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Abstract. Despite several flood databases available in the United States, there is a benefit to combine and rec-
oncile these diverse data sources into a comprehensive flood database with a unified common format and easy
public access in order to facilitate flood-related research and applications. Typically, floods are reported by spe-
cialists or media according to their socioeconomic impacts. Recently, data-driven analysis can reconstruct flood
events based on in situ and/or remote-sensing data. Lately, with the increasing engagement of citizen scientists,
there is the potential to enhance flood reporting in near-real time. The central objective of this study is to in-
tegrate information from seven popular multi-sourced flood databases into a comprehensive flood database in
the United States, made readily available to the public in a common data format. Natural language processing,
geocoding, and harmonizing processing steps are undertaken to facilitate such development. In total, there are
698 507 flood records in the United States from 1900 to the present, which highlights the longest and most com-
prehensive recording of flooding across the country. The database features event locations, durations, date/times,
socioeconomic impacts (e.g., fatalities and economic damages), and geographic information (e.g., elevation,
slope, contributing area, and land cover types retrieved from ancillary data for given flood locations). Finally,
this study utilizes the flood database to analyze flood seasonality within major basins and socioeconomic im-
pacts over time. It is anticipated that thus far the most comprehensive yet unified database can support a variety
of flood-related research, such as a validation resource for hydrologic or hydraulic simulations, hydroclimatic
studies concerning spatiotemporal patterns of floods, and flood susceptibility analysis for vulnerable geophysical
locations. The dataset is publicly available with the following DOI: https://doi.org/10.5281/zenodo.4547036 (Li,
2020).

1 Introduction

Floods are one of the most common and costliest natu-
ral hazards globally (World Health Organization). In fact,
around 74 % of natural hazards between 2001 and 2018
were water-related, among which floods were the most dev-
astating. In the United States, eight of the 10 costliest
weather disasters (in billions of USD) were floods between
1980 and 2019 (https://www.ncdc.noaa.gov/billions/events,
last access: 10 February 2021), and almost 10 % of the flash

floods have resulted in agricultural and economic losses be-
yond USD 100 000 (US dollars) per event (Gourley et al.,
2017). The flood-producing storms and hurricanes frequently
strike the coastal regions with devastating socioeconomic im-
pacts, among which the most damaging Hurricane Katrina
affected nine states and resulted in monetary losses of over
USD 168 billion. Moreover, under the influences of climate
change, the increasingly intensified hydrologic cycle and sea
level rise pose more threats to coastal areas (Alfieri et al.,
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2016; Tabari, 2020). IPCC AR5 (2014) has reported that the
frequency and intensity of floods in the United States are
changing, which challenges current water-related infrastruc-
ture and water management principles. In light of flood risks,
a compilation of a comprehensive flood database can provide
insights into both national and regional flood characteristics.

Many published works have hitherto been limited to de-
veloped countries such as European countries and the United
States. Developing countries either restrict data sharing or
lack the resources to collect and assemble flood events. With
respect to the available period, not many works continuously
offer up-to-date flood data accessible to the public or research
communities (e.g., Fiorillo et al., 2018; He et al., 2018; Luu
et al., 2019; Petrucci et al., 2019; Shi, 2003). However, it
is noteworthy that there are means of collecting flood infor-
mation. Conventionally, flood reports are produced by local
specialists with limited and sometimes delayed information
(e.g., Filrilo et al., 2018; He et al., 2018; Luu et al., 2019;
Petrucci et al., 2019). Later on, media outlets (e.g., newspa-
per) start to participate in timely flood reporting, but typi-
cally on the high-impact floods (e.g., Hilker et al., 2009; Shi,
2013; Smith et al., 2012; Vos et al., 2010). Insurance com-
panies collectively offer valuable information on flood dam-
ages and people affected from a financial perspective (Swiss
Re, 2010). Until recently, the increasing engagement of so-
cial scientists has greatly supported near-real-time flood re-
porting with web or mobile applications (Chen et al., 2016;
de Bruijn et al., 2019), although these reports are often con-
fined to populated urban areas. In addition to human-led re-
porting, stream gage and opportunistic sensors (e.g., surveil-
lance cameras, ground radars, and satellites) can also aug-
ment flood monitoring in real time (Hall et al., 2015; Shen et
al., 2019).

