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Abstract. Natural resources are increasingly threatened in the world. Threats to biodiversity and human well-being pose - 1 Deleted: being

enormous challenges jn_many vulnerable areas. Effective monitoring and protection of sites with strategic conservation { Deleted: to

importance require timely monitoring, with a particular focus on certain land cover gclasses that are especially vulnerable. { Deleted: special
Deleted: classes which

Larger ecological zones and wildlife corridors also warrant monitoring, as these areas are subject to an even higher degree of

pressure and habitat loss as they are not ‘protected’ compared to Protected Areas (national parks, etc.). To address such a need,
a satellite imagery-based monitoring workflow was developed to cover at-risk areas. The first phase of the programme covered
a total area of 560 442 km? in sub-Saharan Africa. In this update, we remapped some of the areas using the latest satellite
images available, and in addition we added some new areas to be mapped. Thus, in this version we have updated and mapped

an additional 852 025 km? in the Caribbean, African and Pacific regions, involving up to 32 land cover classes. Medium to
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high spatial resolution satellite imagery was used to generate dense time series data, from which the thematic land cover maps
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were derived. Each map and change map was fully verified and validated by an independent team to meet our strict data quality
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requirements. The independent validation datasets for each key landscape for conservation (KLC) are also described and
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presented here (all datasets presented are available at https://doi.org/10.1594/PANGAEA.931968, Szantoi et al., 2021). //A Deleted: -
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Key landscapes for conservation (MacKinnon et al., 2015) (KLCs) are defined as areas vast enough to sustain large wild / [ Deleted: that
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agriculture expansion, and urbanigation. Land use changes cause losses of both flora and fauna by altering wild animal /

{ Deleted:

movements, which,can lead to decreases in population size over time (Di Minin et al., 2016; van der Meer, 2018). L jvelihoods /| Deleted: of people
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increasing pressure due to consumption of resources by the growing population of the regions; for example, the population of

Africa is set to reach 2 billion by 2040 (MacKinnon et al., 2015; Di Minin et al., 2016). The representative, often transboundary, "/
location types of the KLCs uniquely position,them as benchmarks for their natural resource management jn generating, steady

income for Jocal residents while protecting their wildlife (MacKinnon et al., 2015). Benchmarking activities of this kind require

highly accurate thematic land cover change (LCC) map products. Although LCC maps exist for many areas within the regions,

the majority of products only cover protected areas, with some buffer zones (Szantoi et al., 2016). Moreover, continental and

global mapping efforts have reported thematic accuracies of such land cover maps as between 67% and 81%, with lower class

accuracies reported in many cases (Mora et al., 2014). Differences in legends and unstandardised methods make these examples

difficult to use for monitoring, modelling,or change detection studies. In order to use various land cover (LC) and LCC products

together (g.g, for modelling or, policy-making), land cover class definitions should be standardised to avoid discrepancies in

understanding thematic classes, Not all users (international organigations, national governments, civil societies, researchers)

have the capabilities to readjust such maps (Saah et al., 2020). To accommodate such diverse user profiles, a common
processing scheme is employed, and the resulting datasets can be utilised through various platforms and systems. This work
adopted the Land Cover Classification System (LCCS) of the Food and Agriculture Organization of the United Nations (FAO) |/

i Gregorio, 2005), an internationally approved ISO standard. The datasets presented in this paper are produced as part of the
Copernicus High Resolution Hot Spot Monitoring (C-HSM) activity of the Copernicus Global Land Service. “

All C-HSM products feature the same thematic land cover legend and geometric accuracy and were processed and validated
following the same methodology. All products, including the C-HSM data, are free and open to any user with guaranteed long-
term maintenance and availability under the Copernicus license.

Copernicus serves as an operational programme where data is produced,on a continuous basis. This paper presents an update

Jo four previously published (Szantoi et al., 2020b) land cover/change maps (Greater Virunga, Salonga, Upemba and Yangambi

KLCs) covering 160 281 km? of terrestrial land area in sub-Saharan Africa (SSA), and six additional KLCs covering
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2 Study area

The thematic datasets provided concentrate on sub-Saharan Africa, with additional KLCs in the Caribbean and Pacific regions. [ Deleted:
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The areas were selected based on present and future pressures envisioned and predicted by MacKinnon and colleagues (2015) [ Deleted:
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(Phase 2), 10 large areas totalling 852,025 km? were selected, mapped and/or updated, and validated (Fig. 1). These areas
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Figure 1 Spatial distribution of the key landscapes for conservation Phase 2 areas.
Table 1 Mapped key landscapes for conservation within Phase 2.
AB: Antigua and Barbuda; CAR: Central African Republic; DR: Dominican Republic; DRC: Democratic Republic of the \[De|eted; KLC [—j
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heterogeneous areas, including vegetation community types (Szantoi et al., 2013). To produce the thematic maps, the minimum
Jnapping unit concept used by Szantoi et al. (2016) was employed. Individual pixels (with corresponding land cover class

information) were assigned fo objects, where the minimum size of an object was set at 3 hectares (0.03 km?), as a compromise

between technical feasibility (pixel size) and the general size of the observable features (various land cover classes). However, 7

classification errors (omission and commission of various classes) and false alarms (for land cover change) still pccurred due ////

to data availability (cloud cover, no data) and seasonal behaviour of the land cover (e.g. rapid foliage change). To correct these

errors, expert human image interpretation skills and knowledge were applied, jmproving, the outputs from the automated

process,

3.4 Land cover change detection

Land cover change was interpreted as a categorical change in which one LC was replaced by another. Two examples of such

a categorical change are the following: (1) conversion of cultivated and managed terrestrial areas (A11) into natural and semi-

natural vegetation (A12); and (2) conversion of cultivated and managed terrestrial areas (A11) into artificial surfaces and /

associated areas (B15). L C change was identified based on detection of changes, employing the jmage-abject overlay technique

=
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locate changes such as (1) numerically compared spectral reflectance of the visible red and NIR bands and also derived indices
such as NDFI, SAVI.and NBR between the dates; and (2) classification to identify and label them (Lu et al., 2004).
LC changes were characterised as those lasting longer than a year and/or seasonal periodicity such as dry/wet seasons.

