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Abstract. A better understanding of the hydrological functioning of irrigated crops using remote sensing ob-
servations is of prime importance in semi-arid areas where water resources are limited. Radar observations,
available at high resolution and with a high revisit time since the launch of Sentinel-1 in 2014, have shown great
potential for the monitoring of the water content of the upper soil and of the canopy. In this paper, a complete
set of data for radar signal analysis is shared with the scientific community for the first time to our knowledge.
The data set is composed of Sentinel-1 products and in situ measurements of soil and vegetation variables col-
lected during three agricultural seasons over drip-irrigated winter wheat in the Haouz plain in Morocco. The
in situ data gather soil measurements (time series of half-hourly surface soil moisture, surface roughness and
agricultural practices) and vegetation measurements collected every week/2 weeks including aboveground fresh
and dry biomasses, vegetation water content based on destructive measurements, the cover fraction, the leaf area
index, and plant height. Radar data are the backscattering coefficient and the interferometric coherence derived
from Sentinel-1 GRDH (Ground Range Detected High Resolution) and SLC (Single Look Complex) products,
respectively. The normalized difference vegetation index derived from Sentinel-2 data based on Level-2A (sur-
face reflectance and cloud mask) atmospheric-effects-corrected products is also provided. This database, which
is the first of its kind made available open access, is described here comprehensively in order to help the scientific
community to evaluate and to develop new or existing remote sensing algorithms for monitoring wheat canopy
under semi-arid conditions. The data set is particularly relevant for the development of radar applications includ-
ing surface soil moisture and vegetation variable retrieval using either physically based or empirical approaches
such as machine and deep learning algorithms.

The database is archived in the DataSuds repository and is freely accessible via the following DOI:
https://doi.org/10.23708/8D6WQC (Ouaadi et al., 2020a).
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1 Introduction

The south Mediterranean region has been identified as a hot
spot of climate change (Giorgi, 2006; Giorgi and Lionello,
2008; IPCC, 2014) that may worsen the water shortage al-
ready affecting the region. Up to 90 % of available water
is dedicated to irrigation (Ministre de l’agriculture et peche
maritime du develpement rurale et des eaux et forets, 2018).
Indeed, the predicted temperature rise that could reach 3 ◦C
by 2050 combined with precipitation decrease and increased
evapotranspiration could drastically increase the irrigation
requirements. The demand for water is also already increas-
ing in response to an ever-growing population and to changes
in agricultural practices – intensification, conversion to cash
crops and rise in irrigated areas (Ducrot et al., 2004; Fader
et al., 2016; Jarlan et al., 2016). The monitoring of irrigated
crops and the optimization of water use are therefore of prime
importance for the sustainability of the water resources in the
Mediterranean region. This requires the implementation of
methods to monitor the crop water status and the underlying
soil moisture (Wang et al., 2012).

Within this context, the observations from active space-
borne sensors in the microwave domain (radar) have shown
great potential for the monitoring of crops (Mattia et al.,
2003; Ouaadi et al., 2020b; Picard et al., 2003). The potential
of radar data for monitoring irrigated crops originates from
their high sensitivity to the water status of the surface includ-
ing the water content of the aboveground biomass and the
moisture of the upper soil layer (Ulaby and Dobson, 1986).
It is also sensitive to the structural properties of the observed
target including the size and orientation of the canopy ele-
ments (leaves, steams, trunks) and the soil roughness. A key
advantage of radar observations for monitoring crops, espe-
cially those crops growing during the rainy season such as
wheat, is also that they are not prone to atmospheric per-
turbations. Sentinel-1 provides for the first time since 2014
backscattering coefficients at a resolution of 10 m and a re-
visit time of 6 d compatible with the high dynamic of annual
crops at the field scale, paving the way for an operational use
of C-band radar data for crop monitoring.

Nevertheless, radar signal is a complex mix of backscatter-
ing from the soil and from the canopy that is often difficult to
disentangle. The impact of any changes in the canopy struc-
ture such as the appearance of the heads during the head-
ing stage of wheat (Brown et al., 2003; El Hajj et al., 2019;
Ulaby et al., 1986) or of the soil roughness may also dras-
tically impact the backscattering response. These processes
are not fully understood and not always properly reproduced
by the backscattering models.

The sensitivity of the backscattering coefficient to the sur-
face soil moisture (SSM) is widely documented in the liter-
ature for bare or covered soils (Ezzahar et al., 2020; Ouaadi
et al., 2020c, b; Ulaby and Dobson, 1986; Zribi et al., 2014).
Several retrieval approaches based on the inversion of a ra-
diative transfer model (Bai et al., 2017; Gherboudj et al.,

2011; El Hajj et al., 2016; Li and Wang, 2018; Ouaadi et
al., 2020b) or based on linear or non-linear empirical regres-
sion (Gorrab et al., 2015; Ouaadi et al., 2020b) have been
developed. The SSM derived from radar observations is also
used to estimate RZSM (root zone soil moisture), a key vari-
able in agronomy, through the combination with a land sur-
face model (Cho et al., 2015; Das et al., 2008; Dumedah
et al., 2015; Ford et al., 2014; Rodell et al., 2004; Sabater
et al., 2006; Sure and Dikshit, 2019). The presence of a
canopy above the soil results in two more contributions to
the backscattered signal: the volume scattering and the atten-
uated signal by the canopy. The water content of vegetation
influences the dielectric properties that in turn influence the
radar backscatter from the vegetation (Ulaby et al., 1982).
Based on these findings, some studies are focused on the re-
trieval of vegetation variables from SAR (synthetic aperture
radar) data such as aboveground biomass (Hosseini and Mc-
Nairn, 2017; Periasamy, 2018; Taconet et al., 1994) or even
grain yield (Fieuzal et al., 2013; Patel et al., 2006). In ad-
dition to the backscattering coefficient, the polarization ra-
tio and the interferometric coherence have demonstrated po-
tentialities for the characterization of the vegetation includ-
ing height (Blaes and Defourny, 2003; Engdahl et al., 2001),
the vegetation cover fraction (Wegmuller and Werner, 1997),
fresh aboveground biomass (Mattia et al., 2003; Veloso et al.,
2017), aboveground biomass (Ouaadi et al., 2020b) and veg-
etation water content (Ouaadi et al., 2020b). Other studies ac-
knowledge the sensitivity of coherence to soil moisture (De
Zan et al., 2014; Scott et al., 2017). Recent research suggests
that radar observations could also provide valuable informa-
tion on the canopy water status (Van Emmerik et al., 2015;
Ouaadi et al., 2020d) for crop stress detection.