Despite long-established flood records (reports), there
are few studies attempting to merge multi-source flood
databases, especially considering the increasing number and
diversity of flood databases available. The motivations of a
merged dataset are primarily twofold. First and foremost, we
are still under-utilizing all sorts of flood information that can
be used for model validation and flood risk analysis (Scotti
et al., 2020). Second, each individual dataset has its own
limitations, and thereby no single database holistically de-
scribes flooding in a given region (Gourley et al., 2013).
For instance, flood reports by government agencies or the
media are skewed towards high-impact events, whereas lo-
cal community-level, low-end floods are oftentimes ignored.
In light of these motivations, efforts should be undertaken
to collectively merge all possible sources to provide off-
the-shelf data support to complement flood-related research.
Gourley et al. (2013) assembled a georeferenced US database
from three primary sources: (1) discharge observations from
the U.S. Geological Survey (USGS), (2) flood reports by the
National Weather Service from 2006 to 2013, and (3) wit-
ness reports from the public. Amponsah et al. (2018) merged
a high-resolution flash flood database in Europe with a set of

spatial data, rainfall data, and discharge data from 1991 to
2015. Petrucci et al. (2019) collaboratively harmonized five
regional flood databases from 1980 to 2015 in the Mediter-
ranean region to investigate the causes of deaths in flood
events. These merged datasets are relatively short in time
and not complete. In this study, we introduce a comprehen-
sive United States Flood Database – USFD, which compiles
seven individual databases and converts them into a common
data format. Sources to compile this database include (1) re-
ports from news media, (2) reconstructed flood events from
gage and satellite instruments, and (3) crowdsourcing data
queried from the web and mobile applications. As a result,
a 120-year flood database in the United States is assembled,
unified, and published for public access, as well as an inter-
active web interface for immediate use. This dataset includes
diverse flood subtypes, including riverine flooding, coastal
flooding, flash flooding, etc., and features the longest and
most comprehensive recording of flooding across the coun-
try. It is anticipated that this database can support a vari-
ety of flood-related research, such as a validation source for
hydrologic/hydraulic simulation, climatic studies concerning
spatiotemporal patterns of floods given this long-term and
US-wide coverage, and flood risk analysis for vulnerable
geophysical locations. Primary assessments on flood occur-
rences across the Unites States, flood seasonality within ma-
jor basins, and socioeconomic impacts across time are car-
ried out to share insights into US floods.

This article is structured as follows. Section 2 details seven
individual databases and ancillary datasets used to form our
database. Section 3 describes methods to retrieve (query),
clean, and unify these datasets in a processing pipeline.
Lastly, Sect. 4 serves as a pre-assessment on floods in the
United States over the past 120 years, spatially aggregated
by geopolitical boundaries and for major US river basins.

2 USFD database components

2.1 Individual databases

In this section, we detail seven individual databases, which
are the NOAA National Weather Service (NWS) storm
reports, Emergency Events Database (EM-DAT), Dart-
mouth Flood Observatory database (DFO), the Univer-
sity of Connecticut Flood Events Database (FEDB), cyber-
infrastructure flood database (CyberFlood), meteorological
Phenomena identification near the ground data (mPing),
and Global Flood Monitoring (GFM). Each candidate of
this compiled database has to satisfy the following criteria:
(1) published by trustworthy organizations, (2) has been used
in at least one traceable high-impact publication, and (3) con-
tains useful information for flood-related research.

Earth Syst. Sci. Data, 13, 3755–3766, 2021 https://doi.org/10.5194/essd-13-3755-2021



Z. Li et al.: Multi-source 120-year US flood database 3757

2.1.1 National Weather Service storm reports

The NOAA NWS routinely publishes post-event reports of
floods from trained spotters, local authorities, and emergency
management officials. This dataset is arguably the most ex-
haustive meteorology-driven reporting in the United States.
The descriptors can be mainly categorized into the geophys-
ical location (e.g., begin and end location), time period (e.g.,
begin and end time), causes (e.g., heavy rain), impacts (e.g.,
fatalities and damages), and narratives (see technical docu-
mentation for details: https://www.nws.noaa.gov/directives/
sym/pd01016005curr.pdf, last access: 20 December 2020).
Limitations of this database for flood events are summarized
in Gourley et al. (2013), including (1) imprecise event lo-
cation, (2) times related to meteorological events, (3) rely-
ing on in-person witness accounts, and (4) limited informa-
tion about the site exposure to antecedent condition. We re-
trieve all flood records from 1950 to the present, which totals
144 313 reports.