Examples of longer-term changes include urban sprawl, large or small tree plantations replacing herbaceous crops, open or

closed tree cover, or the creation of a reservoir. The L CC process applied followed the same steps for pre-processing earth

observation, images as the LC method. From the pre-processed time series imagery, selected indices such as SAVI were

calculated and statistically aggregated over defined periods to generate temporal features such as the maximum SAVI for a
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3.5 Production of validation datasets,
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In cases where classes covered smaller areas in total, additional sampling units were allocated according to Neyman optimal { Deleted: the
allocation, in order to minimise the variance of the estimator of the overall accuracy for the total sample size [n] (Gallaun et { Deleted: z
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Table 2.

« Loss of natural vegetation - change from vegetation classes to any other class
« Gain of natural vegetation - change from any class to vegetation classes
« Woody natural vegetation (forest) cover loss - tree cover to any other class
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» Woody natural vegetation (forest) cover gain - change from any class to tree cover
« Woody natural vegetation (forest) degradation - change from closed forest to open forest
* Woody natural vegetation (forest) regeneration - change from open forest to closed forest

« Cultivated and managed (cropland) extension - change from any class to cultivated classes

« Artificial surfaces (human settlements) expansion - change from any class to built-up class [ Deleted: H

Table 3 Validation dataset attributes

Figure 3 Spatial distribution of the validation datasets within the updated key landscapes for conservation.
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accuracy for each product (KLC) and a minimum of 75% thematic accuracy (producer’s and user’s accuracy) for each class [ Deleted: P ]
within each KLC. The land cover change accuracy should be >72%. The requirements for C-HSM map accuracy were {Debtﬁdi y ]
established based on users’ needs, as accurate LC/LCC map products are needed for many applications — such as ecosystem Deleted: (LCC) ]
modelling (Grafius et al., 2016) and ecosystem valuation (Foody, 2015) — besides the general need for accurate representation \ \% E::Zijz P — %
of ground cover for policy;making. The Copernicus Global Land Service defines the overall thematic accuracy of dynamic { Deloted: - ]
land cover mapping products as > 80% (Lang and Tychon, 2015). In exceptional cases, thematic accuracies nay be lower than { Deleted: , ]
the threshold due to the difficulty of discriminating, a particular class within a certain KLC. Deleted: , ]
\ \\\{ Deleted: the ]
Figure 5 shows the final LC and LCC products for the updated KLCs (CAF02, CAF07, CAF11 and CAF99), while Figure,6 \ {Deleted: ]
(CARO01, WAF04), Figure 7 (CAF05, EAF04, SAF21) and Figure 8 (PACO1) show the new LC and LCC products, all \\\\[De'emdi the )
classified at the modular LCCS level. Some of the datasets presented in Figure 5 had already been published in Earth System [ Deleted: might ]
Science Data (Szantoi et al., 2020b): CAF02 year 2000 land cover change and year 2015 land cover maps; CAFO7 year 2000 : % E:::EZ:E ;0 %
land cover change map; CAF11 year 2000 land cover change and year 2016 land cover maps; and CAF99 year 2000 land cover [ Deleted: . ]
change and year 2016 land cover maps (for data access, please see the Data Availability section). \ ( Deleted: s ]
{ Deleted: were ]
Table 4 Overall accuracies achieved for land cover mapping (%). ( Formatted: Font: Italic ]
LC-Tand cover, LCC - land cover change \{ Deleted: , %
Deleted: Achieved o
) ) o ) Deleted: | A
Figure 5 Key Landscapes for Conservation - modular classification level. The boundaries (black polygons) represent protected areas LC map
)

(IUCN category I-1V - UNEP-WCMC and IUCN, 2021) within the KL.Cs. Both land cover and land cover change maps are presented { Deleted:

for each KLC.

*CAF02 - Greater Virunga, CAF07 - Salonga, CAF11 - Upemba, CAF99 - Yangambi. Year 2000 datasets are available Jl[ Deleted:

U L

Szantoi et al, (2020b). | Deleted:

\\ {Deleted: s
. -

Figure 6 Key landscapes for conservation - modular classification level. The boundaries (black polygons) represent protected areas { Deleted:

(IUCN category I-1V UNEP-WCMC and IUCN, 2021) within the KL Cs. Both land cover and land cover change maps are presented [ Deleted: ,

for each KLC. The inlets show the south-east part of the Caribbean KLC.

* CAROL1 - Caribbean, WAFO04 - Wapok.

Figure 7 Key Landscapes for Conservation - modular classification level. The boundaries (black polygons) represent protected areas

(IUCN category I-1V - UNEP-WCMC and IUCN, 2021) within the KL Cs. Both land cover and land cover change maps are presented [ Deleted: ,

for each KLC.

* CAF05 - Garamba, EAF04 - Niassa Selous, SAF21 - Madagascar
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Figure 8 Timor-Leste Key Landscape for Conservation - modular classification level. The boundaries (black polygons) represent
the country boundary. Both land cover and land cover change maps are presented for Timor-Leste.

