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Abstract. The monthly standardized precipitation evapotranspiration index (SPEI) can be used to monitor and
assess drought characteristics with 1-month or longer drought duration. Based on data from 1961 to 2018 at 427
meteorological stations across mainland China, we developed a daily SPEI dataset to overcome the shortcoming
of the coarse temporal scale of monthly SPEI. Our dataset not only can be used to identify the start and end
dates of drought events, but also can be used to investigate the meteorological, agricultural, hydrological, and
socioeconomic droughts with a different timescales. In the present study, the SPEI data with 3-month (about
90 d) timescale were taken as a demonstration example to analyze spatial distribution and temporal changes
in drought conditions for mainland China. The SPEI data with a 3-month (about 90 d) timescale showed no
obvious intensifying trends in terms of severity, duration, and frequency of drought events from 1961 to 2018.
Our drought dataset serves as a unique resource with daily resolution to a variety of research communities
including meteorology, geography, and natural hazard studies. The daily SPEI dataset developed is free, open,
and publicly available from this study. The dataset with daily SPEI is publicly available via the figshare portal
(Wang et al., 2020c), with https://doi.org/10.6084/m9.figshare.12568280.

Highlights. A multi-scale daily SPEI dataset was developed across mainland China from 1961 to 2018.
The daily SPEI dataset can be used to identify the start and end days of the drought event. The developed daily
SPEI dataset in this study is free, open, and publicly available.
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1 Introduction

Drought is one of the most destructive natural hazards world-
wide. It can lead to adverse effects to the ecological sys-
tem, industrial production, agricultural practices, drinking
water availability, hydrological processes, and water qual-
ity (Bussi and Whitehead, 2020; Lai et al., 2019; Vicente-
Serrano et al., 2012; Wang et al., 2014, 2017). Drought
caused ca. USD 221 billion in loss from 1960 to 2016 re-
ported by the International Disaster Database (EM-DAT),
and the drought events in South Asia influenced over 60 mil-
lion residents from 1998 to 2001 (Agrawala et al., 2001). Un-
fortunately, drought is expected to increase in frequency and
intensity due to the future warming air temperature (Tren-
berth et al., 2014; Zambrano et al., 2018). The exacerbated
drought conditions have promoted some national legislation
(such as drought preparedness and planning) to carry out
risk management and adaptive strategy for drought disasters
(Garrick et al., 2017).

The various drought types result in the difficulty of
drought characterization and assessment. Drought definition
is not unique. Some studies proposed defining drought ac-
cording to the water deficit (Wilhite and Glantz, 1985), while
others defined drought based on the period of abnormal
arid conditions (Eslamian et al., 2017). The most common
drought can be classified into four types including (1) meteo-
rological, (2) agricultural, (3) hydrological, and (4) socioeco-
nomic (Mishra and Singh, 2010). Meteorological drought re-
sults from precipitation deficit or evaporation increases (Mc-
Kee et al., 1993). Meteorological drought can propagate into
agricultural drought with lower soil moisture availability, and
it also can lead to hydrological drought with lower stream-
flow and socioeconomic drought with lower water availabil-
ity (Barella-Ortiz and Quintana-Seguí, 2019; Gevaert et al.,
2018). In general, drought indices are normally used to mon-
itor and assess the condition or spatial–temporal characteris-
tics of drought.

Many drought indices have been developed for drought
characterization and assessment, such as the Palmer drought
severity index (PDSI) (Dai et al., 2004), standardized pre-
cipitation index (SPI) (McKee et al., 1993), vegetation wa-
ter supply index (VWSI) (Carlson et al., 1994), vegetation
health index (VHI) (Kogan, 2002), vegetation temperature
condition index (VTCI) (Wan et al., 2004), and other drought
indices (Men-xin and Hou-quan, 2016; Wang et al., 2015,
2017). PDSI and SPI are the most popular drought studies
worldwide (Dai et al., 2004; McKee et al., 1993); however,
they have some limitations. PDSI is only suitable to the agri-
cultural drought through characterization of the soil water
deficit, and it cannot identify the meteorological, hydrologi-
cal, and socioeconomic droughts (Feng and Su, 2019). In ad-
dition, PDSI limits the spatial comparability of drought due
to the fact that it is heavily dependent on data calibration
(Sheffield et al., 2009; Yu et al., 2014). Although the SPI
can be used to monitor and assess different drought types on