2.1.2 Emergency Events Database (EM-DAT)

The EM-DAT database is produced and maintained by
the Centre for Research on the Epidemiology of Disasters
(CRED) in Belgium, which contains all types of global nat-
ural disasters in the world from 1900 to the present. These
recorded events should meet one of the following criteria:
(1) > 10 people dead, (2) > 100 people affected, (3) decla-
ration of a state of emergency, or (4) a call for international
assistance. Therefore, regional floods or street-level floods
are not included in this database. The sources of informa-
tion stem from government agencies, non-government orga-
nizations, insurance companies, research institutes, and press
agencies. The EM-DAT provides information including geo-
graphic location, time entry, fatalities, and economic dam-
ages. The geographic location is uncertain to studies consid-
ering precise flood locations such as inundation mappings,
and the economic damages are obtained from insurance
claims. All the flood-related data entries are collected via
public access at https://www.emdat.be/ (last access: 20 De-
cember 2020). Due to its stringent reporting criteria, there
are only 189 events recorded in the United States.

2.1.3 Dartmouth Flood Observatory (DFO)

The DFO data, regarded as one of the most popular flood
databases in the world, collects flood events from news, gov-
ernment agencies, and stream gauges and remote-sensing in-
struments from 1985 to the present (Brakenridge, 2020). Dif-
ferent from other databases, the DFO collectively retrieves
spatial flood information from satellite remote-sensing prod-
ucts, such as the Moderate Resolution Image Spectrora-
diometer (MODIS), Sentinel-1, and Landsat. Flood extent is
accordingly provided as shapefiles for easy integration into
Geographic Information Systems software. The tabular data
include geophysical location, date/time, fatalities, affected

area, displaced people, flood severity, and primary causes.
However, events without significant river flooding are not in-
cluded in this database, and they are subject to uncertainties
from satellite-derived flood extent such as water-like echoes
in urban areas and limitations due to cloudiness. A total of
469 events have been retrieved from its tabular data in the
United States.

2.1.4 University of Connecticut Flood Events Database
(FEDB)

Taking advantage of nation-wide flow records at 6301 sta-
tions operated by the U.S. Geological Survey (USGS) and
radar rainfall measurements, a comprehensive flood database
is reconstructed from 2002 to 2013, using the characteristic
point method (Shen et al., 2017). At each gauge site, flood
events are identified by baseflow separation and filtered with
non-significant peaks (i.e., less than 95th percentile). Addi-
tionally, flood-producing rainfall events are traced within a
certain time window to portray an event. The FEDB provides
shapefiles of stream gauges with a series of flood event at-
tributes (e.g., flow peak, flow period, rainfall event period,
base flow, rainfall–runoff coefficient, and spatial moments-
based characteristics). The original dataset is retrieved from
https://ucwater.engr.uconn.edu/fedb (last access: 25 Decem-
ber 2020). Limitations of this database are that the recon-
structed events may not necessarily lead to damages, which
may undermine its role in flood-impact-related research, and
the flood events must occur in USGS-gauged basins. In ma-
jor flooding events (e.g., Hurricane Harvey), some stream
gauges may be flushed away, so no event is recorded. Over
542 000 events have been reconstructed in the United States,
making this flood database the biggest contributor to the
combined database.

2.1.5 CyberFlood

CyberFlood is a crowdsourced flood database by collecting
event reports in a web application developed at the Univer-
sity of Oklahoma (Wan et al., 2014). It is regarded as one of
the first integrated systems that collect, organize, visualize,
and manage a flood database globally. However, the flood
records may be falsely reported due to lack of cross-reference
scrutiny. We queried the latest results of CyberFlood, which
contains flood events, geographic locations, date/time, coun-
try code, causes, and fatalities. The latest version of Cyber-
Flood has 203 flood records from 1998 to 2008. To facilitate
data unification, we convert all the code-based descriptors to
strings (i.e., country and causes) with key matching methods.