5 Discussion
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There is a direct relationship between population growth, agricultural expansion, energy demand,and pressure on land (Lambin [ Deleted:

and Meyfroidt, 2011). With the current state of development, population increase,and economic growth, a large portion of the ///{ Deleted:

»

sub-Saharan population is dependent on the remaining natural resources to meet their food and energy needs (Brink etal., ~~ { Deleted:

N

2012), while in the Caribbean (CARO1), urbanisation js putting pressure on natural resources (Nathaniel et al., 2021). In the /{ Deleted: puts
) I ) . ~ | Deleted: th
case of Timor-Leste (PACO1), the peacebuilding process hias been shaping the country’s land cover and land use trends since % eleted: the
~ | Deleted: shapes
2006 (Ide et al., 2021). The demands of social and economic growth call for additional land, typically at the expense of { —
Deleted: require
previously untouched areas. Areas under protection (i.e. national parks) that remain well-preserved (see Figs. 5, 6 and 7) are /,[ Deleted: have regions
often jn close proximity to regions under gxcessive pressure. In particular, transboundary areas - such as the mapped W-Arl Deleted: tremendousgreat
Pendjari Complex protected area (WAPOK) — highlight often strong spatial heterogeneity in anthropogenic pressure between ~{ Deleted:,
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work, especially as areas shared between and/or among countries are frequently not mapped with a common legend, if mapped w{[ Dele ed
\ eleted: among
at all. The KLC datasets presented can be used for continuous land cover and land use monitoring, evaluation of management D ; -

\ eleted: (many times transboundary ones)
practices and effectiveness, endowment for scientific guidance, habitat modelling, information dissemination, and capacity { Deleted: which are
building in their corresponding countries, and to manage natural resources such as forests, soil, biodiversity, ecosystem services, \ Deleted: presented
and agriculture (Tolessa et al., 2017). Furthermore, regional climate change, biogeochemical, and hydrologic models are .\ | Deleted: counsel
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currently capable of using high-resolution LC data for general predictions (Nissan et al., 2019) and for spatially focused { Deleted: ,
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predictions (i.e. Africa) (Sylla et al., 2016; Vondou and Haensler, 2017). \\ {
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The validation datasets are independently collected and verified through a robust procedure. The entire product validation
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temporal and logical consistency component, (2) the qualitative accuracy component, and (3) the guantitative accuracy { Deleted: ;
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particular, the quantitative assessment validation component is structured with a sequence of steps in which interpretation of _ [ Deleted: p
the LC classes is iterated when a cover (or change) is in doubt. Furthermore, a random quality check of the interpretation is \E Deleted: ly
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performed on 10% of the interpretation points. VValidation datasets can then be used for additional land cover mapping, creating { Deloted: the
spectral libraries, and validating, other local, regional and global datasets. It is important that various land cover products can o { Deleted: on of
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All data were produced using the unified Land Cover Classification System. The modular level of the LCCS can be applied to

local scales, thanks to its very detailed classes (32 were used here).

5.1 Drivers of change

Geist and Lambin (2002) describe the human forces driving Jand cover changes as an interlinking of three key variables:

expansion of agriculture, extraction of wood, and development of infrastructure (urbanigation). The main land cover dynamic

in sub-Saharan Africa can be explained by the first two variables, but increasingly also by urbanisation, as in the other areas
mapped (Caribbean, Timor-Leste) (Guneralp et al., 2017; Nathaniel et al., 2021; Hugo, 2019). Although the driving force
behind the clearing of natural vegetation has traditionally been predominantly attributed to the expansion of new agricultural

land (including investments in large-scale commercial agriculture) (Brink and Eva, 2009), firewood extraction and charcoal

production are also key factors in forest, woodland,and shrubland degradation throughout the region. This land cover dynamic

is not just a by-product of greater forces, such as logging for timber and agricultural expansion, but stems from a specific need
to satisfy energy demand (European Commission, 2018); in fact, in sub-Saharan Africa, the main use of extracted wood is for
energy production (Kebede et al., 2010). Although the region possesses a huge diversity of energy sources such as oil, gas,
coal, uranium,and hydropower, the local infrastructure and use of these commercial energy sources are still somewhat limited.

Traditional sources of energy, in the form of firewood and charcoal, account for over 75 % of fotal energy use in the region

(Kebede et al., 2010). Efforts to meet population and economic demands in the OACPS, while preserving biodiversity and |

ecosystem functioning, require informed decision-making. The global component of the Copernicus Land Monitoring Service ,“

(Copernicus Global Land Service), in particular the High Resolution Hot Spot Monitoring activity, presents a unique |

opportunity for such information gathering.

5.2 Sources of errors

As the LCCS applied allows very detailed hierarchical classification, some classes can be difficult to distinguish from each

other. This is especially true in Africa's vast and highly heterogeneous landscapes, where agricultural land use is mainly /

smallholder-based (i.e,very small plots), while shifting cultivation is mostly due to the lack of fertilisers and weak soil, leading

to land abandonment. Landscapes are generally not composed of clearly fragmented and well-identifiable cover formation. In
this region, landscapes usually form a continuum of various cover (vegetation) formations, which may include different layers

of tree, shrub,and herbaceous vegetation. These variations, combined with differences in vegetation density (open vs,closed) /

and heights, makes jt challenging to assign classes. Moreover, some specific agricultural, classes even distinguish the

cultivation type, e.g, differentiating between fruit tree plantations and timber plantations, Thus, jt is very difficult to

discriminate_between such classes, and classification errors may be introduced. Apart from the land cover classification, errors

could also be introduced due to climate-induced variability — such as leaf phenology. where deciduous vegetation may appear ||

bare during a dry period (season). At a more general level, difficulties in distinguishing between aquatic or regularly flooded

surfaces and terrestrial areas have been observed in certain KLCs, especially when flooded periods are short. The difficulty in I
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interpreting. some LC classes, as presented in the examples above, might introduce systematic over- and/or under-gstimation

of these particular covers in the accuracy statistics. The bias is reduced, for example by giving higher weight to the errors jn,

[ Deleted: ation of

Formatted

less represented LC classes depending on the ratio of ground control points collected per class, while the uncertainty of the LC

class interpretation is quantified by calculating the confidence intervals (per class) in the statistics.

