies have clearly discussed the performance of RS-
based models under different environmental conditions, and
most studies only aimed at a certain area. Moreover, there is
no ET product for China with a high spatiotemporal resolu-
tion, and the applicability of different RS-based models for
the estimation of ET in China is not clear, which hampers the
management of ET.

In order to improve ET products in China and better under-
stand the performance of RS-based ET estimation models in
China, in this paper, we aim to (1) generate a long-time-series
daily ET product with a spatial resolution of 1 km× 1 km
based on the SEBAL model and multisource remote sens-
ing images, (2) validate the accuracy of the generated ET
product in China based on flux tower observational data and
hydrological data, and (3) compare the performance of the
generated ET product with MOD16 datasets in China under
different environmental conditions.

2 Materials and methods

2.1 Study area

China (3◦31′00′′–53◦33′47′′ N, 73◦29′59.79′′–135◦2′30′′ E)
covers a land area of approximately 9 600 000 km2, mainly
including temperate zones, warm–temperate zones, subtrop-
ical zones, tropical zones, and plateau climate zones. China
can be divided into nine basin regions based on the distribu-
tion of water resources (Zhang et al., 2011): the Southwest
Basin (SwB), Continental Basin (CB), Pearl River Basin
(PRB), Yangtze River Basin (YRB), Southeast Basin (SeB),
Haihe River Basin (HRB), Yellow River Basin (YeRB),
Huaihe River Basin (HuRB), and Songhua and Liaohe River
Basin (SLRB) (Fig. 1).

2.2 Generation of a long-time-series daily ET product

In this study, a long-time-series daily ET product was gen-
erated based on SEBAL, which is a widely used one-source
model (Gobbo et al., 2019; Jaafar and Ahmad, 2020; Mhawej
et al., 2020; Rahimzadegan and Janani, 2019). SEBAL has

been shown to have a good performance for ET estimation
and can be regarded as typical of SEBR-based models (Basti-
aanssen et al., 1998b; Timmermans et al., 2006; Wagle et al.,
2017). The workflow for the calculation of the daily ET using
the SEBAL model and multisource satellite images is shown
in Fig. 2. The SEBAL model calculates the instantaneous
λET of the satellite transit time as a residual based on the
surface energy balance equation (Eq. 1) as follows:

λET= Rn−G−H, (1)

where Rn is the net radiation flux, H is the sensible heat
flux, and G is the soil heat flux (the unit of all three parame-
ters is Wm−2). In this paper, MODIS data (MCD43 surface
albedo, MOD11 surface temperature – daytime, MOD13
NDVI) and meteorological data (air temperature) from the
Global Modeling and Assimilation Office (GMAO) were
used as input for surface parameterization (Rn, G, and H ).
The details of generating SEBAL ET can be found in Ap-
pendix A.

The spatial and temporal resolutions of the MCD43 sur-
face albedo and the MOD11 daytime surface temperature are
1 d and 1 km× 1 km, while those of MOD13 NDVI are 16 d
and 500 m× 500 m. In this study, MOD13 was resampled
to 1 km× 1 km and processed by smoothing and gap filling
from time series to daily data (Vuolo et al., 2017). It should
be noted that there are several missing or unreliable pixels in
MODIS images, which may be caused by clouds or other rea-
sons; these pixels were marked in quality control (QC) files.
In this study, these anomalous pixels of the MODIS dataset
(MOD11, MOD13, and MCD43) were filled by referring to
previous studies, with the rules as follows: (1) the value of
an anomalous pixel will be computed by liner interpolation
of the nearest reliable value after it or prior to it; (2) if the
anomalous pixel was found in the first or last day, it will be
replaced by the closest reliable date value. More details can
be found in the studies of Mu et al. (2011) and Zhao et al.
(2005). Land surface temperature is the crucial parameter
for SEBAL ET generation, and Appendix B shows the ratio
of interpolated pixels of land surface temperature (MOD11)
data (31 %± 11 %). The spatial and temporal resolutions of
GMAO air temperature are 1 d and 0.25◦× 0.25◦, respec-
tively. The coarse-resolution GMAO data were nonlinearly
interpolated to a spatial resolution of 1 km× 1 km based on
the four GMAO pixels surrounding a given pixel (Zhao et al.,
2005). The spatial and temporal resolutions of wind speed are
1 d and 1 km× 1 km (China Meteorological Data Network,
http://data.cma.cn, last access: July 2021). The final gener-
ated daily ET product has a spatial resolution of 1 km× 1 km
and covers the period 2001 to 2018.
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Figure 1. The location of the study area. CBM: Changbai mountain; DHM: Dinghu mountain; DX: Dangxiong; HB: Haibei; NMG:
Neimenggu; QYZ: Qianyanzhou; XSBN: Xishuangbanna; YC: Yucheng. Please note that the above figure contains disputed territories.
Note: Chinese boundaries were obtained from the Institute of Geographic Science and Natural Resources Research, Chinese Academy of
Sciences: http://www.resdc.cn/ (last access: July 2021).

Figure 2. A flowchart of the Surface Energy Balance Algorithm for Land (SEBAL), which was used to convert multisource images to daily
evapotranspiration.

2.3 Validation methods

2.3.1 Point-scale validation

The eddy covariance method measures λET from the covari-
ance between moisture fluxes and vertical wind velocity us-
ing rapid response sensors at frequencies typically equal to

or greater than 10 Hz (Wang and Dickinson, 2012); it is re-
garded as the most effective method for the estimation of ET
and has been widely used (Wang and Dickinson, 2012). In
this study, eddy covariance tower-measured daily flux data
from eight stations in China (Table 1) obtained in 2003–2010
were used to validate the modeled ET (ETSEBAL, ETMOD).
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Table 1. Details of the eight flux observation stations.

Station Observation period Longitude Latitude Elevation Ecosystem types Climate zone

Changbai mountain (CBM) 2003–2010 128.10 42.40 738 Forest temperate zone
Dinghu mountain (DHM) 2003–2010 112.53 23.17 300 Forest subtropical zone
Dangxiong (DX) 2004–2010 91.07 30.85 4333 Grassland plateau climate zone
Haibei (HB) 2003–2010 101.29 37.62 3250 Grassland plateau climate zone
Neimenggu (NMG) 2004–2010 116.68 43.55 1200 Grassland temperate zone
Qianyanzhou (QYZ) 2003–2010 115.06 26.74 102 Forest subtropical zone
Xishuangbanna (XSBN) 2003–2010 101.20 21.96 750 Forest tropical zone
Yucheng (YC) 2003–2010 116.60 36.95 28 Cropland warm–temperate zone

The latent heat flux (λET) observed at the flux towers was
converted into the observed ET (ETflux). It should be noted
that the energy balance closure issue, which indicates that
the sum of sensible heat (H ), latent heat (λET), and soil heat
flux (G) is not equal to net radiation (Rn), was often found
in the eddy covariance system. Therefore, the eddy covari-
ance system measured value should be filtered and corrected.
First, the data with an energy balance closure ratio (ECR,
Eq. 2) less than 80 % were not selected for validation (Wang
et al., 2019), and then the remaining data with an ECR more
than 80 % were corrected by using the Bowen ratio energy
balance correction (Eq. 3) (Y. Chen et al., 2014).