2.1.6 meteorological Phenomena Identification Near the
Ground (mPing)

The mPing app is a crowdsourcing, weather-reporting soft-
ware jointly developed by NOAA National Severe Storms
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Laboratory (NSSL) and the University of Oklahoma (Elmore
et al., 2014). Members of the public who downloaded this
app based on their GPS-enabled smartphones can report the
weather event at their locations. Time, geophysical coordi-
nates, and standard event types (e.g., flood events classified
into four severity levels, tornado, precipitation type, wind)
are provided. The four flood severity levels are based on the
flash flood severity index (FFSI) proposed by Schroeder et
al. (2016). Like any other crowdsourcing datasets, the ma-
jor limitation lies in the data validation, as some events are
improperly misreported or even hacked with data injection.
Chen et al. (2013) compared these reports to ground radar ob-
servations with respect to precipitation types, and a satisfying
correspondence is found between the two. mPing data pro-
vide REST API for research-purpose uses, and we queried
flood-related events from 2013 to the present with 5000 flood
events counted.

2.1.7 Global flood monitoring (GFM)

The GFM data are produced and managed by de Bruijn
et al. (2019), with over 88 million Twitter tweets over the
globe since 2014. Contents tied to flood observations are fil-
tered with the natural language processing (NLP) tool BERT,
which extracts time of observation and toponyms (in token)
and assigns reports to the database attributes after a quality
assessment. It is found in the study of Bruijn et al. (2019) that
around 90 % of the events are correctly detected when com-
pared to another disaster database. Table attributes include
event_id, location_id, location_ID_url, country_ID, coun-
try_ISO3, and the time of detection. Due to privacy issues,
all the locations are archived in tokens, which requires fur-
ther decoding. Uncertainties related to this dataset are its ge-
ographic locations and technical algorithms to filter events.
For studies requiring precise flood locations, this dataset may
not be a good candidate. Data are publicly accessible at https:
//www.globalfloodmonitor.org/download (last access: 22 De-
cember 2020). Given the latest database, we retrieved 6315
flood events in the United States and subsequently processed
them as described in Sect. 3.

2.2 Ancillary datasets

Since one purpose of this database is for flood susceptibil-
ity analysis, contributing factors to flooding are also incor-
porated for a given location. Land use–land cover (LULC),
digital elevation model (DEM), slope, distance to a major
river, drainage area, and 500-year flood depth are factored
into the data attributes. The LULC value is retrieved from
the Copernicus Global Land Service (CGLS) at 100 m res-
olution, covering urban, cultivated land, forest, vegetation,
wetland, water, and ice. The topographic inputs (i.e., DEM
and slope) are acquired from the NASA Shuttle Radar To-
pography Mission (SRTM) at 90 m spatial resolution, and
hydrography datasets (i.e., river networks, drainage area) are

acquired from MERIT Hydro at the same resolution (Ya-
mazaki et al., 2019). The 500-year flood depth is downloaded
from the Joint Research Centre Data Catalogue at https:
//data.jrc.ec.europa.eu/collection/floods (last access: 27 De-
cember 2020) at 1 km spatial resolution. All the extensive
computations (i.e., sampling) are processed using the Google
Earth Engine platform (Gorelick et al., 2017).

3 Processing methods

Figure 1 displays the processing flowchart, including pre-
processing, merging, and unifying all seven individual
databases comprising the USFD v1.0. There are 22 de-
scriptors in the database, including the start and end time
(UTC), duration (days), longitude and latitude (decimal de-
grees), toponyms (country, state, and location), flood impacts
(i.e., affected area, severity, damage, and fatality), sources
(i.e., source database, source ID, collecting sources), event
description, and environmental variables as mentioned in
Sect. 2.2. Detailed header descriptions and pre-processing
steps are summarized in Table 1. Two intrinsic factors de-
scribing flood events are date–time and locations. The date–
time information varies in different databases. Some early
reports do not record the precise date–time of an event on-
set, using only year or year and month. For clarity, we for-
mat them in a concatenated string with maximum available
information. The date 23 June 2015 00:00:00 is recoded as
“20150623000000”, and June 2015 is inserted as “201506”.
The date–time of all records are converted to UTC.