Jn the case of Timor-Leste (PACO1), it was particularly challenging to discriminate between evergreen and deciduous natural

vegetation across the seasonal variations.

Another specific source of error can be identified for the Caribbean KLC (CARO01), where the area consists of a vast complex
of small islands (i.e. keys) and archipelagos that include large areas of coastal swamps. In these regions, the connection of the

coastal inland water surfaces with the open sea is often very difficult to jdentify, Consequently, there are areas where

assignment of the water surface classes ywas ambiguous with respect to the open sea, which would result in the exclusion of

areas from the map.

5.3 Current and future use of datasets

The C-HSM datasets have been widely used by policy-makers (OACPS and European partners) to help identify areas prone

to change due to human activities. For example, COFED (Support Unit for the National Authorising Officer of the European

Development Fund) DRC, — the EEAS (European External Action Service) jn the DRC - manages an envelope of

EUR,120,million, allocated for five protected areas in the DRC (Virunga, Garamba, Salonga, Upemba, and the Yangambi

biosphere), where they use the C-HSM products for planning and for investment strategies (e.g, hydropower). Thus, the EEAS

requested updates in terms of land cover changes for 2019 for the above-mentioned protected areas, which we present in this

study. Another example js from West Africa, where non-governmental organisations (NGOs, e.g, the Wild Chimpanzee

Foundation), public benefit enterprises (e.q, German Society for International Cooperation — GIZ), and national authorities

(e.0,,Office Ivoirien des Parcs et Réserves — OIPR) use the data to identify areas under pressure for agriculture (cocoa, oil

palm, rubber and, coconut) and human-wildlife conflicts in Cote d'lvoire, Ghana, and Liberia. Additional areas (CARO1,

PACO01) mapped and presented in this study can be used to help projects (e.g. BIOPAMA) and countries to improve

management and governance of their biodiversity and natural resources.

6 Data availability

The data are provided in a shapefile (*.shp) format, polygon geometry for the land cover and change datasets, and point

geometry for the validation datasets. The data presented are in the World Geodetic System 1984 geographic coordinate system

(GCS) (EPSG:4326) and its datum (EPSG:6326). The validation data, besides using the same GCS, also use the Africa Albers -

Equal Area Conic (EPSG:102022) projected, coordinate system.
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Apart from CAFO05 and PACO1, each KLC,is described by two polygon vector layers: a land cover (LC) layer and a land cover [ Deleted:

»

change (LCC) layer. In the case of CAF05, we present three layers (2000 and 2019 as LCC, and 2017 as LC), and for PAC01

we present four layers (2000, 2005,and 2010 as LCC, and 2016 as LC). The LC layer is always a wall-to-wall map, covering [ Deleted: ,

the entire area of interest (AOI). The LC temporal reference for the project is the year 2016, although for each area the actual
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~mapping year, is noted in the file name (e.g, CAF05_2017); this generally refers to the year from which the largest number [ Deleted: “
of satellite images were used for the classification. The LCC layer provides partial coverage of the AOI, as it contains only the [ Deleted: "
areas (polygons) where thematic change occurred compared to the LC layer. The LCC temporal reference is the year 2000 { Deleted: i.
(+,3 years), noted in the file name (¢.0, CAF05_2000). \ % EZ::IE:? 'and
Each LC and LCC shapefile comes with its corresponding attribute table, where two or three attributes are present: [ Delemdf n
[map_codeA] — dichotomous class, [map_code] — modular class, [class_name] — corresponding modular class name. \ % E::zj; :
Each of the 10 areas has been quantitatively validated using a spatially specific point dataset. These datasets were generated %E:::::f :
through the method described in section 3.5, and each point was used to verify the correctness of the LC-LCC maps. The -
corresponding data in the attribute table are LC — [plaus201X] and LCC - [plaus200X or plaus201X]. Both [plaus201X] and
[plaus200X] attributes refer to the most detailed classification level attributes (map_code or map_codeA) present in the LC
and LCC datasets (shapefiles). Some of the validation datasets contain only attributes of the aggregated classes, as described
in section 3.2; those attributes are named as [plaus201Xr, plaus200Xr]. The plaus201X and plaus200X attributes refer tothe [ Deleted: ,
year the validation sets represent, as these can be different among KLCs; the exact year is always noted in the column,names [ Deleted: s'
(e.g. plaus2000, plaus2016). EDeletedi :
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The naming of all attributes follows the same structure for,all data. Please see the details in Appendix B. /{ Deleted: the
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KLC), from https://doi.org/10.1594/PANGAEA.931968 and https://doi.org/10.5281/zenodo.4621375 (Szantoi et al., 2021), )~ [ Deleted:
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same web addresses
Besides archiving the datasets at Zenodo (www.zenodo.org) (last access: 1, June, 2021) and PANGAEA (www.pangaea.de) {Deleted_ 0
last access:.1 June 2021) with corresponding digital object identifiers, the Copernicus High Resolution Hot Spot Monitoring Deleted: 22
(C-HSM) website (https://land.copernicus.eu/global/hsm, last access: 1 June 2021) provides open access to all the land cover Deleted: March
and land cover change maps presented in this article, as well as technical reports and on-the-fly statistics. 0
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7  Conclusions Deleted: 22 March 2021
The C-HSM component is part of the Copernicus Global Land Service, which produces near yeal-time biophysical variables {[ E::’z:i fewice
at medium scale, globally. By contrast, the C-HSM activity is an on-demand component that addresses specific user requests {Deleted; n
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land cover and land cover change datasets for 10 KLCs jn the African, Caribbean and Pacific regions, with their corresponding [ Deleted:

with their corresponding validation datasets

validation datasets. The geographic distribution covers the tropical and subtropical regions of west, central,and south-eastern [ Deleted: ,
Africa, as well as a large part of the Caribbean region and Timor-Leste in the Pacific region. The most recent land cover change
may be periodically reassessed for selected already mapped KLCs, ,in order to generate longer-term time series land cover [ Deleted: might
dynamics information, as,is the case for some of the data presented here (CAF02, CAF07, CAF11 and CAF99 — see the original i N { Deleted: -
LC/LCC data in Szantoi et al., 2020). Although this is done not systematically, but at specific customer request, the C-HSM \\[ Deleted: periodically
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events provide an opportunity for new and existing users to learn how to use and interpret data, operate the web information [ Deleted:
system, and easily assess recent land cover change data using Sentinel-2 image mosaics. Here, we provide very,high,quality Deleted: ,
products, which can be used directly as base maps and for policy decisions, as well as for comparison and/or evaluation of | |\ { Deleted: While
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Appendix
A. Satellite data collecting period and type used for LC and LCC mapping
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*S-2: Sentinel 2; LS7: Landsat 7; LS8: Landsat 8; SP4: SPOT 4; SP5: SPOT 5; SP6: SPOT 6, pd [
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B. Thematic class accuracies per KLC, ) [ Deleted: .
- [Deleted: s

Accuracy parameters are in per cent; classes with less than 15 samples were not included in the overall accuracy calculation. -

Accuracy results are presented at the aggregated as well as at the modular LCCS levels, depending on the type of mapping /% Deleted:
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Table 1 Mapped key landscapes for conservation within Phase 2.

KLC | Code | Ecoregion (Dinerstein et al., 2017) Country Area (km?)

Updated areas

| Greater Virunga CAF02 Albertine Rift montane forests DRC, Uganda, 39 062
Victoria Basin forest-savanna Rwanda
Salonga CAF07 Central Congolian lowland forests DRC 66 625
Upemba CAF11 Central Zambezian wet miombo DRC 47 318
woodlands
Yangambi CAF99 Northeast Congolian lowland forests DRC 7276
New areas
Garamba CAF05 East Sudanian savanna, Northern DRC, CAR, 265 976
| Congolian forest-savanna mosaic, South Sudan

Northeastern Congolian lowland forests

Caribbean CARO1 Windward Islands moist forests, AB, Bahamas, 89883
Bahamian-Antillean mangroves, Caribbean | Dominica, DR,
shrublands, Lesser Antillean dry forests, Haiti, SKN
Hispaniolan moist forests, Enriquillo
wetlands, Hispaniolan dry forests,
Hispaniolan pine forests, Bahamian
pineyards

Niassa Selous EAF04 Zambezian flooded grasslands, Eastern Tanzania, 139 163
Miombo woodlands, Eastern Arc forests, Mozambique
Northern Zanzibar-Inhambane coastal
forest mosaic

Timor-Leste PACO1 Timor and Wetar deciduous forests Timor-Leste 14 931
Madagascar SAF21 Madagascar lowland forests, Madagascar Madagascar 124 012
subhumid forests
Wapok WAF04 West Sudanian savanna Ghana, Togo, 57 776
Benin, Burkina
Faso, Niger

AB: Antigua and Barbuda; CAR: Central African Republic; DR: Dominican Republic; DRC: Democratic Republic of the
Congo; SKN: Saint Kitts and Nevis.
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https://www.zotero.org/google-docs/?kp4Kef

Table 2 Dichotomous and Modular thematic land cover/use classes (MCD: mapcode dichotomous level, MCM: mapcode modular
level, AG: aggregated classes for land cover change accuracy estimation; see section 3.5 for additional information).
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Dichotomous level MCD Modular level MCM | AG
continuous large to medium sized field (>2 ha) of tree crop 31 3
cover: plantation
continuous small sized field (<2 ha) of tree crop 3 3
cover: plantation
continuous large to medium sized field (>2 ha) of tree crop 33 3
cover: orchard

Cultivated and Managed 3 continuous small sized field (<2 ha) of tree crop 34 3

Terrestrial Area (A11) cover: orchard
continuous large to medium sized field (>2 ha) of shrub crop 55 3
continuous small sized field (<2 ha) of shrub crop 56 3
continuous large to medium sized field (>2 ha) of herbaceous 59 3
crop
continuous small sized field (<2 ha) of herbaceous crop 60 3
continuous closed (>70-60) trees 77 77
continuous open general (70-60)-(20-10)% trees 78 78

Natural and Semi-Natural continuous closed to open (100-40)% shrubs 112 4

Primarily Terrestrial | 4

Vegetation (A12) continuous open (40 - (20-10)%) shrubs 116 4
continuous closed to open (100-40)% herbaceous vegetation 148 4
continuous open (40 - (20-10)%) herbaceous vegetation 152 4
continuous large to medium sized field (>2 ha) of woody crops | 155 6

Cultivated ~ Aquatic  or continuous small sized field (<2 ha) of woody crops 156 6

Regularly Flooded Area | 6 continuous large to medium sized field (>2 ha) of graminoid

(A23) 159 6
crops
continuous small sized field (<2 ha) of graminoid crops 160 6
closed (>70-60)% trees 165 165

Natural And Semi-Natural open general (70-60)-(20-10)% trees 166 165

Aquatic  or  Regularly | 7

Flooded Vegetation (A24) closed to open (100-40)% shrubs 171 7
very open (40 - (20-10)%) shrubs 175 7
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closed to open (100-40)% herbaceous vegetation 178 7

very open (40 - (20-10)%) herbaceous vegetation 182 7
Artific_ial Surfaces and 10 built up area 184 184
Associated Area (B15) non built up area 185 185
Bare Area (B16) 11 Bare area 11 11
Artificial Waterbodies, artificial waterbodies (flowing) 186 13
Snow and Ice (B27) s artificial waterbodies (standing) 187 13

natural waterbodies (flowing) 190 14
Natural Waterbodies. Snow natural waterbodies (standing) 191 14
and Ice (B28) ' 14

snow 192 14

ice 193 14
Not Inland Cover 99 not terrestrial cover 999 999
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1370 Table 3 Validation dataset attributes