In situ measurements of vegetation and soil characteris-
tics are always needed to improve our understanding of the
radar response, to develop and calibrate radiative transfer
models, and to propose generic retrieval methods for the in-
version of soil or vegetation variables. Nevertheless, in situ
data dedicated to these objectives are really specific in the
sense that, for instance, soil roughness is only of interest for
understanding the physical principle of observations in the
microwave domain. Likewise, aboveground biomass is often
measured by agronomists for crop modeling for instance, but
the partition between dry and wet matter, a key variable for
radar acquisition, is hardly ever performed. Indeed, the lat-
ter relies on heavy destructive measurements consisting in
cutting all the vegetation elements within square samples in
the field and a double weighing before and after drying the
samples in an oven. In this paper, a recent, multiyear, com-
plete database composed of processed Sentinel-1 SAR data
(the backscattering coefficient and the interferometric coher-
ence); the Sentinel-2 NDVI; and measured variables on the
soil, on the vegetation and on agricultural practices is made
available. The in situ data include automatic measurements
as well as observations carried out during measurement cam-
paigns once or twice every 15 d throughout the growing sea-

Earth Syst. Sci. Data, 13, 3707–3731, 2021 https://doi.org/10.5194/essd-13-3707-2021



N. Ouaadi et al.: C-band radar and in situ observations on wheat (central Morocco) 3709

son. This database covers three wheat seasons (2016/17 to
2018/19) of three different irrigated fields (Ouaadi et al.,
2020b). It is a unique and valuable data set that can be used
for vegetation and soil moisture monitoring applications in-
cluding from radar observations. In addition, the multiyear
database can be useful for multiyear time series analysis. In
the next section, an overview of the field location and a de-
tailed description of the variables, including field measure-
ments and remote sensing data processing, are presented. In
Sect. 3, the variables are experimentally and physically ana-
lyzed to assess the consistency of the data set. Conclusions
are provided in Sect. 4.

2 Study area and experimental sites

2.1 Study area

The database described in this paper is collected in the Haouz
plain in the Tensift watershed, central Morocco (Fig. 1). This
plain is one of the most important plains in Morocco located
at 550 m above sea level and covers about 6000 km2 of which
2000 km2 is irrigated. The climate in the region is Mediter-
ranean semi-arid, with annual average precipitation of about
250 mm. The distribution of precipitation highlights a wet
season with around 85 % of annual precipitation between Oc-
tober and April and a dry season from May to September.
The maximum average of temperature occurs during sum-
mer in July–August (about 35 ◦C), and the minimum occurs
in January (about 5 ◦C) (Abourida et al., 2008). The average
air humidity is about 50 %, and the reference evapotranspira-
tion ET0 is around 1600 mm yr−1 (Jarlan et al., 2015), which
greatly exceeds the annual rainfall. The agricultural produc-
tion in the plain is not very diverse, focusing on cereals (51 %
of the irrigated areas), olive trees (30 % of the irrigated area),
and fodder production (9 %) and market gardening (2 %) for
cattle breeding, while the non-irrigated part of the plain is
cropped with rainfed wheat (Abourida et al., 2008). Wheat is
usually sown between November and January depending on
precipitation distribution, even for irrigated fields, and on the
cultivar. Harvest usually occurs in May or June.

2.2 Experimental sites

The database concerns three irrigated fields (F1, F2 and F3)
located within a private farm in the province of Chichaoua
located 65 km west of Marrakech city (Fig. 1). F1 and
F2 are monitored during two successive growing seasons
(2016/17 and 2017/18), while F3 is monitored during the sea-
son 2018/19. The fields are sown using an automatic seed
drill. They are irrigated using the drip technique. For all the
fields, the wheat is cropped once a year during winter–spring
(see Table 1 for sowing and harvest dates). After harvest,
the fields are generally used for cattle grazing until mid-July
when the plowing work starts. Table 1 summarizes some gen-
eral information about the fields. Please note that during the

2017/18 season, wheat in F2 was affected by specific grow-
ing conditions: (i) the development of adventices belonging
to the wild thistle family characterized by a horizontal struc-
ture, (ii) the seeding density being higher than in F1, and
(iii) the seeding being a mixture of barley and wheat within
F2. This resulted in very long stems: 146 cm in F2 compared
to 110 cm in F1 in April 2018. Finally, these long stems in F2
were laid down by the wind from 12 April 2018. A picture
of F2 during 2017/18 is provided in Appendix A (Fig. A1).
Although such exceptional growing conditions are not very
likely, it has been chosen to include this crop season in the
data set to cover different conditions of growth.

3 Database

3.1 Field data sets

The field data sets consist of automatic measurements of soil
moisture and weather data in addition to field surveys for sur-
face roughness, biomass, vegetation water content, canopy
height, the green leaf area index and the cover fraction. Ta-
ble A1 in the Appendix summarizes the details of the 26,
18 and 16 field campaigns carried out during the 2016/17,
2017/18 and 2018/19 seasons, respectively.

3.1.1 Soil moisture

SSM is automatically measured every 30 min using time
domain reflectometry (TDR) sensors (Campbell Scientific
CS616) using two sensors buried at a depth of 5 cm: one
under the drippers and another one between them. The av-
erage is computed in order to obtain a representative SSM
value of the field. In addition, similar sensors are buried for
RZSM measuring at 25 and 35 cm of depth in F1 and F3,
while one sensor is buried at 30 cm in F2 because of the lack
of an additional sensor. Figure 2a illustrates an example of
TDR sensors at different depths.

TDR sensors are calibrated using the gravimetric tech-
nique. The calibration is performed during the 2016/17 sea-
son using samples taken from the first 5 cm from both fields
F1 and F2, and then the calibrated equation is applied to F1,
F2 and F3 data as the soil characteristics are similar and the
same sensors are used. For that purpose, an aluminum core of
392.5 cm3 is used to collect samples at the TDR installation
depths. Three samples are collected per day and per field dur-
ing 5 d chosen with different soil moisture conditions in or-
der to cover a wide range of values (0.08 to 0.33 m3 m−3). A
linear regression is established between the volumetric water
content and the square root of the TDR time response (named
τ , in seconds) as follows:

SSM= aTDR×
√
τ + bTDR. (1)

The calibrated values using data of both fields are aTDR =

0.275 m3 m−3 s−0.5 and bTDR =−1.154 m3 m−3. Figure 3
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Figure 1. Location of the study fields: F1, F2 and F3 are drip-irrigated wheat plots in a private farm (Domaine Rafi) near the city of
Chichaoua in the Haouz plain, central Morocco.

Table 1. General information about the three fields.

Field Area Season Sowing date Harvest date Irrigation Sand Clay
(ha) (%) (%)

F1 1.5 2016/17 & 25 November 2016, 16 May 2017, Drip 32.5 37.5

F2 1.5 2017/18 27 November 2017 8 June 2018 technique

F3 12 2018/19 4 November 2018 6 June 2019

illustrates the calibration results with all the samples dis-
played. The statistical metrics are the correlation coefficient
R= 0.97, root mean square error RMSE= 0.018 m3 m−3

and no bias. When considering both fields separately, the
results for (F1, F2) are R= (0.90, 0.94), RMSE= (0.023,
0.01) m3 m−3 and bias= (−0.002, 0.003) m3 m−3.