It is challenging to completely retrieve the location of
events from some databases. The NWS storm report has
some missing entries in geographic coordinates, but it has
detailed narratives. To compensate, we use the NLP toolkit
provided by the spaCy package, which contains pre-trained
models for English multi-tasks. spaCy firstly tokenizes the
event narratives and subsequently parses and tags each word
with respective entities. Then, we can geocode locations into
geographic coordinates via calling the Google Map API. The
GFM also does not contain precise geophysical locations to
protect user privacy. Therefore, the geographic coordinates
are inferred by first converting location tokens into adminis-
trative locations (e.g., cities and villages) via the GeoNames
API and then geocoding them into geographic coordinates.
The state names of a merged dataset are firstly validated with
geophysical locations from an inverse geocoding. If they do
not match, a new name from GeoNames is assigned to re-
place the original one. Meanwhile, the empty fields are also
filled during this process. We also processed supplementary
flood information such as affected areas and damages from
the original database. The affected area for each event is cal-
culated by assuming a circular area whose radius is approxi-
mated by the recorded range if available. For economic dam-
ages, we sum up all available sub-category damages (e.g.,
agriculture, property, and structure) to give a holistic view.
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Table 1. Descriptors in the USFD database.

Headers Unit/format preprocessing Description Sample

DATE_BEGIN yyyymmdd
(hh:mm:ss)

Pattern extraction, converting Event beginning date–time
(UTC)

202011042249

DATE_END yyyymmdd
(hh:mm:ss)

Event end date–time (UTC)

DURATION Days End date–begin date Duration of an event 10

LON Decimal degree Check validity; remove Longitude of an event (−120,60)

LAT Decimal degree unreasonable (long,lat) Latitude of an event

COUNTRY String Mapping country code to full name Country name The United States
of America

STATE String Replace or fill names with (long,
lat)

State name Oklahoma

LOCATION String None Location of an event Bryan

AREA Square kilome-
ters

Calculate affected areas from re-
ported storm range

Event-affected area 1000

FATALITY Int Check data type Number of fatalities 43

DAMAGE USD Sum up sub-category costs;
check data type; convert to dollars

Economic damages (direct) 107

SEVERITY NA None Severity of an event
(according to Dartmouth
Flood Observatory data)

1,1.5,2

SOURCE String None Collecting sources Newspaper

SOURCE_DB String None The original recorded
database

NOAA storm report

SOURCE_ID String None The original event ID in
source database

102300

CAUSE String None Causes of a flood event Heavy rain

DESCRIPTION String None Event narratives River overflow-
ing/bankfull

DEM Meters Retrieved from Shuttle Radar To-
pography Mission

Elevation 120

SLOPE Degree Derived from DEM Slope 10

LULC Class Retrieved from Copernicus global
land cover 2019

Land use–land cover classi-
fication

Urban

DISTANCE_RIVER Kilometers Distance computed in Google Earth
Engine

Distance from event loca-
tion to nearest major river

3.5

CONT_AREA Square kilome-
ters

Retrieved from MERIT Hydro Contributing area 1.35

500yr_DEPTH Meters Retrieved from 500-year flood
depth

500-year flood depth 1.23
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Figure 1. Flowchart of dataset processing.

For those single databases that do not provide information or
information that cannot be inferred from the specific header,
we uniformly treat them as not-a-number (NAN) values. As
a result, we merged 698 507 total flood records in the United
States from 1900 to the present. In the DOI link, a merged
database USFD, along with seven individual databases, is
provided in either comma-separated format or Excel format
for general readability. Additionally, an interactive web in-
terface is built and hosted at http://hydro.ou.edu/research/
us-flood-database/ (last access: 10 July 2021), where users
can do immediate analysis online and download the datasets.