Land cover Land cover change
KLC Code Nurgil::]etg of
Number of classes | Mapping year | Number of classes | Mapping year p
Updated areas
CAF02 27 2015 21 2019 2998
CAFO07 17 2016 16 2019 3069
CAF11 23 2016 19 2019 3228
CAF99 17 2016 20 2019 2421
New areas

17 2019 4647
CAF05 24 2017

17 2000 7168
CARO1 29 2017 26 2000 4029
EAF04 26 2017 18 2000 3943

26 2000
PACO1 28 2016 30 2005 4413

28 2010
SAF21 29 2017 18 2000 3995
WAF04 24 2017 18 2000 3522
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Table 4 Overall accuracies achieved for land cover mapping (%).

LC map Reference date LCC map Reference date
Updated thematic maps
CAF02 90.09 2015 99.38 2019
CAF02 90.09 2015 91.93 2001
CAFO07 98.38 2016 98.36 2019
CAF11 95.27 2016 95.81 2019
CAF11 95.87 2016 95.81 2019
CAF99 98.51 2016 99.31 2019
CAF99 99.21 2016 99.31 2019
New thematic maps
90.63 2015 91.63 2019
CAF05
91.75 2015 92.35 2000
CARO1 92.55 2017 93.41 2000
EAF04 97.30 2017 97.80 2000
93.55 2000
‘ PACO1 91.28 2016 93.26 2005
‘ 94.24 2010
SAF21 91.00 2017 92.30 2000
WAF04 97.20 2015 97.50 2000

LC - land cover, LCC - land cover change
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Appendix

A. Satellite data collecting period and type used for LC and LCC mapping

KLC | LC map | Data period Data type* | LCC map | Data period Data type*
CAF02 | 2015 | 07/2013-10/2016 LS8 2019 01/2019 - 12/2019 | S-2
CAF07 | 2016 | 05/2013-10/2016 LS8 2019 01/2019 - 01/2020 | S-2
CAF11 | 2016 | 01/2015 - 06/2016 LS8 2019 01/2019 - 10/2019 | S-2
CAF99 | 2016 | 03/2014 -11/2016 LS8 2019 02/2019 - 12/2019 | S-2

2019 02/2019 - 11/2019 | S-2
2000 11/1999 - 01/2003 | LS7

CAF05 2017 | 12/2014 - 01/2018 LS8

CARO1 | 2017 | 05/2016 - 12/2017 S-2 2000 02/1999 - 11/2004 | SP4, LS7
EAF04 2017 | 04/2016 - 10/2017 S-2 2000 07/1999 - 06/2002 | LS7
2000 04/2001 - 11/2002 | SP4, SP5
PACO1 | 2016 | 12/2015-11/2016 S-2 2005 04/2003 - 12/2007 | SP5
2010 01/2008 - 10/2012 | SP5, SP6
SAF21 2017 | 06/2016 - 11/2017 S-2 2000 10/1999 - 12/2002 | LS7
WAF04 | 2017 | 11/2016 - 03/2018 S-2 2000 09/1998 - 06/2003 | SP4, SP5

*S-2: Sentinel 2; LS7: Landsat 7; LS8: Landsat 8; SPOT 4: SP4; SPOT 5: SP5; SPOT 6: SP6.

1380 B. Thematic class accuracies per KLC.
Accuracy parameters are in percent, classes with less than 15 samples were not included in the overall accuracy calculation.
Accuracy results are presented at the aggregated as well as at the modular LCCS levels, depending on the type of mapping
(land cover map - modular, or land cover change map - aggregated).
Class — corresponding class (see Table 2 “Modular” or “Aggregated” map code)

1385 PA — producer's accuracy
UA — user's accuracy
NoRP — number of reference points

CAFO02 (aggregated)
2015 2019
Class PA UA NoRP PA UA NoRP
3 99.7 99.7 1277 99.7 99.6 1243
4 98.8 97.7 510 98.8 98.2 541
6 0 0 0 0 0 0
7 100 99 120 100 99 148
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1390

11 96.8 934 28 100 93.3 20
14 100 100 219 100 100 175
7 100 99.9 648 99.9 100 508
78 92.6 100 133 92.3 98.4 217
165 100 100 3 100 100 2
166 100 100 5 100 100 2
184 99.9 100 52 100 99.9 129
185 100 100 2 100 100 10
CAFO5 (aggregated)
2000 2015 2019
Class PA UA NoRP PA UA NoRP PA UA NoRP
3 92.8 76.9 396 85 92.4 249 85.9 89.6 211
4 91.4 95 2957 93.5 91.4 1720 93.4 91.3 1764
7 98.7 84.2 317 82.5 87.3 150 825 87.3 149
11 98.3 935 59 83.8 100 10 83.8 100 10
13 100 100 8 100 100 14 100 100 15
14 95.4 93.9 96 99.9 100 22 99.9 100 21
77 94.1 96.4 1956 94.8 96.2 1399 94.6 96.2 1283
78 90.7 83 1205 85.7 86.2 917 85.6 86.2 949
165 0 0 0 0 0 1 0 0 1
166 100 83.7 41 100 100 1 100 100 1
184 96.8 94.3 88 82.7 97.6 92 81.6 97.4 155
185 100 231 9 100 93.2 70 94.9 94 87
CAFO05 (all classes — LC map)
2015
Class PA UA NoRP
11 98.3 935 59
31 100 99.9 127
32 5.9 92.3 14
34 100 100 1
56 90 92.4 67
59 0 0 0
60 85.1 83 209
7 95.1 95.8 1954
78 89.9 82.8 1184