The calibrated equation is also applied for the RZSMs
assuming that the soil properties are the same at different
depths. Figure A2 in Appendix A illustrates an example of
an RZSM time series in F1.

3.1.2 Surface roughness

Surface roughness characterizes the micro-variation in the
ground surface elevation within a given area/field (Allmaras
et al., 1966). It affects particularly the SAR signal and to a
lesser extent the visible and near infrared (Girard and Gi-
rard, 1989). The two parameters that characterize the sur-
face roughness are the root mean square height (hrms) and
the correlation length (L). hrms provides a vertical descriptor
of ground roughness by measuring the elevation of the sur-
face along one or more observation lines and calculating the
standard deviation of the recorded values. The second param-

eter (L) corresponds to the distance between measurements
from which the heights between points are statistically inde-
pendent. This parameter provides a horizontal description of
the ground surface roughness, more specifically the organi-
zational structure and spatial continuity of the microtopogra-
phy (Nolin et al., 2005). Over the three studied fields, mea-
surements of the surface roughness are taken during the first
stage of wheat (from emergence to early tillering) when the
ground is not totally covered by the canopy. We used a pin
profiler of 1 m length, composed of a set of 53 metal needles
of equal length every 2 cm (Fig. 2b). A total of 16 sample
pictures are taken per field and per date including 8 pictures
parallel and 8 pictures perpendicular to the rows’ direction.
The pictures are taken using a Canon 6EOS 600D equipped
with a Tamron lens (Model A14).

The images are processed in MATLAB based on the de-
tection of the top position of each needle. hrms and L are
computed from the auto-correlation function, and then the
average per direction, per field and per date is computed. For
illustration, Fig. 4 shows the time series of hrms and L pa-
rameters computed separately for each direction for F1 and
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Figure 2. Examples of (a) TDR sensors installed at different depths and (b) a pin profiler picture taken over one of the plowed field with
drip irrigation tubes installed.

Table 2. Average values of the roughness parameters (eight samples are gathered per field and per direction).

F1 F2 F3

hrms L hrms L hrms L

(cm) (cm) (cm) (cm) (cm) (cm)

2016/17 Parallel 0.92 5.02 1.19 5.77
Perpendicular 1.34 5.88 1.19 5.8
Average 1.13 5.45 1.19 5.78

2017/18 Parallel 0.89 5.44 1.1 5.88
Perpendicular 1.16 7.4 1.12 6.6
Average 1.02 6.42 1.11 6.24

2018/19 Parallel 0.83 6.54
Perpendicular 0.96 7.32
Average 0.89 6.93

F2 during the season 2017/18, while the average values per
season are summarized in Table 2 for F1, F2 and F3.

Based on the range of hrms measurements
(0.83<hrms< 1.35), it can be clearly seen that the fields are
characterized by a slightly rough or smooth surface, which
is generally the case for disc-tilled fields. After sowing,
a slight change is observed at the start of the crop season
(28 December 2017; see Fig. 4). At that time, the soil has
just been prepared for sowing and rows are directly exposed
to rain. The fact that the rows are still visible in the field also
explains the differences observed between both directions
early in the season. This anisotropy disappeared quickly
with irrigation, rainfall and plant growth. hrms and L are
almost constant from early January onwards. Indeed, it has
been shown that after sowing, roughness is affected by very
limited temporal variations (Bousbih et al., 2017) as no soil
works occur after sowing. It is usually kept constant during
the crop season (El Hajj et al., 2016; Gherboudj et al., 2011;
Gorrab et al., 2015; Ouaadi et al., 2020b).

3.1.3 Biomass and water content

Biomass and water content are two biophysical parameters
of crucial importance in different agricultural applications in-
cluding particularly plant stress monitoring, radar backscat-
tering response, crop yield and evapotranspiration model-
ing. Within each field, eight samples are collected once a
week/every 2 weeks during the growing season. The sam-
ples are chosen randomly so that the average is representa-
tive of the plot. A quadrate of an area of 0.0625 m2 is used
for the sampling (Fig. 5). The samples are weighed first in the
field to obtain fresh aboveground biomass (FAGB). The cor-
responding aboveground biomass (AGB) expressed in kilo-
grams of dry matter per square meter is determined at the
laboratory by drying the samples in an electric oven at 105 ◦C
for 48 h. The vegetation water content (VWC) is thus com-
puted as the difference between FAGB and AGB (Gherboudj
et al., 2011).
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Figure 3. Surface soil moisture measured by TDR versus gravimet-
ric measurements using samples collected in both fields F1 and F2
during the 2016/17 growing season. The solid blue line is the linear
regression, and the dashed line is Y =X.

Figure 4. Time series of hrms and L computed from parallel and
perpendicular measurements separately for F1 and F2 during the
season 2017/18.

3.1.4 Canopy height, green leaf area index and cover
fraction

The canopy height (H ), green leaf area index (GLAI) and
cover fraction (FC) are measured every week during the
growing season. Values from 11 different places are aver-
aged and considered a representative measure of the field. H
is simply measured using a measuring tape, while the GLAI
and FC are computed by processing hemispherical photos

Figure 5. Photo taken during a measurement campaign illustrating
a sample of aboveground biomass measurement.

(Fig. 6b) using MATLAB software following the method de-
scribed in Duchemin et al. (2006) and Khabba et al. (2009).
The eight photos per date and per field are taken using a
Canon 6EOS 600D camera with a SIGMA 4.5 mm F2.8 EX
DC circular fisheye HSM (Fig. 6a). Photos are taken in op-
timal lighting conditions to avoid shadow effects and over-
exposure phenomena which make classification more diffi-
cult. The algorithm is based on the binarization of the hemi-
spherical images by thresholding a greenness index. Next,
the useful part of the images is extracted by masking the op-
erator and the high viewing angles (> 75◦) (Fig. 6c). Finally,
the ground-covered area is extracted on concentric rings as-
sociated with fixed viewing angles, and the average of all
pictures is the field GLAI. Using the same process, FC is cal-
culated as the ratio of the vegetation pixel number to the total
pixel number.