ECR=
H + λET
Rn−G

(2)

λETcor =
Rn−G

H + λET
· λET (3)

Here, Rn, G, H , and λET are all eddy covariance system
measured values, and λETcor is the corrected value. To en-
sure a reliable evaluation, the pixel value where the flux
tower is located (area of 1 km× 1 km) was extracted for
comparison with the measured value (Velpuri et al., 2013).
The water demand is different under different environmen-
tal conditions. Therefore, it is necessary to understand the
accuracy performance of ET products for different vegeta-
tion types when a single ET product is not comprehensive
(Velpuri et al., 2013). In order to better understand the influ-
ence of different environmental conditions on the accuracy of
the model, the modeled ETs were validated for different ter-
rain, climate zones, land cover types, and seasons. Addition-
ally, MOD16 data were resampled to a spatial resolution of
1 km× 1 km, and daily ETSEBAL and daily ETflux data were
accumulated to 8 d to match the MOD16 data. ETSEBAL was
validated at the daily scale and 8 d scale.

2.3.2 Regional-scale validation

Furthermore, the regional (basin-scale) ET was calculated
using the water balance method (Eq. 4) to validate the mod-
eled ET at the regional scale.

ET= P −Q−1S (4)

Here, P (unit: mm) is the annual precipitation in the basin,Q
(unit: mm) is the annual runoff in the basin, which includes
surface runoff and groundwater runoff, and1S is the change
in the groundwater and surface water storage in a year; the
change in 1S over multiple years can be ignored (Liu et al.,
2016; Senay et al., 2011). The average ET over multiple
years was calculated in each primary water resources divi-
sion in China (the nine basins shown in Fig. 1) from 2001 to
2018; these values of ET are referred to as ETWB.

2.3.3 Accuracy estimation

The modeled ET values were compared with the observed
ET (ETflux, ETWB) to evaluate the performance of ETSEBAL
and ETMOD, respectively. The correlation coefficient (r), root
mean square error (RMSE), relative root mean square error
(rRMSE), and mean bias error (MBE) were selected to quan-
tify the accuracy of the modeled ET. The equations for these
parameters are shown below.

r =

∑n
i=1

(
ETMi−ETM

)(
ETObi−ETOb

)√∑n
i=1
(
ETMi−ETM

)2∑n
i=1
(
ETObi−ETOb

)2 (5)

RMSE=

√
1
n

∑n

i=1
(ETMi−ETObi)2 (6)

rRMSE=
RMSE
ETOb

· 100% (7)

MBE=
1
n

∑n

i=1
(ETMi−ETObi) (8)

Here, ETM is the modeled ET (ETSEBAL and ETMOD), ETOb
is the observed ET (ETflux and ETWB), and n is the number of
samples. r was calculated to evaluate the linear relationship
between the modeled and observed ET; higher r values mean
a higher correlation. RMSE and rRMSE were used to evalu-
ate the performance of the model: smaller RMSE and rRMSE
mean higher accuracy. The rRMSE is a critical indicator to
evaluate the accuracy of a model (Jin et al., 2020). The MBE
was used to measure whether the result was overestimated
(positive values of MBE) or underestimated (negative values
of MBE).
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2.4 Data sources and tools used

2.4.1 MOD16 data

The MOD16 ET product is a widely used evapotranspiration
dataset for water resources management and global change
study, which also performs accurately to some extent (He
et al., 2019; Mu et al., 2011). In this study, the comparison of
SEBAL ET and MOD16 ET was conducted to judge if fur-
ther improvement was found in SEBAL ET. The MOD16 ET
data (ETMOD) were produced using an ET algorithm based
on the P–M equation (Eq. 9) (Monteith, 1965) that has been
improved (Mu et al., 2007, 2011).

λET=
sA+ ρCpVPD/ra
s+ γ (1+ rs/ra)

(9)

Here, s (unit: Pa K−1) is the slope of the temperature-
saturated water pressure curve at the current temperature, A
(unit: Wm−2) is the available energy, ρ (unit: kgm−3) is the
air density, Cp (unit: J (kg ·K)−1) is the specific heat of air at
constant pressure, VPD (unit: Pa) is the difference in water
vapor pressure, γ (unit: PaK−1) is the psychrometric con-
stant, and ra and rs (unit: sm−1) are the aerodynamic resis-
tance and surface resistance, respectively. The MOD16 ET
data are available for regular 500 m grid cells for the entire
global vegetated land surface at 8 d composite, and the data
do not cover regions corresponding to water, barren land, and
buildings (He et al., 2019). In this study, MOD16 data were
obtained from the NASA Atmosphere Archive and Distri-
bution System Distributed Active Archive Center (LAADS
DAAC, https://ladsweb.modaps.eosdis.nasa.gov, last access:
July 2021).

2.4.2 Auxiliary data

In order to ensure the objectivity of the comparison be-
tween the SEBAL and P–M models, MODIS satellite data
were selected as the input for SEBAL, including the surface
albedo (MCD43), surface temperature (MOD11), and NDVI
(MOD13) obtained from LAADS DAAC. Additionally, grid-
ded air temperature data were obtained from the GMAO
(https://gmao.gsfc.nasa.gov, last access: July 2021). Flux
tower observational data were obtained from ChinaFLUX
(http://www.chinaflux.org, last access: July 2021). Precipi-
tation and runoff data for each basin from 2001 to 2018
were obtained from the Water Resources Bulletin provided
by the Ministry of Water Resources of the People’s Republic
of China (http://www.mwr.gov.cn/, last access: 2021).

2.4.3 Tools used

Python (version 3.7; Google Inc., Mountain View, California,
USA) and the Geospatial Data Abstraction Library (GDAL;
version 3.1.1; Google Inc.) were used to construct SEBAL.
The ArcGIS software (version 10.4; Esri Inc., Redlands, Cal-
ifornia, USA) and ENVI software (version 5.3; Esri Inc.)

were used to process raster data. Python and the SPSS soft-
ware (version 21; IBM Inc., Armonk, New York, USA) were
used for numerical calculation and analysis.

3 Results

3.1 Validation of daily SEBAL ET at the point scale
using flux tower observations

The validation results for the daily SEBAL ET (ETSEBAL)
obtained using flux tower observational data are shown in
Fig. 3. Compared to ETflux, ETSEBAL showed a good per-
formance in China; the two data types showed high con-
sistency, with an r value of 0.79 with 9896 samples. How-
ever, the bias of SEBAL was relatively high; the RMSE
and rRMSE were 0.92 mmd−1 and 42.04 %, respectively. As
shown in the scatter diagrams in Fig. 3, ETSEBAL showed a
negative bias at high values and a positive bias at low val-
ues. In general, SEBAL underestimated ET in China, with
an MBE of −0.15 mmd−1. Moreover, the daily ETSEBAL
performed similarly for different land use types. The daily
ETSEBAL had a bias of 0.95 mmd−1 (rRMSE= 37.24 %) in
cropland and 0.89 mmd−1 (rRMSE= 44.25 %) in grassland,
and the daily ETSEBAL underestimated in both cropland and
grassland, with MBEs of −0.26 mmd−1 and −0.44 mmd−1,
respectively. In forest, the daily ETSEBAL had the highest
RMSE of 1.02 mmd−1 (rRMSE= 41.25 %) and the lowest
r value of 0.73, and it was slightly overestimated compared
to ETflux (MBE= 0.09 mmd−1). Figure 4 shows the time se-
ries variation of ET. In general, SEBAL ET and observed ET
both showed a clear seasonal variation characteristic among
the eight flux tower stations. Moreover, an annual periodic
variation was found at most stations (Fig. 4a–e and g). The
cropland stations (YC and QYZ) presented a relatively dis-
ordered period (Fig. 4g and h), which likely contributed to
the double-crop rotation system used in these regions. For
example, at the YC station located in the North China Plain,
there was generally maize and wheat rotation, which may
cause two peaks of crop water consumption (ET) to occur in
1 year. Furthermore, Figs. 3 and 4 both show that SEBAL ET
was clearly underestimated at higher ET rates. The observed
ET fluctuated higher than SEBAL ET at all stations as shown
in Fig. 4.