4 Pre-assessment

4.1 Nationwide distributions

Figure 2a shows the nationwide distribution of flood events
at state levels. Because the total event numbers might be
skewed by replicated events in different databases, we stan-
dardize the event counts of each state by the maximum
number of events, including repetitive events from different
sources, out of all states to reveal the relative composition.
It is noteworthy that we do not intend to discard repetitive
events because they are reported with different attributes and

uncertainties in different candidate databases; it is up to users
to select the one that fits into their scopes. North Carolina,
Texas, Missouri, and Pennsylvania are the top-listed regions
with over 50 % of the total population, among which North
Carolina experiences the most cases. From the meteorologi-
cal perspective, North Carolina is prone to flooding due to a
mixture of a flood-generating mechanisms, with landfalling
tropical cyclones and extratropical systems being the primary
large-scale drivers, in conjunction with warm-season thun-
derstorms. In the meantime, the combination of snowmelt
and rain-on-snow contributes to flood peak occurring on the
lee side of the Appalachian Mountains (Smith et al., 2011).
The most devastating flood, estimated as a 500-year flood,
was caused by Hurricane Floyd and led to 35 fatalities. Texas,
similar to North Carolina, is affected by tropical cyclones
and hurricanes, which produce compound inland and coastal
flooding (Li et al., 2020). Anthropogenic effects such as ur-
banization and regulation, apart from meteorological effects,
are equally critical for inland flooding. Blum et al. (2020)
in a recent study noted that these listed regions experienced
increased urbanization from 1974 to 2012, resulting in an av-
erage 3.3 % increased flood magnitude by changes in imper-
vious cover alone.
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Figure 2. (a) Map of min–max standardized flood occurrences in the United States; (b) fractions of logarithmic event numbers of each
candidate database to logarithmic total event numbers.

Figure 2b lists detailed event numbers for each state
and the composition of each individual flood database. The
FEDB contributes a major portion of the unified database
because of the data length of flow records, and states with
higher gauge densities undoubtedly yield more event num-
bers than gauge-sparse regions. The data nonuniformity un-
derlies a major limitation of this specific dataset. Regions
with more exposure to observational sources (e.g., densely
populated and gauge-dense areas) likely have more recorded
events. However, it is expected that by including more ob-
servations from remote-sensing sources, this gap can be po-
tentially compensated for. Following the composition, NWS
storm reports comprise the second largest number of events
because of the long data length (i.e., 70 years). Other
databases, such as EM-DAT, though the longest available

length, only record very-high-impact events, and the crowd-
sourcing databases are limited by their short lengths.

4.2 Flood seasonality in major water basins

Flood variability is highly associated with seasonal atmo-
spheric pathways of moisture delivery and basin attributes
(Dickinson et al., 2019). In this regard, we segregate the
nation-wide events into major basins and months. The hy-
drologic unit code (HUC) four-digit basins, as shown in
Fig. 3, are obtained from the national hydrography dataset.
Figure 3a depicts months with the highest number of events.
Flooding generally happens between January and June over
the majority of the US basins, similar to that of other stud-
ies (e.g., Brunner et al., 2020; Dickinson et al., 2019; Villar-
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Figure 3. (a) Map of months with largest flood occurrence in major US watersheds (Hydrologic Unit Code 4). (b) Flood occurrences of the
top 20 HUC4 basins (HUC2 codes in bold), grouped by months.

ini, 2016). The basins are clustered into several regions ac-
cording to local hydroclimatologies. On the west coast (e.g.,
western Washington, Oregon, and California), flood events
are dominant in winter months because of atmospheric rivers
(ARs) as a main driving factor, which are a carrier of wa-
ter vapor from the tropics (Ralph et al., 2006). Moving to
the east, floods in the Rockies (i.e., Upper Colorado and
Great basins) are characterized by spring snowmelt in snow-
fed rivers, whereas in the Desert Southwest (e.g., Lower
Colorado and Rio Grande regions), floods likely occur in
late summer, which is ascribed to the North American mon-
soon and North Pacific tropical cyclones. Closer to the Gulf
of Mexico, flooding events during late spring and sum-
mer are due to severe thunderstorm activity and mesoscale
convective systems. The lower Mississippi, Ohio, and Ten-
nessee river basins experience their biggest floods during
the spring from extratropical cyclones (Lavers and Villar-
ini, 2013). The lower Florida Peninsula features high num-
bers of summer flood events, which are tied to North Atlantic
tropical cyclones (Villarini et al., 2014). In the northeastern
United States, tropical cyclones, winter–spring extratropical
cyclones, and warm-season thunderstorms are the primary
flood agents, yet winter–spring extratropical cyclones ac-