3.1.5 Irrigation and weather data

F1, F2 and F3 are irrigated using the drip technique. Irri-
gation quantities are determined by the farmer by estimat-
ing the daily evapotranspiration under standard conditions
(ETc) in the region computed using the FAO 56 model sim-
ple approach (Allen et al., 1998). The cumulative ETc for
a given period (usually 1 week) is applied during one or
more events per week depending on the farmer’s constraints
(e.g., availability of workforce) and on the weather con-
ditions (e.g., occurrence of rain). The irrigation pipes are
spaced by 0.7 m, while the distance between the drippers
along the pipe is 0.4 m. In F1 and F2, the flow rate of each
dripper is 7.14 mm h−1. The irrigation takes place for about
105 min (12.53 mm). A flowmeter mounted downstream of
a valve allowed an accurate collection of irrigation volumes.
F2 and F3 are irrigated according to FAO recommendations,
while F1 is stressed voluntarily. The stress involved in F1
is during the first season (2016/17) only. By contrast, the
2017/18 season was wet, so there is no clear stress observed
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Figure 6. (a) The 4.5 mm F2.8 EX DC circular fisheye HSM, (b) a hemispherical photo, and (c) the result of the processing after binarization
and after masking the operator and the high viewing angles (> 75◦).

Figure 7. Automatic weather station installed in an alfalfa field near
F1, F2 and F3.

on the field. The irrigation dates and amounts in F1 and
F2 during both seasons are made available throughout this
database, while the irrigation in F3 is not available.

The weather data including precipitation, air temperature,
relative humidity, solar radiation, and wind speed and direc-
tion are collected by an automatic weather station installed
over an alfalfa field near the studied fields (Fig. 7). The
weather station provides continuously meteorological data
every 30 min. The Campbell sensor CS215 is used to mea-
sure the air temperature and the relative humidity (Fig. 7).
The global solar radiation and the wind direction and speed
are measured using the Campbell SKP215 and Campbell
WindSonic4, respectively. The precipitation is measured us-
ing the rain gauge (Campbell SBS500) shown in Fig. 7.

3.2 Remote sensing data sets

3.2.1 Sentinel-1

Sentinel-1A (S1A) and Sentinel-1B (S1B) are Earth obser-
vation satellites developed for the Copernicus initiative and
launched by the European Space Agency in April 2014 and
April 2016, respectively. During full operation, S1A and S1B
are maintained in the near-polar Sun-synchronous orbit at
693 km in altitude, phased 180◦, providing a revisit time
of 6 d (Torres et al., 2012). Sentinel-1 (S1) is a synthetic
aperture radar operating at the C-band with a frequency of
5.33 GHz, mapping the entire world in 175 orbits per cycle.
The main operational imaging mode is the Interferometric
Wide (IW) swath mode. IW acquires data with a wide swath
of 250 km with high geometric (azimuth resolution 20 m and
ground range resolution 5 m) and radiometric resolution (Eu-
ropean Space Agency, 2012). The IW mode supports opera-
tion in single and dual polarization (HH, VV, HH–HV and
VV–VH) and covers a range of incidence angles between 31
and 46◦. The product is composed of three sub-swaths ac-
quired with the TOPSAR imaging technique which signifi-
cantly reduces the scalloping effect (De Zan and Guarnieri,
2006).

Level-1 products are systematically processed and avail-
able within 24 h, free of charge from the Copernicus Open
Access Hub website (https://scihub.copernicus.eu, last ac-
cess: 19 July 2021). The website provides data for two types
of products: GRDH (Ground Range Detected High Resolu-
tion) and SLC (Single Look Complex).

In this database, 561 GRDH and SLC products are pro-
cessed (Table 3). Among them, 124 images are acquired over
F3 during the 2018/19 growing season and 437 over F1 and
F2 from 1 October 2016 to 31 July 2018, along the ascend-
ing no. 118 (221 images) and descending no. 52 (216 images)
relative orbits. This period includes two agricultural seasons
in addition to the summer period.
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Table 3. Characteristics of the sentinel-1 products processed over the three fields for the monitored periods.

Field Season Relative orbit Incidence Relative Overpass Product Number of
number angle orbit time (UTC) images

F1 and F2 October 2016– 118 45.6◦ Ascending 18:30 GRDH 112
July 2018 SLC 109

52 35.2◦ Descending 06:30 GRDH 110
SLC 106

F3 November 2018– 118 45.6◦ Ascending 18:30 GRDH 32
May 2019 SLC 31

52 35.2◦ Descending 06:30 GRDH 31
SLC 30

Backscattering coefficient

GRDH products are provided by ESA with a square
pixel size and contain only the intensity information. The
backscattering coefficients are extracted using the Orfeo
ToolBox (CNES, 2018). The processing procedure consists
of three steps (Frison and Lardeux, 2018):

1. Thermal noise removal. The SAR product contains not
only the useful signal but also the unwanted noise dis-
turbing the information contained in the intensity im-
ages, especially when the backscattered power is low.
The thermal noise is an additive noise. The compensa-
tion for this noise can be performed by subtracting the
scaled noise power using the calibrated noise vectors
provided by ESA.

2. Calibration. The calibration step aims to convert the
digital accounts into a physically interpreted parame-
ter: the backscattering coefficient. A calibration vector
included in the GRDH products contains the necessary
information to convert the digital values to the backscat-
tering coefficient.

3. Terrain correction. S1 SAR data are sensed with a view-
ing angle greater than zero which induces distortion in
the products because of the lateral viewing geometry.
The “Terrain correction” module is used to compensate
for these distortions and obtain as many images as pos-
sible with real geometric representation. The images are
projected on the Earth’s surface using a digital elevation
model (DEM). The SRTM (Shuttle Radar Topography
Mission) DEM of 30 m resolution is used according to
the method described in Small and Schubert (2008).

SAR images are affected by the speckle noise, which is
mainly due to the relative phase of individual scatters within
a resolution cell. Many filters have been developed to remove
the speckle noise although the best filter is the spatial aver-
age. The presented database is generated using a simple av-
erage per field of 120, 121 and 1100 pixels for F1, F2 and

F3, respectively, with a mean standard deviation of around
1.55 dB. In order to visualize data dynamics, backscattering
coefficients are converted into decibels.

Interferometric coherence

Sentinel-1 SLC products are provided in slant-range geom-
etry. They contain three sub-swath images: IW1, IW2 and
IW3. Each sub-swath is composed of nine bursts with black-
fill demarcation. By contrast with GRDH, both intensity in-
formation and phase information are kept. The phase infor-
mation is used for the computation of interferometric coher-
ence. SAR interferometry consists of correlating two images
acquired from two positions in space slightly separated from
each other (with two radars mounted on the same platform)
or at different times by exploiting repeated orbits of the same
satellite such as for Sentinel-1. Thanks to its high tempo-
ral resolution (6 d per orbit), the interferometric coherence
is computed from two consecutive acquisitions of the same
orbit.

The interferometric coherence, given by Eq. (2), for a local
neighborhood ofN pixels, is generated by cross-multiplying,
pixel by pixel, the first SAR image zi with the complex con-
jugate z′i

∗of the second (Bamler and Hartl, 1998; Touzi et al.,
1999).