24




1395

112 88.8 93.2 2355

116 81.2 74.9 285

148 72.6 84.2 215

152 94.4 93.6 9

165 0 0 0

166 100 85.1 40

171 98.4 73.7 82

175 98.8 95.6 75

178 98.1 87.2 152

182 87.5 28 8

184 95.1 95.8 161

185 100 100 50

187 100 100 8

190 95.4 94 80

191 100 95.8 23

CAFO07 (all classes — LC/LCC map)
2016 2019
Class PA UA NoRP Class PA UA NoRP

11 100 100 2 11 100 100 2
31 96.6 83.6 53 31 95.9 84.2 52
32 96.4 66.7 3 32 97.6 333 4
56 95.1 775 91 56 87.8 75.8 112
60 91.3 89.8 102 60 91.3 72.6 89
77 98.4 99.8 1605 77 98.5 99.8 1524
78 82.7 92.7 98 78 90.1 94.9 124
112 89.5 86.1 231 112 89 88.6 297
116 96.2 96.8 61 116 82.8 90 30
148 99.8 97.4 134 148 99.4 97.5 144
165 99.3 92.3 386 152 0 0 0
166 31.6 75 19 165 99.3 92.3 379
171 94.1 94.3 54 166 316 47.2 19
175 0 0 2 171 94.5 94 65
178 100 85 51 175 50 100 4
184 83.1 90.4 77 178 92.1 85.4 38
190 87.8 93.8 77 184 81 90.5 87
191 100 100 22 190 87.7 92.6 76
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| 11 [ 100 100 22
CAF11 (aggregated)
2000 2016 2019
Class PA UA NoRP PA UA NoRP PA UA NoRP
3 98.7 92.8 339 92.9 95.1 201 93 96.2 272
4 99.3 93.8 1169 99.2 92.4 1099 99.2 92.2 999
6 100 14.4 2 42.4 100 33 425 100 33
7 96.9 99.2 614 97.8 96.5 373 97.9 96.8 372
11 100 96.7 30 0 0 0 0 0 0
14 98.7 99.9 275 99.8 99.4 120 100 99.8 111
77 94.5 95.6 529 90.5 98.9 515 90.4 98.8 430
78 92.6 97.7 597 95 98.4 711 94.8 98.3 760
165 79.4 96.3 79 77.1 100 7 77 100 5
166 98.7 99.2 47 99.8 99.3 12 99.8 99.2 11
184 100 95.8 87 99.9 94.6 81 100 94.9 157
185 100 95.4 17 100 100 76 93.8 100 78
CAF11 (all classes — LC map)
2015
Class PA UA NoRP
11 100 100 30
32 100 100 26
34 0 0 0
56 69.9 100 1
59 92.4 99.1 74
60 97.3 97.1 339
7 94.6 95.2 488
78 92.4 97.1 534
112 96.8 86.9 441
116 97.7 94.3 289
148 98.5 97.1 325
152 0 0 0
160 100 100 3
165 79.1 96.2 78
166 96.9 99.2 46
171 75 92.7 74
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1400

175 56.8 98.6 72
178 97.9 98 411
182 95 95 20
184 100 98.9 167
185 100 100 75
190 87.9 98.2 90
191 99.8 100 202
CAF99 (aggregated)
2000 2016 2019
Class PA UA NoRP PA UA NoRP PA UA NoRP
3 91.6 98.9 431 85.9 98 241 86.2 98.7 193
4 92.4 92.1 417 98.4 96.4 397 99.5 97.5 452
7 100 97.8 231 99.8 88 72 94.7 88.8 76
14 100 100 175 100 100 108 100 100 109
77 99 99.2 905 99.7 99.9 1139 99.7 99.9 1098
78 93.6 85.1 210 97 99.8 60 92.1 93.1 43
165 97.8 97.9 246 100 99.1 352 100 99.1 346
166 100 88.7 40 100 82.2 22 99.8 81.6 16
184 99.4 88.3 72 99.4 100 28 98.7 99.8 85
185 0 0 0 0 0 0 0 0 0
CAF99 (all classes — LC map)
2015
Class PA UA NoRP
31 91.6 99.8 267
32 94.5 100 69
56 100 99.5 76
59 100 9.5 4
60 91.9 96.5 125
77 99.6 99.2 732
78 79.1 91.5 156
112 96.1 95.9 341
148 98.7 96.9 168
165 97.8 97.5 240
166 100 89.2 42
171 100 100 102
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1405

175 0 0 3
178 100 91.6 7
184 100 95.9 150
185 100 100 2
190 100 100 113
191 100 100 60
CARO01
Aggregated classes All classes — LC map
2000 2017
Class PA UA NoRP Class PA UA NoRP
3 90.8 94.5 874 11 91.9 86.5 79
4 90.1 96.1 890 31 83.1 83.2 110
6 98.8 97.3 160 32 98.9 84.5 65
7 93 92.1 343 86} 80.6 79.8 65
11 83.7 82.7 70 34 100 81.9 24
13 99.8 83.5 155 55 98.3 86.2 71
14 89.7 93.6 181 56 100 92.9 87
77 97.9 90.6 519 59 91 92.3 159
78 92.5 88.6 346 60 85.8 92.2 272
165 96 89.7 61 77 97.8 93.3 513
166 100 92.3 57 78 89.4 88.5 332
184 92,5 98.1 122 112 90.4 93.4 379
185 100 97.2 64 116 92.3 94.6 116
999 99.6 98.2 173 148 88.5 89.5 270
152 100 92.8 63
159 96 97.5 81
160 82.1 97.5 85
165 94.8 89.6 63
166 100 91.8 56
171 90.7 90.9 102
175 93.4 95.3 85
178 95.5 84.6 92
182 98.9 82.6 58
184 922 99.8 209
185 100 97 75
186 96.2 93.3 71
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187 97.6 87.5 81
190 97.5 92.7 79
191 87 100 112
999 99.7 98.2 172
EAF04
Aggregated classes All classes — LC map
2000 2017
Class PA UA NoRP Class PA UA NoRP
3 934 95 638 11 100 98.7 86
4 96.8 96.3 834 31 100 79.4 43
6 83 82.1 130 32 100 100 12
7 924 95.7 260 33 100 97.6 129
11 100 98.7 86 34 90.9 99.6 97
14 99.5 97.9 172 55 100 99.8 78
77 99.3 98.5 952 56 100 93.8 30
78 97.3 98.5 723 59 100 100 82
165 100 100 51 60 96.8 94.4 269
166 0 0 2 77 98.8 98 922
184 99.6 97.4 90 78 96.6 98.4 652
185 100 83.3 5 112 95.6 95.1 465
116 91.3 97.8 114
148 99.7 94.8 135
152 100 77.3 17
159 0 0 0
160 93.7 99.5 138
165 100 100 51
166 0 0 2
171 100 91 35
175 60.9 83.4 11
178 92.3 95.1 211
184 99.8 100 171
185 100 92 23
190 99.8 98.9 92
191 100 98.5 78
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PACO1 (aggregated classes)