3.2 Comparison of SEBAL and MOD16 ET under
different environmental conditions at the 8 d scale

3.2.1 Performance of the RS-based model for different
land cover types

The validation results for different land cover types are
shown in Fig. 5. The results indicate that the accuracy of
SEBAL and MOD16 both varied with land cover type. The
RMSE of SEBAL varied from 6.51 to 8.57 mm per 8 d; its
rRMSE varied from 38.08 to 52.63 %, and its r value var-
ied from 0.81 to 0.87. The performance of SEBAL was supe-
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Figure 3. The validation of daily ET estimates using the SEBAL model and multisource images. (a) Cropland; (b) grassland; (c) forest;
(d) all land cover types.

rior for forest (RMSE= 8.54 mm per 8 d, rRMSE= 38.08 %)
compared to other land cover types, and the lowest accu-
racy was obtained over grassland (RMSE= 6.51 mm per
8 d, rRMSE= 52.63 %). The results of the MOD16 vali-
dation indicate that MOD16 had a better performance for
forest (RMSE= 8.88 mm per 8 d, rRMSE= 39.29 %) than
other land cover types, as was observed for SEBAL, and the
performance of MOD16 over grassland was also the worst
(RMSE= 7.77 mm per 8 d, rRMSE= 62.89 %). The MBE
values for MOD16 varied from 0.42 to 3.44 mm per 8 d,
which indicates that both the ET models underestimated ET
over all land cover types. Overall, the accuracy of SEBAL
was higher than that of MOD16.

3.2.2 Performance of the RS-based model for different
climate zones

The validation results for different climate zones are shown
in Fig. 6. The results show that the r value varied from
0.68 to 0.90 for SEBAL and varied from 0.61 to 0.94 for
MOD16. Climate zones were found to influence the accu-
racy of the RS-based models. In tropical zones, both models
showed poor accuracy, with RMSEs of 10.75 and 11.37 mm
per 8 d for SEBAL and MOD16, respectively, and low r val-
ues of 0.68 and 0.61 for SEBAL and MOD16, respectively.
Additionally, both the models overestimated, with MBEs

of 7.58 and 8.86 mm per 8 d for SEBAL and MOD16, re-
spectively. For subtropical zones, both the models had high
precision, with rRMSEs of 32.32 % and 36.73 % for SE-
BAL and MOD16, respectively, and both underestimated,
with r values of 0.86 and 0.82 for SEBAL and MOD16,
respectively. For warm–temperate zones, both SEBAL and
MOD16 showed poor accuracy, with rRMSEs of 53.95 %
and 56.12 %, respectively, and both underestimated. For tem-
perate zones, MOD16 overestimated, while SEBAL underes-
timated, and both models had high r values, namely 0.90 for
SEBAL and 0.94 for MOD16, and low RMSEs of 5.72 mm
per 8 d for SEBAL and 4.61 mm per 8 d for MOD16. In gen-
eral, MOD16 performed better than SEBAL for temperate
zones. For alpine zones with low temperature, both the mod-
els still underestimated; however, SEBAL performed better
than MOD16: the RMSE was 7.53 and 9.20 mm per 8 d, and
the r value was 0.79 and 0.77 for SEBAL and MOD16, re-
spectively.

3.2.3 Performance of the RS-based model over different
terrain types

The validation results for different terrain types are shown
in Fig. 7. The results indicate that both models showed
a negative bias (negative MBE) for all terrain types ex-
cept mountainous areas, for which both models over-
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Figure 4. The SEBAL ET and flux-tower-observed ET variation in time series. (a) CBM; (b) DHM; (c) DX; (d) HB; (e) NMG; (f) QYZ;
(g) XSBN; (h) YC.

estimated, with MBEs of 1.19 and 1.67 mm per 8 d
for SEBAL and MOD16, respectively. In general, for
mountainous areas, MOD16 showed a higher accuracy
(RMSE= 7.79 mm per 8 d, rRMSE= 41.88 %, r = 0.82)
than SEBAL (RMSE= 8.37 mm per 8 d, rRMSE= 45.06 %,
r = 0.79). However, for all other terrain types, SEBAL
showed a higher accuracy. With SEBAL, the RMSE
decreased from 9.01 to 6.51 mm per 8 d as elevation
increased. For hilly areas, SEBAL showed the low-
est rRMSE (32.32 %), while MOD16 showed the high-
est rRMSE (36.73 %). For plain areas, SEBAL showed
a slightly higher accuracy (RMSE= 9.01 mm per 8 d,
rRMSE= 53.95 %) than MOD16 (RMSE= 9.37 mm per
8 d, rRMSE= 56.12 %), while for plateau area, SE-
BAL (RMSE= 6.51 mm per 8 d, rRMSE= 52.63 %) was

more accurate than MOD16 (RMSE= 7.77 mm per 8 d,
rRMSE= 62.89 %).

3.2.4 Performance of the RS-based model in different
seasons

The validation results for different seasons are shown in
Fig. 8. SEBAL showed a negative bias in summer, au-
tumn, and winter, with MBE values varying from −2.95
to −0.62 mm per 8 d, and showed a positive bias in spring
(MBE= 3.13 mm per 8 d). MOD16 showed a positive bias in
winter (MBE= 3.8 mm per 8 d) and a negative bias in other
seasons, with MBE values varying from−0.58 to−0.50 mm
per 8 d. In spring, MOD16 generally showed a better
performance (RMSE= 8.10 mm per 8 d, rRMSE= 50.13 %
and r = 0.77) than SEBAL (RMSE= 9.18 mm per 8 d,
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Figure 5. Validations for different land cover types. (a) SEBAL ET for cropland; (b) MOD16 ET for cropland; (c) SEBAL ET for grassland;
(d) MOD16 ET for grassland; (e) SEBAL ET for forest; (f) MOD16 ET for forest.

Figure 6. Validations for different climate zones. (a) SEBAL ET for tropical zones; (b) MOD16 ET for tropical zones; (c) SEBAL ET for
subtropical zones; (d) MOD16 ET for subtropical zones; (e) SEBAL ET for warm–temperate zones; (f) MOD16 ET for warm–temperate
zones; (g) SEBAL ET for temperate zones; (h) MOD16 ET for temperate zones; (i) SEBAL ET for alpine zones; (j) MOD16 ET for alpine
zones.

rRMSE= 56.92 % and r = 0.75), while SEBAL performed
better than MOD16 in other seasons. In winter, both the mod-
els showed a poor performance, with rRMSEs of 66.92 %
and 87.80 % for SEBAL and MOD16, respectively. For both
models, the highest accuracy was achieved in summer, with

rRMSEs of 36.56 % and 43.95 % for SEBAL and MOD16,
respectively. Meanwhile, the highest r values were obtained
in autumn, with values of 0.89 and 0.84 for SEBAL and
MOD16, respectively.
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Figure 7. Validation over different terrain: (a) SEBAL ET in plain area; (b) MOD16 ET in plain area; (c) SEBAL ET in hill area; (d) MOD16
ET in hill area; (e) SEBAL ET in mountain area; (f) MOD16 ET in mountain area; (g) SEBAL ET in plateau area; (h) MOD16 ET in plateau
area.