count for larger fractions (Smith et al., 2011; Villarini, 2016).
Figure 3b displays the number of flood events within each
basin, grouped by months. The Mid-Atlantic region (HUC2-
02) takes seven places out of the top 20 HUC4 basins listed
in Fig. 3b, with the Delaware River basin near the coast
(HUC2-0204) being the highest one. In terms of flood sea-
sonality, it is relatively evenly spanned across seasons and
months for these listed basins, which suggests its susceptibil-
ity to widespread floods. This symmetric feature around the
Appalachian Mountains across seasons is also highlighted in
Villarini (2016), in which they suggest flow regulations play
an essential role in weakening the seasonal cycle. In a recent
study by Brunner et al. (2020), these basins are identified as
severe or moderate widespread flooding in space, and our re-
sults indicate these regions also have widespread flooding in
time (month).

Figure 4 depicts the flood seasonality for two separate pe-
riods, 2000–2010 (panel a) and 2010–2020 (panel b), which
investigates potential shifts in flood timing for US river
basins. On the west coast (California and Columbia basin),
there is a shift from early winter flooding to late winter or
early spring flooding, especially near the northern coast. This
probably relates to snowmelt occurring in early spring, in
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Figure 4. Maps of month of maximum flood frequency, same as
Fig. 3a but for two periods: (a) 2000–2010 and (b) 2010–2020.

conjunction with the rain-on-snow effect. The Great Plains
feature an earlier maximum flood frequency, transitioning
from early summer to late spring, which relates to enhanced
and earlier timing of thunderstorm activities due to spring
warming. The south Atlantic Coast shows a delayed max-
imum flood frequency from winter to spring. The lower
Florida Peninsula, however, does not present a clear monthly
shift, which is still controlled by tropical cyclones.

4.3 Flood impact assessment

In the USFD, flood impacts are based on affected areas, eco-
nomic damages, and fatalities. Since affected areas are rel-
atively subjective, they are not analyzed in this study. All
the economic damages (US dollars) are adjusted for infla-
tion with GDP deflectors obtained from the World Bank. To
avoid repeated counts of damages or fatalities due to repet-
itive events, we herein calculate the mean values per event.
Figure 5 depicts the fatalities and damages by year. Although
events continuously span from 1900 to the present, impact
assessments were not provided in the earlier years (before
1980). The 10-year running mean represents the long-term
trend. Both fatalities and damages begin at high rates in the
early years, possibly due to the immature understanding of
floods and lack of flood protection measures. The 1964 flood
event which happened in the Pacific Northwest and northern
California during the Christmas holiday, also known as the
“Thousand Year Flood”, caused hundreds of millions of dol-
lars in damages, and over 10 people lost their lives. Since
1990, however, with the improved measures in flood predic-
tion, management, and protection, fatality rates have started
to decrease except for some highlighted major events. Yet,
in recent years, damages have shown a slight upward trend,
which is tied to frequent floods caused by intensified active

Figure 5. Time series of flood impacts: (a) mean fatalities per
event and (b) mean economic damages per event (US dollars based
on 2020). The highlighted bars represent 1964, 1997, 2011, 2012,
2016, and 2017, which are the active hurricane seasons on record.

hurricane events and anthropogenic effects. For instance, the
2011 and 2012 Atlantic hurricane seasons are deemed the
third and fourth most active hurricane season on record. The
2017 hurricane season featuring Harvey, Irma, and Maria was
the costliest hurricane season on record, which is reflected
in flood-related damages. Land surface changes such as ur-
banization continue to develop a conducive environment for
urban flooding.

State-specific damages across time shown in Fig. 6 reveal
the trends in flooding hotspots. For Texas and Louisiana, con-
sistent upward trends are present because of intensified ex-
treme events in the Gulf Coast. The slopes of annual flood
damage curves are the greatest among the identified hotspots,
manifesting potential flood risks. North Carolina has experi-
enced an increase in damages in the past 10 years, accom-
panied by major events during the 2016 and 2018 Atlantic
hurricane seasons. Florida, similar to North Carolina, has en-
countered active hurricane seasons and accompanying dam-
ages. In summary, these flood hotspots with increased flood
damages should raise awareness from policy-makers and the
public.