ρ =

N∑
i=1
zi · z

′

i
∗

√
N∑
i=1
|zi |

2
·

N∑
i=1

∣∣z′i∣∣2
(2)

The interferometric coherence |ρ| varies between zero (inco-
herence) and 1 (perfect coherence). The interferometric co-
herence is related to the movements of the scatterers within
a given canopy. It decreases (loss of coherence) in the case
of dense vegetation, while high values are obtained over bare
soils. Loss of coherence could be caused by the temporal in-
terval between acquisitions, orbit errors, vegetation develop-
ment/movement or processing errors. The random disloca-
tion of scatters because of the weather (wind and rain) or the
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plants’ growth is the main cause of the temporal decorrela-
tion.

The Sentinel application platform SNAP is used to com-
pute the interferometric coherence from S1 SLC products in
five steps (Veci, 2015):

1. Apply-Orbit-File. This module is applied for a better es-
timation of the position and speed of the satellite us-
ing the orbit state vector. Preliminarily, a predicted orbit
state vector is contained in the metadata, but it is not ac-
curate. The precise orbit is made available 1 month after
data acquisition at the latest. For this reason, the auto-
matic download in SNAP is used in order to update the
orbit state vectors.

2. Back-Geocoding. The two images need to be co-
registered. One of the images is the master, and the
other is the slave. This step ensures that each pixel of
the slave image is aligned with the corresponding pixel
in the master image so that both pixels contain contribu-
tions from the same target. The DEM is required for the
Back-Geocoding step; SNAP allows us either to enter it
manually or to download it automatically.

3. Coherence. This module in SNAP allows the computa-
tion of the interferometric coherence between the two
images for a given local neighborhood. In order to ob-
tain a square pixel of 13.95 m, azimuth× range is fixed
to 3× 15 in the processing.

4. TOPSAR-Deburst. The black fills in between bursts are
deleted separately for both polarization images (VV and
VH).

5. Terrain-Correction. Finally, the processed images are
projected on the Earth’s surface using a DEM.

3.2.2 Sentinel-2 NDVI

Sentinel-2 optical satellites S2A and S2B were launched
by ESA in June 2015 and March 2017, respectively. They
are placed in opposition on the same orbit at an altitude of
800 km. Sentinel-2 provides data every 5 d with a width of
290 km and a resolution of 10 to 60 m according to spec-
tral bands (13 bands) ranging from visible to the medium in-
frared. The National Centre for Space Studies (CNES) pro-
vides Level-2A products atmospherically corrected free of
charge via PEPS (https://peps.cnes.fr/, last access: 19 July
2021) or the Theia website (https://theia.cnes.fr/, last access:
19 July 2021). Data are corrected for atmospheric effects by
the Center for the Study of the Biosphere from Space (CES-
BIO) using the MAJA chain (Hagolle et al., 2015). The at-
mospheric corrections are performed in three steps:

1. The satellite top-of-atmosphere (TOA) reflectances are
corrected for the absorption by the atmospheric gas
molecules using the absorption part of the Simplified

Model for Atmospheric Correction (SMAC) method by
Rahman et al. (1994). The concentrations of the ozone,
the oxygen and the water vapor are obtained from satel-
lite data (ozone) and meteorological data (water vapor,
pressure).

2. The detection of the clouds (and clouds’ shadows) is
based on the multi-temporal cloud detection method
proposed by Hagolle et al. (2010).

3. The estimation of the aerosol optical thickness (AOT)
relies on a hybrid method merging the criteria of a
multi-spectral method with the multi-temporal tech-
nique developed initially for the VENµS satellite mis-
sion by Hagolle et al. (2010). The AOT is used along
with the surface altitude, the viewing geometry and the
wavelength in the parameterization of look-up tables for
the conversion of TOA reflectances already corrected
in step 1 into surface reflectances. The look-up tables
are provided by the successive orders of scattering code
(Lenobel et al., 2007) used in the modeling of molecular
and aerosol scattering effects. A different look-up table
is computed for each aerosol model.

Data are downloaded from the Theia site. Among the avail-
able products, only the products non-covered with clouds
are used corresponding to 10, 25 and 26 images for the
2016/17, 2017/18 and 2018/19 agricultural seasons, respec-
tively. Please note that during the season 2016/17, only S2A
was in the orbit which explains the limited number of im-
ages (10). Next, the normalized difference vegetation index
(NDVI) corresponding to each pixel is computed from band
4 and 8. An average per field is used to compute the time
series of each field.

4 Data analysis

4.1 Vegetation variables

In this section, the relationships between the different vari-
ables (GLAI, FAGB, AGB, VWC and H ) that character-
ize the vegetation growth and development are first inves-
tigated. These relationships are extensively used for different
applications such as the calibration of backscattering models
and the development of retrieval approaches (Chauhan et al.,
2018). Several land surface or crop models rely on empiri-
cal relationships to predict FC or H as well (Bigeard et al.,
2017; Castelli et al., 2018). Other agricultural models com-
pute AGB from the GLAI using linear or polynomial rela-
tionships (Major et al., 1986; Petcu et al., 2003). Figure 8
displays the resulting relationships using data from F1 by
selecting only the 2016/17 season for illustrative purposes.
These relationships are computed separately based on the
data recorded before and after the peaks of the GLAI and
FAGB.
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Figure 8. Scatterplots of the relationships between wheat measured variables: FAGB, AGB, VWC, H , GLAI and FC. Data are presented
separately using the maximum of the GLAI and FAGB as thresholds: data <max GLAI are in black; data <max FAGB (and >max GLAI)
are in grey, and data >max FAGB (and >max GLAI) are in blue.

The nature of the relationship changes depending on the
structure (biomass variables) or on the greenness of the plant
(GLAI). The biomass variables (FAGB, AGB and VWC)
and H increase up to the biomass peak. Afterwards, a re-
verse evolution can be observed, characterized in particular
by a decorrelation between FAGB/VWC and AGB. This is
mainly related to the senescence process of the vegetation;
the leaves begin to dry progressively with the start of the
grain filling, so the sap flow (water, carbohydrates, proteins
and mineral salts) migrates to the heads at the top of the plant
(Farineau and Morot-Gaudry, 2018). Indeed, VWC and AGB
are highly correlated until the vegetation peak (the correla-
tion coefficient is R= 0.94 before the peak and R=−0.20
afterwards), while FAGB being dominated by the plant water
content is highly correlated with VWC during the whole crop
season (R= 0.99 before the peak, and R= 0.98 afterwards).
Likewise, H is highly correlated to FAGB, VWC and AGB
until the vegetation peak (R> 0.97) when H remains at its
maximum value while AGB continues to increase with grain
filling and VWC and FAGB decrease because of the veg-
etation drying. The relationship of these variables (FAGB,
AGB, VWC andH ) with the GLAI and FC is quite different.
The curves are of a parabolic shape with a maximum reached
around the GLAI peak. A timing shift between the peaks of

the GLAI and FAGB is observed. This is probably related to
the senescence of the lower leaves, which leads to an earlier
drop of the GLAI than of FAGB. Between the peaks of the
GLAI and FAGB, the GLAI decreases while (i) AGB and
H increase and (ii) FAGB increases slightly while VWC is
almost constant. After the FAGB peak, AGB goes on increas-
ing due to grain filling while the VWC decreases due to dry-
ing of the plant. FAGB, which is the sum of AGB and VWC,
is almost constant.