2000 2005 2010
Class PA UA NoRP Class PA UA NoRP Class PA UA NoRP
3 89.6 89.5 603 3 87.9 89.4 602 3 92.2 915 600
4 88.2 96.3 983 4 88 96.2 967 4 92 95.4 908
6 95.9 93.9 158 6 95.7 94.7 147 6 94 93.6 151
7 96.2 96.4 380 7 95.6 96 361 7 93.6 93.9 341
11 81.1 88.2 86 11 97.7 88 81 11 935 88.2 87
13 94.1 88.9 34 13 94.2 86.7 35 13 96.4 93 38
14 90.4 93.9 269 14 91 94.8 303 14 91.1 94.8 334
7 98.2 91.8 713 77 98.2 91.2 707 7 97.5 935 722
78 92.4 95 821 78 91.8 94.7 805 78 92.3 95.3 811
165 92.6 93.7 88 165 89.8 94.2 87 165 92.9 93 75
166 93.2 99.2 78 166 90.8 98.8 75 166 96.7 98.8 72
184 94.3 91.7 120 184 94.4 93 163 184 95 96 190
185 100 94.9 12 185 100 95.1 13 185 97.3 100 17
999 96.3 78 61 999 96.3 78 61 999 96.3 78 61
PACO1 (all classes — LC map)
2016
Class PA UA NoRP
11 96.4 91.1 89
31 87.2 96.8 70
32 945 85.2 50
33 0 0 1
34 0 0 1
55 60.8 100 13
56 99.2 96.4 29
60 93.1 88.1 386
91 95.8 90.8 536
92 83.2 87.5 236
95 96.5 89.2 390
96 84.6 95.9 423
123 89.3 78.8 132
124 88.9 97.8 160
139 98.9 87.2 100
140 96.3 89.9 113
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148 89.5 94 356
152 0 0 3
160 92.1 94.4 140
165 94.1 90.4 78
166 89 98.7 75
171 98.4 934 53
175 98.3 92.9 72
178 95.5 95.3 212
182 100 95.7 14
184 91.7 96.1 234
185 96.3 100 23
187 96 95.3 44
190 88.7 94.3 277
191 100 97.3 29
999 96.3 78 61
SAF21
Aggregated classes All classes — LC map
2000 2017
Class PA UA NoRP Class PA UA NoRP
3 89.5 84 517 11 95.3 92.8 67
4 94.9 924 1352 31 83.8 91.6 110
6 75.2 80.6 269 32 2.5 30.4 14
7 84 82.7 238 33 25 100 12
11 95.3 94.2 68 34 99.7 96.5 69
13 89.2 98 140 55 98.8 97.3 75
14 83.2 96.4 176 56 100 34.1 14
77 93 97.2 856 59 98.3 98.2 59
78 87.8 82.2 228 60 88.3 82.6 179
165 100 11.9 5 7 94.4 96.4 692
166 0.4 16.7 13 78 88 81.8 253
184 100 76.4 81 112 93 88.4 725
185 96 94.1 50 116 94.3 80.7 79
999 0 0 1 148 89.8 93.8 530
152 84.7 85.4 47
156 0 0 1
159 100 147 5
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160 76 815 273
165 100 11.9 5
166 0.4 16.7 13
171 100 79.1 84
175 67.6 96.6 19
178 85.5 835 125
182 12.9 66.7 3
184 100 94.5 153
185 99.7 99.4 72
186 100 94.1 64
187 87.9 98.6 76
190 79.7 97.6 99
191 95.4 93.3 76
999 0 0 1
WAF04
Aggregated classes All classes — LC map
2000 2015
Class PA UA NoRP Class PA UA NoRP
3 99.5 93.7 670 11 100 100 48
4 97.4 98.8 1345 31 100 100 9
6 91.7 84.5 67 32 80 100 5
7 98.6 95.3 239 33 92.8 100 17
11 100 100 47 34 99.1 99 75
13 97 100 108 60 99.5 98.1 726
14 97.7 97.3 162 7 97.9 95.2 146
7 95.5 97.4 151 78 97.1 98.3 487
78 96 98.2 537 112 98.3 96.3 756
165 100 73.3 21 116 86.1 98.1 297
166 98.6 93.7 60 148 83.6 98.9 90
184 100 97.5 83 152 98.7 99.5 40
185 100 100 8 160 81.8 89 82
165 100 72.4 20
166 98.5 92.5 59
171 92.7 95 59
175 96.5 98.6 32
178 97.3 72.5 142
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182 100 97.5 29
184 100 97.8 151
185 100 100 10
187 100 100 79
190 97.6 98.7 79
191 97.7 97.3 70
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