5 Data availability

The USFD open-access dataset and all individual datasets
are available at https://doi.org/10.5281/zenodo.4547036 (Li,
2020).

6 Code availability

The Python code to process, merge, and ana-
lyze this database is publicly available at https:
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Figure 6. Time series of regional economic damages at 2020 val-
ues.

//github.com/chrimerss/USFD (last access: 10 July 2021),
https://doi.org/10.5281/zenodo.5090020 (Li, 2021).

7 Conclusions and outlook

This work presents a merged United States Flood Database
(USFD) that features the longest and most comprehen-
sive recording of flooding across the country. The merged
database, integrated from multiple sources, can overcome
limitations inherent to the individual databases and thus max-
imize benefits. It is expected that this database can support
a variety of flood-related research, such as a validation re-
source for hydrologic and hydraulic model simulations, hy-
droclimatic studies concerning spatiotemporal patterns of
floods, and flood susceptibility analysis for vulnerable geo-
physical locations.

We showcase three analyses based on the developed flood
database. For flood occurrences across the United States,
Texas, Pennsylvania, and Missouri are highlighted with great
exposure to floods in total amount, which could raise aware-
ness from policy-makers and the public. Flood seasonality
in major river basins generally follows the large-scale syn-
optic weather patterns. In addition, delayed timings of maxi-
mum flood frequency are observed in the west coast and At-
lantic River basin, possibly due to earlier snowmelt than in
prior decades that now contributes to spring floods. Floods
in the Great Plains, on the contrary, feature an earlier month
of maximum flood frequency, which is possibly tied to in-
tensified thunderstorm activities because of earlier spring
warming. Lastly, flood impacts are assessed in terms of eco-

nomic damages and fatalities, and we found a slight increas-
ing trend in damages in recent years. Especially in Texas
and Louisiana, a consistent increase in damages is evident,
which relates to intensified storm activity and expanding ur-
ban zones. Under a warming climate, storms are projected to
occur more frequently in the future, which challenges cur-
rent water infrastructures and water management principles
(IPCC, 2014).

Notwithstanding, there are some limitations associated
with the current version of USFD. First, the individual
databases disproportionally make up the merged one. FEDB,
taken from streamflow records over a long history, consists
of the majority of the flood events. The emerging crowd-
sourced databases are expected to play a significant role with
the increasing engagement of citizen scientists. Space-based
observations could markedly bridge the gaps between well-
observed urban areas and gauged basins to gauge-sparse ar-
eas in rural zones. For instance, complete use of the MODIS
imagery on board Terra and Aqua satellites, in association
with Landsat or synthetic aperture radar data, can reconstruct
global flood events at daily resolution. In addition to flood
extent, flood depth can also be approximated through the use
of high-resolution DEM data. Floods, reported by insurance
companies, offer another angle to not only record events, but
relate flood hazards to societal impacts comprehensively. In
the future, we hope to incorporate such a dataset to enrich
our database at a global scale. Second, uncertainties exist
in each candidate database. The web-based crowdsourcing
dataset may be less reliable because of lack of stringent data
scrutiny, especially for studies that require precise flood lo-
cations. Developing new guidance for citizen scientists is a
remedy. The instrument uncertainties are subject to confined
locations such as stream gauges and technical algorithms to
retrieve flood information such as remotely sensed observa-
tions. Algorithm developers should take into account how
to quantify uncertainties in addition to the end product. The
flood reports from government agencies are relatively less
uncertain. Therefore, it is highly recommended that users se-
lect the candidate databases that fit their research scope. We
also encourage each flood database, during its original de-
velopment, to produce uncertainty measures quantitatively.
In a future work, we will consider ways of incorporating un-
certainty measures from individual flood databases and har-
monize them into one for delivering comprehensive flood in-
formation. Third, the data-processing framework needs to be
automated in real time. We plan to migrate processing codes
to the cloud, so that they can query records from the child
databases and update the parent database on a regular basis.
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