Figure 8. Validation for different seasons. (a) SEBAL ET for spring; (b) MOD16 ET for spring; (c) SEBAL ET for summer; (d) MOD16
ET for summer; (e) SEBAL ET for autumn; (f) MOD16 ET for autumn; (g) SEBAL ET for winter; (h) MOD16 ET for winter.

3.2.5 Summary of point-scale validation

Based on the contents of Sect. 3.1.1–3.1.4, SEBAL showed
a higher accuracy than MOD16 in most conditions, while
MOD16 showed a better performance only for temper-
ate zones, mountainous areas, and the spring season based
on the values of RMSE and rRMSE. Moreover, both
the models underestimated for all conditions, except SE-
BAL overestimated for tropical zones (MBE= 7.58 mm per
8 d), mountainous areas (MBE= 1.19 mm per 8 d), and
spring (MBE= 3.13 mm per 8 d), and MOD16 overesti-
mated for tropical zones (MBE= 8.86 mm per 8 d), tem-
perate zones (MBE= 0.29 mm per 8 d), mountainous areas
(MBE= 1.67 mm per 8 d), and winter (MBE= 3.18 mm per

8 d). In general, SEBAL showed a higher accuracy than
MOD16 based on point-scale validation (Fig. 9). For SEBAL
and MOD16, respectively, the RMSE was 7.77 and 8.43 mm
per 8 d, the rRMSE was 44.91 % and 48.72 %, and the r value
was 0.85 and 0.83. Furthermore, both the models slightly un-
derestimated overall, with an MBE of −1.27 and −1.66 mm
per 8 d for SEBAL and MOD16, respectively.

3.3 Validation at the basin scale using the water
balance method

Additionally, validation using hydrological data was per-
formed to investigate the performance of the RS-based mod-
els at the basin scale. The results (Fig. 10) show that both
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Figure 9. The results of the overall validation. (a) SEBAL ET validation at the 8 d scale; (b) MOD16 ET validation at the 8 d scale.

Table 2. The performance of the ET estimation of RS-based models
at the basin scale.

Basin Model Average Bias
(mmyr1−1) (mmyr1−1)

SLRB SEBAL 369.11 8.06
MOD16 339.09 −21.96

HRB SEBAL 403.46 −20.78
MOD16 319.43 −104.81

HuRB SEBAL 535.56 −45.38
MOD16 372.45 −208.49

YeRB SEBAL 332.92 −40.67
MOD16 333.18 −40.41

YRB SEBAL 549.04 13.34
MOD16 419.77 −115.93

PRB SEBAL 673.91 −80.26
MOD16 473.13 −281.04

SeB SEBAL 682.22 −95.86
MOD16 559.22 −218.86

SwB SEBAL 444.27 39.67
MOD16 400.52 −4.08

CB SEBAL 141.82 1.81
MOD16 238.44 98.43

SwB: Southwest Basin; CB: Continental Basin; PRB: Pearl River
Basin; YRB: Yangtze River Basin; SeB: Southeast Basin; HRB:
Haihe River Basin; YeRB: Yellow River Basin; HuRB: Huaihe
River Basin; SLRB: Songhua and Liaohe River Basin.

the models had a negative bias, with an MBE of −24.45
and −96.66 mmyr−1 for SEBAL and MOD16, respectively,
at the basin scale. SEBAL showed a higher accuracy, with
an RMSE of 42.05 mmyr−1, an rRMSE of 12.65 %, and
an r value of 0.98 (MOD16: RMSE= 118.55 mmyr−1,
rRMSE= 32.84 %, r = 0.91). As shown in Table 2, the av-
erage ET of SEBAL varied from 141.83 to 682.22 mmyr−1

among the different basins, while bias varied from −95.86
to 39.67 mmyr−1. The average ET of MOD16 varied from
238.44 to 559.22 mmyr−1 among the different basins, while
bias varied from −281.04 to 98.43 mmyr−1.

Figure 10. The results of validation at the basin scale.

3.4 Comparison of the spatial distribution of ET
between SEBAL and MOD16

Regarding the modeled spatial distribution of ET, both the
SEBAL and MOD16 models showed that the annual average
(2001–2018) ET in China increased from the northwest to
the southeast (Fig. 11a, b, and d). The annual ET of SEBAL
varied from 0 to 1600 mm in space, with a mean value of
482.27± 192.31 mm, while that of MOD16 varied from 0 to
1200 mm, with a mean value of 359.61± 59.52 mm. In gen-
eral, compared to the ET value estimated using MOD16 and
SEBAL, the ET value estimated using SEBAL was higher
and showed a greater spatial difference of ET in China. For
84.07 % of the total area of China, the annual ET estimated
by SEBAL was higher than that estimated by MOD16; for
14.07 % of the total area of China, the difference was more
than 2 times – these areas are mainly distributed in south-
ern China, where ET is relatively high, and the difference
reaches more than 600 mm in some places. Only in 15.93 %
of the total area of the country was the annual ET estimated
by SEBAL lower than that estimated by MOD16; these areas
are mainly distributed in northwestern China, where ET is
relatively low (Fig. 11c and e). Regarding the distribution of
ETSEBAL, a bimodal curve with the boundary of ∼ 500 mm
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Figure 11. A comparison between the SEBAL and MOD16 models. (a) Distribution of annual average ETSEBAL. (b) Distribution of annual
average ETMOD. (c) Distribution of the difference between SEBAL and MOD16 (ETSEBAL – ETMOD). (d) Histogram of annual average
ETSEBAL and ETMOD. (e) Histogram of the relative difference between SEBAL and MOD16 ((ETSEBAL – ETMOD)/ETMOD). (f) Map of
ETSEBAL below 500 mm. (g) Map of ETSEBAL over 500 mm. (h) Land cover in China.

is shown in Fig. 11d; it was likely contributed by the mises-
timation of parts of regions. The ETSEBAL map was divided
into two parts with 500 mm as a threshold value; the part
of ETSEBAL below 500 mm was distributed in northwestern
China (Fig. 11f), whereas the part of ETSEBAL over 500 mm
was distributed in the southeast (Fig. 11g). It should be noted
that the vegetation cover in the northwest of China is mainly
grassland and a small fraction of cropland (Fig. 11h), and
the ETSEBAL of grassland and cropland was underestimated

by the SEBAL model (Sect. 3.1). In contrast, the ETSEBAL
showed slightly overestimated forest, which is the main land
cover type in the southeast of China. Therefore, the dis-
tributed ETSEBAL around ∼ 500 mm was underestimated or
overestimated and thus formed the bimodal curve.
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4 Discussion