4.2 Radar data

The time series of the backscattering coefficient, the polar-
ization ratio and the interferometric coherence are analyzed
here for two agricultural seasons and a summer period on F1
and F2 and at two incidence angles (35.2 and 45.6◦).

4.2.1 The backscattering coefficient

Figure 9 displays the time series at 45.6◦ in F2 for illustra-
tive purposes: (a) backscattering coefficient at VV polariza-
tion (σ 0

VV); (b) backscattering coefficient at VH polarization
(σ 0

VH) as well as wheat phenological stages; (c) SSM, air
temperature, irrigation and rainfall. Figures A3–A5 in Ap-
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pendix A show the same time series in F1 and F2 at 35.2◦

and F1 at 45.6◦, respectively. The backscattering coefficients
reveal a strong seasonal signal with two cycles. The first cy-
cle takes place from sowing to the heading stage, and the
second takes place from heading to harvest with the mini-
mum reached around the heading stage. The highest values
at 35.2◦ are observed in the first cycle, while at 45.6◦, σ ◦

is higher during the second peak. The maximum values of
σ 0

VV reached the same value for F1 and F2, while higher
values are observed on F2 at VH. σ 0

VV is more sensitive to
soil moisture variation until mid-January, corresponding to
the tillering stage, when the soil is not yet fully covered by
vegetation. Although it is agreed that the signal during this
period is governed by the dynamics of soil moisture, its be-
havior differs from one site to another, giving the difference
in soil hydric conditions and surface roughness. After this
period, the signal behavior is similar to the profiles obtained
by Cookmartin et al. (2000), El Hajj et al. (2019), Nasrallah
et al. (2019) and Veloso et al. (2017). It decreases gradu-
ally from the early tillering until the heading stage (around
13 March) by about 10 dB on F2 and 5 dB on F1 because
of the attenuation by the canopy during the development of
the stems (extension stage) (Cookmartin et al., 2000; Mattia
et al., 2003; Picard et al., 2003; Wang et al., 2018). Obvi-
ously, the attenuation is more important at VV polarization
because of the vertical structure of wheat (stems) in line with
the results of Fontanelli et al. (2013), Picard et al. (2003) and
Wang et al. (2018). The response of σ 0

VH to SSM variation
and canopy attenuation is lower than for σ 0

VV. After the head-
ing stage, the signal starts to increase again. This is clearer on
F2 than on F1 and at 45.6◦ than at 35.2◦. The heading stage is
the phenological stage of wheat when the spike or head starts
emerging out from the leaf sheath. This change in the struc-
ture of the canopy shields the stems from the radar signal
through the appearance of a thick, wet, top layer composed
of the heads. The C-band wavelength penetrates this layer
only, resulting in increased volume scattering, while attenua-
tion becomes low. This effect is stronger for F2 than for F1, at
VH than at VV and at 45.6◦ than at 35.2◦. This increase was
first reported by Ulaby and Batlivala (1976). Subsequently,
Ulaby et al. (1986) suggested that an additional term must be
added to the traditional three-term model (vegetation volume
diffusion, soil attenuation and soil–vegetation interaction) to
properly represent wheat backscattering after heading. Later
on, similar behavior was observed and attributed by numer-
ous authors to the appearance of the heads followed by the
grain (Brown et al., 2003; El Hajj et al., 2019; Mattia et al.,
2003; Patel et al., 2006; Veloso et al., 2017). The exceptional
growing conditions in F2 during the 2017/18 season is behind
the origin of the observed plateau of the backscattering coef-
ficient which remains quite stable until harvest. This is due to
a significant contribution of volume scattering which is a be-
havior that characterizes a crop developing a random canopy
structure in relation to the numerous and dense adventices as
already highlighted (see picture Fig. A1 in Appendix A).

The low variation observed on F1 during the 2016/17 sea-
son is mainly related to the limited development of vegeta-
tion because of the triggered water stress. Likewise, the dif-
ference between the two seasons in F2 is related to a higher
density of grown seeds and wetter conditions in the 2017/18
season compared to 2016/17 (the amount of rainfall dur-
ing the growing season – from sowing to harvest – reached
167.23 mm in 2017/18 while only 69.94 mm is recorded in
2016/17). With the drying of the head layer, the backscatter-
ing decreases again at the end of the season to reach the lower
observed values. Indeed, as the head layer dries, the vegeta-
tion becomes transparent to the signal. The soil is also dry
at the end of the season because irrigation is stopped. These
low values remain until the first deep plowing on 11 July,
when a sharp increase is observed because of a drastic change
in soil roughness. Hereafter, the signal is again stable until
the seedling preparation work for the next 2017/18 season
(22 November).

4.2.2 The interferometric coherence and the
polarization ratio

Figure 10 displays the time series at 45.6◦ in F2 of the (a) in-
terferometric coherence at VV (ρVV) and VH (ρVH) polariza-
tions together with sowing and tilling dates; (b) polarization
ratio (PR= σ 0

VH/σ
0
VV), as well as wheat phenological stages;

(c) Sentinel-2 NDVI and measured GLAI; and (d) measured
FAGB, AGB, VWC and H . Likewise, Figs. A6–A8 in Ap-
pendix A display the time series in F1 and F2 at 35.2◦ and
F1 at 45.6◦, respectively. The time series of ρVV and ρVH
follows a similar evolution. Before sowing, coherence is at
its highest value corresponding to 0.9 for ρVV and 0.7 for
ρVH (Fig. 10a). These values express a dominance of co-
herent scattering, corresponding to the response of bare soils
composed of big rocks. Indeed, during the summer, the plots
are subjected to deep plowing which yields big clods that re-
sist any change in surface structure caused by climatic factors
such as wind or rain. The second tilling breaks up the clods
for the next seeding. Soil works and farming activities induce
a large decrease in coherence in line with the observation of
Wegmuller and Werner (1997). The surface roughness is a
main parameter that influences not only the amplitude at the
C-band but also the phase. Indeed, abrupt drops are observed
around each sowing event and tilling works (vertical brown
lines in Fig. 10a).