4.1 Summary of validation results and comparison with
other studies

The ETSEBAL showed a relatively good performance in China
as a whole, with an average r value of 0.79 and an aver-
age RMSE of 0.92 mmd−1. These results are close to those
obtained in other studies. Rahimzadegan and Janani (2019)
used SEBAL to estimate the actual ET of pistachio in Sem-
nan, Iran, and found that the modeled value had a high con-
sistency with the in situ measured value (r = 0.80); this value
was slightly lower than the cropland validation obtained in
the present study (r = 0.88, daily scale). This difference is
mainly due to differences in the validation method between
these two studies. Rahimzadegan and Janani (2019) used the
P–M equation and field observational data from intelligent
meteorological instruments to measure the standard ET, and
MOD16 data, which are also based on the P–M equation,
were evaluated in this study as performing worse than the
SEBAL estimation at both point scale and basin scale. Xue
et al. (2020) used pySEBAL (SEBAL in the Python environ-
ment) to estimate the ET of almonds, tomatoes, and maize
in the Central Valley of California, USA, and showed that
the r value and RMSE of pySEBAL varied from 0.60 to
0.86 and from 1.08 to 1.79 mmd−1, respectively; the authors
used Landsat 8 OLI/TIRS images with a spatial resolution of
30 m× 30 m as the model input, which leads to a lower influ-
ence of mixed pixels compared to MODIS data with a spatial
resolution of 1 km× 1 km. Wagle et al. (2017) evaluated the
performance of SEBAL for ET estimation for sorghum based
on flux tower observational data from Oklahoma, USA; the
results showed that the r value varied from 0.73 to 0.87,
while the RMSE varied from 0.83 to 1.24 mmd−1, which
is basically in agreement with the results of this study (r
value varied from 0.68 to 0.90 and RMSE varied from 4.48 to
10.75 mm per 8 d under different environmental conditions).
MOD16 performed worse than SEBAL. Part of the bias is
caused by objective factors such as the inaccuracy of the in-
put data and the limitations of the validation methods. Mean-
while, additional bias is contributed by the subjective factor
of the innate defects of the algorithms. These factors will be
discussed in detail in Sects. 4.2 and 4.3. Overall, the SEBAL
ET showed an acceptable performance in China as demon-
strated by comparing pervious studies.

4.2 Errors caused by objective factors

4.2.1 Inaccuracy of input data

Both SEBAL and MOD16 used MODIS data as the main
input images (e.g., MCD43 surface albedo, MOD13 NDVI,
MOD11 surface temperature). However, the accuracy of
these data is uncertain to some extent (Ramoelo et al., 2014).
For instance, surface albedo is a critical radiative parame-
ter; however, complex algorithm-led remote-sensing-based

albedo products can contain errors introduced by the spec-
tral conversion (Song et al., 2020). Wang et al. (2014) com-
pared MODIS albedo products with ground data and Landsat
data for different land cover types in the USA and found that
the RMSE of the products varied from 0.01–0.05 and that
the error was higher during periods of snow cover. Further-
more, surface temperature, as a fundamental parameter for
the calculation of surface energy balance, affected the esti-
mation of ET to a great extent (Long et al., 2011). Timmer-
mans et al. (2006) analyzed the sensitivity of each parameter
of the SEBAL model to grassland in Oklahoma, USA, and
the results indicated that the difference in surface air tem-
perature had the greatest influence on the accuracy of SE-
BAL estimation. MODIS surface temperature products are
retrieved using the split-window algorithm. Yu et al. (2019)
used in situ measurement data to validate MODIS surface
temperature products in the Heihe River Basin (HRB) in
northwestern China; the results indicated that the daytime
MOD11 (obtained by the Terra satellite) and MYD11 (ob-
tained by the Aqua satellite) products have accuracies of
−0.84± 0.88 K and −0.11± 0.42 K, respectively. In gen-
eral, original MODIS data contained errors to some extent.

Additionally, gap filling of missing or unreliable MODIS
data may cause the errors to some extent. For example, spring
and summer have relatively frequent precipitation, which
causes more unreliable pixels due to clouds, and these pixel
values were finally replaced by gap filling the nearest date
pixel value; therefore, the modeled ET value of these pixels
was close to that of the nearest date without precipitation. In
fact, due to the high air humidity on rainy days, evaporation
and transpiration are relatively less than that of the nearest
date (Ferreira and Cunha, 2020; Li et al., 2016). Moreover,
it should be noted that due to the decrease in surface avail-
able radiation energy caused by cloud cover, the ET (both
the actual and modeled value) is also less than that of the
nearest date (Cheng et al., 2020). This may explain the ob-
vious overestimation at lower ET rates in spring, summer,
and other pixels affected by cloud. Furthermore, a relatively
high bias of SEBAL ET was found in winter; the rRMSE
reached 66.92 % (the highest value among all situations). Ice
and snow cover caused by frequent snowfall and low temper-
ature in winter, which will affect remotely sensed informa-
tion to a great extent, e.g., reflectance (Casey et al., 2017),
will further affect the ET estimation. Moreover, the under-
estimation was found at higher ET rates in most situations
as shown in Figs. 4–10, which may be caused by the satu-
ration issue of optical sensors (Maimaitijiang et al., 2020).
For example, under dense vegetation cover, the vegetation
index (e.g., NDVI) was likely underestimated and cannot ac-
curately characterize vegetation status (Maimaitijiang et al.,
2020; Vergara-Díaz et al., 2016); therefore, soil heat flux will
be overestimated (Eq. A9 in Appendix A) and may further
cause the latent heat flux underestimation.
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4.2.2 Errors in flux tower measurements

The eddy covariance system (flux tower observations) is the
most commonly used observation system to calculate and
analyze the energy and mass exchange between the surface
and atmosphere (Wang and Dickinson, 2012). However, the
typical error of ET estimation based on the eddy covariance
system is about 5 %–20 % (Culf et al., 2008; Vickers et al.,
2010). Also, the eddy covariance system generally has an
energy balance non-closure issue: the sum of the soil heat
flux, sensible heat flux, and latent heat flux was found to
be less than net radiation in most cases (Mu et al., 2011;
Wilson et al., 2002). Recently, it was found that the non-
closure issue of the energy balance was explained by the en-
ergy fluxes from secondary circulations and larger eddies that
cannot be captured by EC measurement at a single station
(Foken et al., 2011). In this study, the Bowen ratio method
(Eq. 3), which assumes that the residual of the energy balance
is attributed to sensible and latent heat flux and assigns the
missing energy flux to them (Song et al., 2016; Wang et al.,
2019), was used to enforce energy closure. Actually, this as-
sumption is not very correct, which generally led to sensible
and latent heat flux overestimation (Song et al., 2016); this
could explain why the SEBAL ET was generally underesti-
mated when compared to flux-tower-observed ET (Fig. 9).
The same issue was found in regional-scale validation due to
the ignoring of1S in the water balance computation process
(although small), which could lead to the regional ET over-
estimation and further cause SEBAL ET underestimation in
regional validation (Fig. 10).

Additionally, the mismatch of the flux tower footprint and
spatial resolution of SEBAL ET will causes errors as well.
Generally, the footprint of the flux tower varied from hun-
dreds of square meters to several square kilometers, which
was determined by the height of the observation instrument,
the intensity of the turbulence, terrain, environment, and veg-
etation status (Chen et al., 2012; Damm et al., 2020; Schmid,
1994). Moreover, a footprint probability distribution func-
tion (PDF) could characterize the footprint at a fine spatial
resolution (Wang et al., 2019), but it may not be suitable
for the coarse resolution in this study (kilometer scale). In
this study, the 1 km× 1 km area of the pixel was used for
matching the footprint of the flux tower, which refers to the
study of Velpuri et al. (2013); however, the footprint is not
stable but varies with environmental change, e.g., vegetation
height. Chen et al. (2012) reported that the forest footprint
has a clear difference with grassland; the footprint of forest
is much larger, which reaches the kilometer scale. In fact, the
forest footprint may match the spatial resolution better in this
study. Therefore, it may explain why the SEBAL ET has the
greatest performance in forest but the worst performance in
grassland. Compared to the study of Velpuri et al. (2013), the
grassland also showed the worst remote sensing ET estima-
tion in the US when using flux tower data for validation at a
kilometer scale.

Although a comprehensive evaluation of SEBAL ET over
different classes was conducted in this study, users should be
aware of the uncertainties due to the limited number of vali-
dation sites in some classes. For example, only one site was
available for the evaluation over cropland. Because this crop-
land flux tower site was set in a plain and warm–temperate
zone, the accuracy may only represent the data quality of
cropland ET in the warm–temperate plain zone, but not other
regions. Nevertheless, long-time-series data were obtained
from this site, which covered different seasons and differ-
ent crop types. Employing these hundreds of samples in the
validation could remedy the single-site insufficiency to a cer-
tain extent. Similarly, only one site was found in the val-
idation over two other classes, i.e., the tropical zone and
warm–temperate zone. Long-time-series data were also in-
corporated to enhance the representativeness of the single
site. Regarding the other classes, two or more sites were used,
which will lead to more reliable results. Compared to previ-
ous studies (Aguilar et al., 2018; Hu et al., 2015; Ramoelo
et al., 2014; Yang et al., 2017), a larger number of validation
samples (flux tower sites) were used in this study, indicat-
ing that the findings are reliable. Additionally, although the
validation of SEBAL ET in this study followed the litera-
ture (Kim et al., 2012; Ramoelo et al., 2014) and considered
different land cover types, climate zones, elevation, and sea-
sons, several more situations may need to be considered: for
example, whether the SEBAL accuracy was different across
years (Velpuri et al., 2013) and satellite sensors (Long et al.,
2011). Overall, with the increasing number of flux towers set
up in China, more reliable and comprehensive validation of
SEBAL ET can be conducted in follow-up research.

4.3 Errors caused by subjective factors

4.3.1 Temporal scaling-up method

Remotely sensed information represents the satellite-passing
time. Therefore, in the RS-based models, scaling up was per-
formed from the instantaneous level to the daily level. SE-
BAL uses the evaporative fraction (3) for scaling up (Gao
et al., 2020), as shown in Eqs. (A30) and (A31). However,
several studies have indicated that the assumption of a con-
stant evaporative fraction is not very reasonable (Gentine
et al., 2011; Hoedjes et al., 2008). Gentine et al. (2007) pro-
posed that soil moisture and vegetation resistance are the fac-
tors that mainly affect the stability of 3, and soil moisture is
positively correlated with 3. Additionally, a larger leaf area
index will generally lead to a lower stability of 3 under the
same soil moisture (Farah et al., 2004). In general, due to
the instability of 3, the above assumption will cause a nega-
tive bias of 10 %–20 % in the estimation of daily ET (Delogu
et al., 2012; Ryu et al., 2012; Van Niel et al., 2012). This
can explain why the validation in this paper showed that the
ET estimated using SEBAL was underestimated. While the
MOD16 model estimates daily ET using the P–M equation,
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Figure 12. The performance of different domain sizes used in SE-
BAL ET estimates.

which is a semi-empirical equation, it uses 8 or 16 d compos-
ite remotely sensed input data and daily meteorological input
data to compute the 8 d composite ET products (Mu et al.,
2011). The use of a semi-empirical equation avoids the need
to perform scaling up; however, it has the problem of theo-
retical deficiency (Mu et al., 2007; Ramoelo et al., 2014).

4.3.2 Calculation of sensible heat flux

Sensible heat flux is the most complicated part of the energy
balance calculation (Wang and Dickinson, 2012). The P–M
algorithm defines the available energy (A, unit: Wm−2) as
the sum of the sensible heat flux and latent heat flux (Eq. 10)
(Mu et al., 2011).

A=H + λET= Rn−G (10)

The P–M algorithm calculates λET using a semi-empirical
formula and A, and it therefore avoids the direct calculation
ofH . Meanwhile, SEBAL calculatesH based on MOST and
the hot–cold pixel (Bastiaanssen et al., 1998a, b). However,
several studies have indicated that MOST has an error of
10 %–20 % for the estimation of the boundary layer thick-
ness (Foken, 2006; Högström and Bergström, 1996). There-
fore, MOST is also a source of error in SEBAL. Due to the
complexity of the sensible heat flux, SEBAL makes several
assumptions to estimate H , which may introduce error into
the ET estimation (Zheng et al., 2016).

Additionally, the selection of the hot–cold pixel depends
on the domain size (the actual size of the modeling domain
and/or satellite imagery being used). For instance, the basin-
scale selection of the hot–cold pixel with diverse vegetation
cover and single vegetation cover, respectively, will lead to
different results for dT. Theoretically, with the domain size
increasing, there is a possible tendency of Ts_hot increasing
and Ts_cold decreasing. For example, if Ts_cold remains in-
variant and Ts_hot increases under the condition of domain
size increasing, the H estimates will decrease and λET esti-
mates could thus increase. In the study of Long et al. (2011),

the results showed that a 2 K increase in Ts_hot will result in a
9.3 % increase but a 9.1 % decrease in a and b, respectively,
and further caused an 11.8 % mean decrease in H . Recently,
the study of Saboori et al. (2021) reported that the cold pixel
performed more stably than the hot pixel in time series, es-
pecially in winter; the hot pixel being highly varied may be
due to the similarity of NDVI over space, and it could fur-
ther explain the poor performance of SEBAL ET in winter.
Seguin et al. (1999) demonstrated that the method of hot–
cold pixel selection for the estimation of H generally has an
accuracy of∼ 50 Wm−2. In this study, the ET was computed
in the domain size of 1200 km× 1200 km, which is a rela-
tively large area. The performances of different domain sizes
in ET computation were compared (Fig. 12) and resulted in
generally better performance in smaller areas, which may be
due to the relatively limited spatial heterogeneity (Long et al.,
2011). However, a larger domain size may have faster com-
putational efficiency of ET on a regional scale. The trade-off
between efficiency and accuracy (i.e., most suitable domain
size) needs to be further studied. Overall, the domain size
employed in this study (1200 km× 1200 km) showed accept-
able accuracy. Although several algorithms have been pro-
posed that use other methods to avoid the error caused by
the selection of the hot–cold pixel, such as the SEBS (Su,
1999), these replaced the selection of the hot–cold pixel with
the fitting of dry and wet edges. However, no evidence has
been found that the method of fitting dry and wet edges can
significantly improve the accuracy of ET estimation (Wagle
et al., 2017; Xue et al., 2020).