After sowing, the evolution is similar to that of the pro-
files obtained by Blaes and Defourny (2003) and Engdahl
et al. (2001). The interferometric coherence increases from
0.15 to 0.7 and then starts to decrease slightly from the emer-
gence of wheat, becoming almost constant after stem ex-
tension with values < 0.3 corresponding to the noise level.
Indeed, using the ERS-2–Envisat Tandem mission, Santoro
et al. (2010) demonstrated that coherence measurements of
vegetated fields are always below the level of bare soil co-
herence. Actually, the interferometric coherence is known to
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Figure 9. Time series of the backscattering coefficient at VV (a) and VH (b) polarizations on F2 at a 45.6◦ incidence angle during the
period from 1 October 2016 to 31 July 2018. The tilling works and phenological stages of wheat are superimposed in panels (a) and (b),
respectively. The air temperature, surface soil moisture (SSM), irrigation and rainfall are displayed in panel (c).

Figure 10. Time series of the interferometric coherence at VV and VH polarizations (a) and the polarization ratio (b) on F2 at a 45.6◦

incidence angle during the period from 1 October 2016 to 31 July 2018. The tilling works and phenological stages of wheat are superimposed
in panels (a) and (b), respectively. The NDVI and measured GLAI are displayed in panel (c). MeasuredH , FAGB, VWC and AGB are plotted
in panel (d). Time series are presented by mean values (solid lines) and standard deviations (shading surrounding the solid lines).
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decrease exponentially with wheat growth (Lee et al., 2012).
Vegetation growth and random dislocation of scatters cause
a degradation of coherence (Blaes and Defourny, 2003; En-
gdahl et al., 2001; Wegmuller and Werner, 1997), especially
under wind and rain effects. Between sowing and emergence,
the observed variation is assumed to be related to the installa-
tion of irrigation drippers that took place up to 2 weeks after
sowing. The changes that occur between the harvest and the
first tilling could be attributed to livestock grazing, a com-
mon practice in the region after wheat harvest, which could
change the surface roughness.

The polarization ratio (PR) is closely related to the
biomass dynamic. Both increase from emergence to heading
and then start to decrease until harvest. The maximum timing
is around the middle of April. The significant differences in
biophysical parameters between F1 and F2 are due to irriga-
tion, as already highlighted for the backscattering coefficient
time series. Likewise, the difference between the two seasons
in F2 is related to a higher sowing density and wetter condi-
tions in the 2017/18 season compared to 2016/17. As shown
in Fig. 8, the time series of FAGB and VWC are in line with
AGB and H up to the peak of FAGB and then decrease to-
gether while AGB continues to increase andH remains at its
maximum value. FAGB and VWC drop at the same time but
50 d later when compared to the GLAI and NDVI and about
15 d before the backscattering coefficient.

4.3 Relationship between SAR data and vegetation
variables

The polarization ratio and the interferometric coherence have
been shown to be related to vegetation growth. In this sec-
tion, the relationships between PR; ρVV and ρVH; and vege-
tation variables, including AGB, VWC,H , the GLAI and the
NDVI, are analyzed. Figure 11 displays the results at a 35.2◦

incidence angle, and Fig. A9 in Appendix A displays the re-
sults at 45.6◦. H is used to illustrate the vegetation growth
because its evolution is monotonic so that data correspond-
ing to before and after maximum development can be easily
separated. The determination coefficient R2 and the Spear-
man rank correlation Rs are superimposed on the subplots
together with the fitting equations using the whole database.
Overall, a good correlation has been found between SAR
variables (PR, ρVV and ρVH) and AGB, VWC, the GLAI
and H . A hysteresis behavior is obviously observed for the
vegetation variables with a non-monotonic dynamic (VWC,
NDVI and GLAI). Using PR, the relationships are more scat-
tered and characterized by lower saturation values. Although
the range of variation of ρVH is limited with regards to PR,
the statistical metrics of the relationships between interfero-
metric coherences and the vegetation variables are better than
those obtained using PR. ρVV exhibited better correlation
with the vegetation variables than ρVH. With the exception of
the NDVI, Rs is always greater than 0.67. The best fit is ob-
tained between ρVV and H (Rs= 0.78, and R2

= 0.65) with

higher saturation values than the other relationships (∼ 55 %
of H range which is about 77 cm). By contrast, a visual in-
spection of Fig. 11d, i and n shows that relationships with
the NDVI are poorer when using data of the whole growing
season. The dispersion is strong over the season. Data before
and after the maximum development can be distinguished,
particularly using ρVV and to a lesser extent ρVH. Figure 11i
and n show that a linear relationship exists between the NDVI
and SAR data using data before maximum development only,
i.e., when the vegetation is still green. During the beginning
of the season, the slope of ρVV–NDVI and ρVH–NDVI is low
compared to the other vegetation variables. This is because
the NDVI increases faster around the emergence of wheat
while ρVV is still high because of the low vegetation cover
fraction at this time. The hysteresis effect observed after the
maximum of vegetation development is due to the senes-
cence of the leaves when the NDVI starts decreasing while
ρVV and ρVH are stable at low values.

When considering SAR data at a 45.6◦ incidence angle
(Fig. A9), a similar behavior to that shown in Fig. 11 is ob-
served with AGB, VWC, H and the NDVI. The same hys-
teresis and scattering are observed for the NDVI although
higher correlations are obtained. Similarly, ρVV is better cor-
related to vegetation variables than ρVH and PR. By con-
trast, the GLAI is better correlated with SAR variables than
H . The PR–GLAI relationship is more scattered than at
35.2◦ while the ρVV–GLAI relationship has the best met-
rics (Rs= 0.82, andR2

= 0.73) with a higher saturation value
around 50 % of the GLAI range (3 m2 m−2).

Unlike PR, the metrics at both 35.2 and 45.6◦ are stable
for the relationships between ρVV and AGB, VWC and H .
By contrast, the PR–GLAI relationship is more stable than
the ρVV–GLAI relationship at both incidence angles.

4.4 Relationship between backscattering coefficient and
SSM

Figure 12 displays the relationships between σ 0 and SSM
using the entire database at 45.6 and 35.2◦ incidence angles.
H is used as an indicator of vegetation growth. The correla-
tion coefficient is computed separately for the entire database
and for data corresponding toH lower than a threshold value
(Htr) corresponding to GLAI< 1.5. This value of the GLAI
corresponds to wheat not fully covering the soil (Ouaadi et
al., 2020b). Htr is about 23.5, 23.5, 32.9 and 26 cm for F1
and F2 during 2017/18, for F2 during 2016/17 and for F3.
Overall, σ 0

VV is obviously better correlated to SSM than σ 0
VH,

in line with the results of numerous studies (Holah et al.,
2005; Li et al., 2014; Ulaby and Batlivala, 1976). Likewise,
metrics at 35.2◦ are better than those obtained at 45.6◦. This
is expected as the contribution of vegetation is dominant at
higher incidence angles and at VH polarization. The relation-
ships are scattered when using data from the whole season.
This is attributed to the presence of vegetation and mainly to
the attenuation of the soil signal backscattered by the wheat.
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Figure 11. Scatterplots of the relationships between PR; ρVV and ρVH; and AGB, VWC, H , the NDVI and the GLAI at a 35.2◦ angle of
incidence. The entire database from the three fields (F1, F2 and F3) is used. H is used to monitor the evolution during the growing season.
All the determination coefficients (R2) and the Spearman rank correlations (Rs) are significant at 99 %.

The sensitivity of σ 0 to SSM decreases progressively dur-
ing the growing season as shown by the decreasing slope of
the relationships with the vegetation development. By con-
sidering the early-season data only, when the soil is not yet
covered by vegetation, a better fitting is obtained between σ 0

and SSM. Indeed, the correlation coefficient using data with
H <Htr is improved whatever the polarization and the inci-
dence angle. Obviously, the highest correlation is obtained
at VV polarization and a 35.2◦ incidence angle (R= 0.73)
and to a lesser extent at VV at 45.6◦ and VH at 35.2◦ with
R≥ 0.66.

5 Data availability

This database is archived in DataSuds repository of the
French National Research Institute for Sustainable Devel-
opment (IRD). The database is accessible free of charge
with a CC BY license at https://doi.org/10.23708/8D6WQC
(Ouaadi et al., 2020a). It can be downloaded as xlsx files ac-
companied by a variable dictionary containing the variable
names and units. The files are also accompanied by meta-
data including a description of the database, time coverage,
keywords and other general information.

6 Conclusion

This paper presents a 3-year database of C-band radar data
and all necessary ancillary ground measurements to improve
our understanding of the radar signal and to develop inver-
sion methods for land surface parameter retrieval. The data
are collected from three heavily monitored wheat fields under
semi-arid conditions in the center of Morocco. The database
offers a complete set of data for radar applications for wheat
monitoring. The measured parameters include fresh and dry
aboveground biomass, canopy height, the leaf area index, the
cover fraction, surface soil moisture, root zone soil moisture,
and surface roughness, in addition to the normalized differ-
ence vegetation index and SAR data (the backscattering coef-
ficient and the interferometric coherence). The irrigation and
meteorological data are also provided. This database opens
up the opportunity to use remote sensing together with mea-
sured parameters to understand and investigate the behavior
of wheat crops and subsequently to retrieve soil moisture and
vegetation variables. The database analysis presented in this
paper demonstrates the potentialities of SAR data for wheat
monitoring by addressing the well-known sensitivity of SAR
to surface soil moisture and vegetation variables. The ob-
tained relationships between SAR measurements including
the backscattering coefficient, polarization ratio and interfer-
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Figure 12. Scatterplots of the relationships between σ 0
VV and σ 0

VH and SSM at 45.6 and 35.2 2◦ angles of incidence. The entire database
from the three fields (F1, F2 and F3) is used. H is used to monitor the evolution during the growing season. The significant correlation
coefficients are in bold. The solid and the dashed lines correspond to the whole database and data with GLAI< 1.5, respectively.

ometric coherence can be used for the application of sev-
eral backscattering models, the retrieval of biophysical vari-
ables and yield prediction in crop models. They can also be
useful for land surface models relying on accurate estima-
tion of vegetation height such as the energy balance mod-
els (i.e., TSEB, two-source energy balance; Norman et al.,
1995). The data set also illustrates the complex signal ac-
quired by C-band radar over wheat crops that is not yet fully
understood as it mixes the responses from highly dynamic
contributions of soil and vegetation elements. The unique
data set provided in this paper should contribute through fu-
ture studies to improving our understanding of the response
of C-band radar observations over annual crops.
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Appendix A: Complementary figures

Figure A1. Picture taken over F2 during 2017/18 growing season (14 May 2018) illustrating the specific growing conditions (adventices and
stems laid down by wind).

Figure A2. Time series of root zone soil moisture (RZSM) at 25 and 35 cm of depth measured in F1 from 1 December 2016 to 31 December
2017.
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Figure A3. Time series of the backscattering coefficient at VV (a) and VH (b) polarizations on F1 at a 35.2◦ incidence angle during the
period from 1 October 2016 to 31 July 2018. The tilling works and phenological stages of wheat are superimposed in panels (a) and (b),
respectively. The air temperature, surface soil moisture (SSM), irrigation and rainfall are displayed in panel (c).

Figure A4. Time series of the backscattering coefficient at VV (a) and VH (b) polarizations on F1 at a 45.6◦ incidence angle during the
period from 1 October 2016 to 31 July 2018. The tilling works and phenological stages of wheat are superimposed in panels (a) and (b),
respectively. The air temperature, surface soil moisture (SSM), irrigation and rainfall are displayed in panel (c).
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Figure A5. Time series of the backscattering coefficient at VV (a) and VH (b) polarizations on F2 at a 35.2◦ incidence angle during the
period from 1 October 2016 to 31 July 2018. The tilling works and phenological stages of wheat are superimposed in panels (a) and (b),
respectively. The air temperature, surface soil moisture (SSM), irrigation and rainfall are displayed in panel (c).

Figure A6. Time series of the interferometric coherence at VV and VH polarizations (a) and the polarization ratio (b) on F1 at a 35.2◦

incidence angle during the period from 1 October 2016 to 31 July 2018. The tilling works and phenological stages of wheat are superimposed
in panels (a) and (b), respectively. The NDVI and measured GLAI are displayed in panel (c). MeasuredH , FAGB, VWC and AGB are plotted
in panel (d). Time series are presented by mean values (solid lines) and standard deviations (shading surrounding the solid lines).
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Figure A7. Time series of the interferometric coherence at VV and VH polarizations (a) and the polarization ratio (b) on F1 at a 45.6◦

incidence angle during the period from 1 October 2016 to 31 July 2018. The tilling works and phenological stages of wheat are superimposed
in panels (a) and (b), respectively. The NDVI and measured GLAI are displayed in panel (c). MeasuredH , FAGB, VWC and AGB are plotted
in panel (d). Time series are presented by mean values (solid lines) and standard deviations (shading surrounding the solid lines).

Figure A8. Time series of the interferometric coherence at VV and VH polarizations (a) and the polarization ratio (b) on F2 at a 35.2◦

incidence angle during the period from 1 October 2016 to 31 July 2018. The tilling works and phenological stages of wheat are superimposed
in panels (a) and (b), respectively. The NDVI and measured GLAI are displayed in panel (c). MeasuredH , FAGB, VWC and AGB are plotted
in panel (d). Time series are presented by mean values (solid lines) and standard deviations (shading surrounding the solid lines).
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Figure A9. Scatterplots of the relationships between PR; ρVV and ρVH; and AGB, VWC, H , the NDVI and the GLAI at a 45.6◦ angle of
incidence. The entire database from the three fields (F1, F2 and F3) is used. H is used to monitor the evolution during the growing season.
All the determination coefficients (R2) and the Spearman rank correlations (Rs) are significant at 99 %.
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