Besides sensible heat flux, the errors of SEBAL ET may be
derived from net radiation or soil heat flux as well (Li et al.,
2017; Teixeira et al., 2009). For net radiation, which is com-
puted using surface albedo and the Stefan–Boltzmann law
(Eq. A2), there was general agreement with the flux-tower-
observed value, while soil heat flux, which is computed us-
ing an empirical formula related to net radiation and NDVI
(Eq. A9), has a poor performance (Li et al., 2017; Song et al.,
2016). In the study of Li et al. (2017), soil heat flux estima-
tion showed a clear overestimation in higher ET areas, e.g.,
wetland, which may further cause the sensible and latent heat
flux underestimation in higher ET rates. In most SEBR-based
algorithms, similar net radiation and soil heat flux estimation
methods are used, and various sensible heat flux estimation
methods are the main sources of the difference among the
various SEBR-based algorithms. However, the causes of the
net radiation and soil heat flux estimation errors have not
been clearly discussed, e.g., the effect of satellite transmit-
ted time or land cover types. These issues could be the focus
of our follow-up research; for example, geostationary satel-
lites and flux towers with high-frequency observations may
be helpful for this research.
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5 Data availability

The dataset that was generated using SEBAL with a spa-
tial resolution of 1 km and a temporal resolution of 1 d
can be used for various types of geoscientific studies, es-
pecially for global change, water resources management,
and agricultural drought monitoring. The evapotranspira-
tion (ET) dataset for China is distributed under a Cre-
ative Commons Attribution 4.0 international license. The
dataset is named SEBAL evapotranspiration in China (SE-
BAL ET) and consists of 18 years of data. More in-
formation and data are freely available from the Zenodo
repository at https://doi.org/10.5281/zenodo.4243988 and
https://doi.org/10.5281/zenodo.4896147 (Cheng, 2020a, b).

6 Conclusions

In this study, we generated a long-time-series (2001–2018)
ET product based on SEBAL and multisource images. We
further conducted a comprehensive validation of the product
and compared its performance under different environmen-
tal conditions in China with the performance of the ET esti-
mated using MOD16 data. The conclusions are as follows.

1. The ET product generated using SEBAL showed a good
performance in China. Compared to flux tower observa-
tional data, the r value of the SEBAL ET reached 0.79
for 9896 samples; the RMSE was 0.92 mmd−1 and the
rRMSE was 42.04 %. SEBAL underestimated ET as a
whole, with an MBE of−0.15 mmd−1. The SEBAL ET
product can adequately represent the actual ET and can
be used in research on water resources management,
drought monitoring, and ecological change, for exam-
ple.

2. Based on observational data from eight flux towers from
2003 to 2010, the ET datasets estimated using SEBAL
and MOD16 were validated at the 8 d scale for different
land cover types, climate zones, terrain types, and sea-
sons. The results showed that SEBAL performed best
in the conditions of forest cover (rRMSE= 38.08 %),
subtropical zones (rRMSE= 32.32 %), hilly ter-
rain (rRMSE= 32.32 %), and the summer season
(rRMSE= 36.56 %) and performed worst in the
conditions of grassland cover (rRMSE= 52.63 %),
warm–temperate zones (rRMSE= 53.95 %), plain
terrain (rRMSE= 53.95 %), and the winter season
(rRMSE= 66.92 %). MOD16 performed best in
the conditions of forest cover (rRMSE= 39.29 %),
subtropical zones (rRMSE= 36.73 %), hilly ter-
rain (rRMSE= 36.73 %), and the summer season
(rRMSE= 43.95 %) and performed worst in the
conditions of grassland cover (rRMSE= 62.89 %),
warm–temperate zones (rRMSE= 52.10 %), plateau
terrain (rRMSE= 62.89 %), and the winter season

(rRMSE= 87.80 %). In general, the two models have
similar adaptability to different conditions, although
SEBAL performed slightly better than MOD16.

3. Based on flux tower observational data and hydrolog-
ical observational data, the ETs estimated by SEBAL
and MOD16 were validated at the point scale and basin
scale. The results showed that, at the point scale, the ac-
curacy of SEBAL was 7.77 mm per 8 d for the RMSE,
44.91 % for the rRMSE, and 0.85 for the r value; the ac-
curacy of MOD16 was 8.43 mm per 8 d for the RMSE,
48.72 % for the rRMSE, and 0.83 for the r value. At the
basin scale, the accuracy of SEBAL was 48.99 mmyr−1

for the RMSE, 13.57 % for the rRMSE, and 0.98 for
the r value. In general, SEBAL performed slightly bet-
ter than MOD16 at the point scale, while SEBAL had a
larger accuracy advantage at the basin scale.

4. Overall, the SEBAL ET is higher than the MOD16 ET:
for 84.07 % of the total area of China, the SEBAL ET
showed higher values. Additionally, the SEBAL ET is
closer to the in situ measured ET in most conditions,
while the MOD16 ET performed better only in temper-
ate zones, mountain areas, and the spring season. In gen-
eral, the two models both have a good performance and
can be used in the qualitative analysis and most quan-
titative analyses of regional ET. Furthermore, the com-
bination of the two models can improve the overall ET
estimation accuracy for use in applications with higher
accuracy requirements.

Compared to the widely used MOD16 ET data, the SE-
BAL ET product showed a higher accuracy and temporal
resolution. However, it still has a daily error of 42.04 %
(0.92 mmd−1) at the point scale and a yearly error of 13.57 %
(48.99 mmyr−1) at the basin scale. Therefore, the improve-
ment of the SEBAL algorithm will be the focus of follow-up
research. Moreover, the 1 km spatial resolution of the SE-
BAL ET product cannot meet the requirements of more de-
tailed research. Due to the difficulty of simultaneously sat-
isfying the requirements for the spatial and temporal resolu-
tions of remote sensing data, the fusion of multiple sources
of remote sensing data may be the most effective way to im-
prove the spatiotemporal resolution of daily ET products.
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Appendix A: Description of generating SEBAL ET in
detail

The SEBAL model calculates the instantaneous λET of the
satellite transit time as a residual based on the surface energy
balance equation (Eq. A1) as follows:

λET= Rn−G−H, (A1)

where Rn is the net radiation flux, H is the sensible heat
flux, and G is the soil heat flux (the unit of all three parame-
ters is Wm−2). In this paper, MODIS data (MCD43 surface
albedo, MOD11 surface temperature, MOD13 NDVI) and
meteorological data (air temperature) from the Global Mod-
eling and Assimilation Office (GMAO) were used as input
for surface parameterization (Rn, G, and H ). The equations
for Rn are shown in Eqs. (A2)–(A5) below:

Rn = (1−α)Rs_down+Rl_down−Rl_up, (A2)

where α is the surface albedo obtained from the MCD43
data, and Rs_down, Rl_up, and Rl_down are the downwelling
shortwave radiation, downwelling longwave radiation, and
upwelling longwave radiation, respectively (the unit of all
three parameters is Wm−2). Rs_down can be calculated using
the Julian day (used to estimate the astronomical distance
between the sun and earth), elevation (used to estimate at-
mospheric emissivity), and solar zenith angle at the time of
satellite transit. Rl_up and Rl_down can be calculated using the
surface temperature (MOD11), NDVI (MOD13, used to esti-
mate surface emissivity), air temperature (GMAO data), and
atmospheric emissivity based on the Stefan–Boltzmann law.
The equations for Rs_down, Rl_up, and Rl_down are given in
Eqs. (A3)–(A5).

Rs_down =
Gsc · cosθ · τsw

d2
r

(A3)

Rl_up = εaσT
4

a (A4)

Rl_down = εσT
4

s (A5)

Here, Gsc is the solar constant (1376 Wm−2), θ is the solar
zenith angle, τsw is the atmospheric transmittance (Eq. A6)
(Tasumi, 2000), dr is the astronomical distance between
the sun and earth (Eq. A7) (Bastiaanssen et al., 1998a),
εa and ε are the atmospheric emissivity (Eq. A8) (Basti-
aanssen et al., 1998a) and surface emissivity (obtained from
MOD11), respectively, σ is the Stefan–Boltzmann constant
(5.67× 10−8 Wm−2 K−4), and Ta and Ts are the air temper-
ature (unit: K; obtained from GMAO data) and surface tem-
perature (unit: K, obtained from MOD11), respectively.

τsw = 0.75 · 2× 10−5
·Z (A6)

dr = 1+ 0.0167sin
(

2π (J − 93.5)
365

)
(A7)

εa = 1.08(− lnτsw)0.265 (A8)

Here, Z is the elevation obtained from a digital elevation
model (DEM) (unit: m) and J is the Julian day. G can be

calculated by the following empirical equation (Bastiaanssen
et al., 1998a):

G= Rn ·
Ts− 273.16

α

(
0.0032 ·

α

c
+ 0.0032

(α
c

)2
)

· (1− 0.978NDVI4), (A9)

where Ts is the surface temperature (unit: K) and c represents
the influence of the satellite transit time onG. The value of c
is 0.9 for transmission times before 12:00 LT (local time), 1.0
for transmission times between 12:00 and 14:00 LT, and 1.1
for transmission times between 14:00 and 16:00 LT. H can
be calculated as follows:

H =
ρairCpdT

ra
, (A10)

where ρair (unit: kgm−3) is the air density (Eq. A11) (Smith
et al., 1991), Cp (unit: J (kg ·K)−1) is the specific heat of air
at constant pressure, dT (unit: K) is the difference between
the aerodynamic surface temperature (Tz0 h; unit: K) and the
reference height temperature (Ta, unit: K), and ra is the aero-
dynamic resistance (unit: sm−1) (Eq. A12).

ρair = 349.635
(Ta− 0.0065Z)5.26

T 6.26
a

(A11)

ra =
ln
(
Z2
Z1

)
kUf

(A12)

Here, k is the von Karman constant (0.41),Uf is the frictional
wind speed (unit: ms−1) (Eq. A13), and Z1 and Z2 are 0.01
and 2, respectively:

Uf =
kUr

ln(Zr/z0 m)
, (A13)

where Ur is the wind speed at height Zr, which can be cal-
culated from the wind speed monitored by weather stations
(Uw, Eq. A14); Zr is 200 m in this study (Zeng et al., 2008),
and z0 m is the surface roughness (unit: m, Eq. A15) (Moran
and Jackson, 1991).

Ur =
Uw · ln(67.8Zr− 5.42)

4.87
(A14)

z0 m = e
(5.65NDVI−6.32) (A15)

However, since it is difficult to calculate dT directly, the
model assumes that there is a linear relationship between sur-
face temperature (Ts, unit: K) and dT, as shown in Eq. (A16).

dT= aTs+ b (A16)

SEBAL solves the values of a and b by selecting the hot
and cold pixels; it assumes that the hot pixel represents pix-
els of dry cropland with low vegetation cover, bare surfaces,
or saline alkali land covered by vegetation with zero λET
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Figure A1. A flowchart of the calculation of sensible heat flux using
Monin–Obukhov similarity theory (MOST).

(H =Rn−G), and the cold pixel represents pixels with a
sufficient water supply, lush vegetation, and low tempera-
ture, with an H of zero (λET=Rn−G). In this study, the
hot and cold pixels were selected automatically by follow-
ing certain rules (Long et al., 2011): for the hot pixel, the
pixels with high Ts (top 10 %) and low NDVI (top 10 %) in
the image were selected first; further selected were the pixels
with land cover of cropland or bare surfaces (according to
the MOD12 land use product) from the pixels selected in the
last step. Finally, the pixel with the highest Ts in these pixels
was selected as the hot pixel. In contrast, for cold pixel, the
pixels with low Ts (top 10 %) and high NDVI (top 10 %) in
the image were selected first; further selected were the pixels
with land cover of dense vegetation (generally forest) from
the pixels selected in the last step. Finally, the pixel with the
lowest Ts in these pixels was selected as the cold pixel. It
should be noted that the China area is made up of 28 tiles
of remote sensing images (MODIS data), and each tile was
computed independently; hot and cold pixel selection was
also independent in the ET-generating process (Long et al.,
2011). After hot and cold pixels are determined, a and b can
be expressed as follows.

a =
(Rn_hot−Ghot)ra_hot

Cpρair_hot(Ts_hot− Ts_cold)
(A17)

b = −aTs_cold (A18)

Moreover, it should be noted thatH and ra are interrelated
variables in the actual calculation; therefore, the Monin–
Obukhov similarity theory (MOST) Monin–Obukhov length
(L, unit: m) is introduced for iterative calculation to obtain
stable values ofH and ra. The details of MOST are shown in
Fig. A1.

The Monin–Obukhov length is a parameter reflecting the
turbulent characteristics of the near-surface layer (Eq. A19)
(Monin and Obukhov, 1954); 9m(Zr) is the stability correc-
tion function of momentum, and9H (Z1) and9H (Z2) are the
stability correction functions of sensible heat flux (Eqs. A20–
A26) (Paulson, 1970).

L=
ρairCpU

3
f Ts

kgH
(A19)

Here, g is the acceleration due to gravity (9.81 ms−2).
While L> 0, indicating a stable state, 9m(Zr), 9H (Z1), and
9H (Z2) are calculated as follows.

9m(Zr)=
−5Zr

L
(A20)

9H (Z1)=
−5Z1

L
(A21)

9H (Z2)=
−5Z2

L
(A22)

While L< 0, indicating an unstable state, 9m(Zr),
9H (Z1), and 9H (Z2) are calculated as follows.

9m(Zr)= 2ln
(

1+ ζZr

2

)
+ ln

(
1+ ζ 2

Zr

2

)
+ 2arctan(ζZr )+ 0.5π (A23)

9H (Z1)= 2ln

(
1+ ζ 2

Z1

2

)
(A24)

9H (Z2)= 2ln

(
1+ ζ 2

Z2

2

)
(A25)

ζz =

(
1−

16Z
L

)0.25

(A26)

While L= 0, indicating a neutral state,
9m(Zr)=9H (Z1)=9H (Z2)= 0. Then, iterative cal-
culation is carried out to correct H (Eqs. A27–A29).

U∗f =
kUr

ln (Zr/z0 m)−9m(Zm)
(A27)

r∗a =
ln
(
Z2
Z1

)
−9H (Z1)−9H (Z2)

kU∗f
(A28)

H =
ρairCpdT
r∗a

(A29)

Several iterations were carried out until the value ofH was
stable. Then, Eq. (A1) was used to calculate λET. However,
it should be noted that the entire estimated energy compo-
nent was an instantaneous value including latent heat; there-
fore, the concept of the evaporation fraction (3) was used
to temporally scale up from the instantaneous value to the
daily ET. The evaporation fraction was defined as the ratio of
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latent heat to available energy (e.g., Rn−G) (Eq. A30). Sev-
eral studies have indicated that the evaporation fraction can
be regarded as constant throughout the day (Crago, 1996);
therefore, the daily ET can be calculated as follows.

3=
λET
Rn−G

(A30)

ETdaily =
3(Rdaily−Gdaily)

λ
(A31)

Here, ETdaily, Rdaily, and Gdaily are the daily evapotranspira-
tion, daily net radiation, and daily soil heat flux, respectively.
Finally, the daily ET value was calculated. More details about
SEBAL can be found in Bastiaanssen et al. (1998a).

Appendix B: Ratio of interpolated pixels of land
surface temperature data

Figure B1. Ratio of interpolated pixels of land surface temperature (MOD11) data: (a) time series of interpolated pixels per month over
2001–2018 and (b) histogram of the ratio of interpolated pixels.
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