multiple spatial scales at a monthly time step, it only consid-
ers the precipitation factor and neglects effects of evaporation
stemming from temperature and other meteorological factors
(Wang et al., 2014, 2017; Yang et al., 2018). To solve the
above problems, the standardized precipitation evapotranspi-
ration index (SPEI), which considers the advantages of both
PDSI and SPI, was developed to monitor and assess droughts
(Vicente-Serrano et al., 2010). It not only accounts for the
effect of evaporation on drought, but also has the capabil-
ity of spatial comparability and characterization of different
drought types with multiple timescales (Feng and Su, 2019;
Wang et al., 2015). SPEI can be used to delineate spatial–
temporal evolution of drought, drought characteristics, and
impacts of drought at the regional and global scales (Mallya
et al., 2016; Wang et al., 2014).

However, the commonly used SPEI fails to identify
droughts with a duration less than 1 month (Van der Schrier
et al., 2011; Vicente-Serrano et al., 2010). With future cli-
mate change, flash droughts have been recently categorized
as a type of extreme climate event. Flash droughts occur
along with sudden onset, rapid aggravation, and sudden end
of drought and could lead to severe consequences (Pen-
dergrass et al., 2020). It is imperative to characterize flash
droughts with short-term duration (e.g., several days). To
use the sub-month-resolution drought index, we have devel-
oped the daily SPEI for the first time, and our daily SPEI
has been used to assess the drought and its impacts in previ-
ous studies (Wang et al., 2015, 2017). The new SPEI can not
only identify drought with a duration of 1 month and more
than 1 month, but also monitor drought with a duration of
several days. In addition, our new daily SPEI has filled the
gap in the capability to monitor the onset and duration of
droughts. Our daily SPEI has similar principles as the com-
monly used monthly SPEI in terms of time accumulation ef-
fects (Vicente-Serrano et al., 2010; Wang et al., 2015; Yu et
al., 2014). The daily SPEI data with different timescales can
also meet the requirements of characterizing and assessing
different drought types (meteorological drought, agricultural
drought, and hydrological drought) at multiple timescales
(Wang et al., 2014).

The SPEI can be calculated by the difference between
daily precipitation and daily potential evapotranspiration
(PET) (Vicente-Serrano et al., 2012). Precipitation can gen-
erally be directly obtained by the meteorological observa-
tion stations (Wang et al., 2015). But PET can only be es-
timated by drivers of meteorological data or remote sensing
data (Wang et al., 2018, 2017). Although there are at least
50 methods to calculate the PET, the methods estimate the
inconsistent and different values due to diverse assumptions,
data inputs, and climatic regions (Grismer et al., 2002; Lu
et al., 2005). PET plays an important role in understanding
fluxes of the heat and mass of the atmospheric system at lo-
cal and global scales (Thomas, 2000). Thus, it is necessary to
choose a suitable method to estimate PET. The choice of can-
didate probability distributions for SPEI calculation is also
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very important (Vicente-Serrano et al., 2010, 2012). The cho-
sen distribution for SPEI generally needs a location parame-
ter because climatic water balance may have negative values
(when PET is greater than precipitation in certain periods)
(Wang et al., 2015, 2017). Distributions for SPEI normal-
ization have a generalized logistic distribution, Pearson type
III distribution, normal distribution, and generalized extreme
value (GEV) distribution (Stagge et al., 2015). The four can-
didate SPEI distributions have the best goodness of fit for
the accumulated climatic water balance (Stagge et al., 2015;
Wang et al., 2015; Wang et al., 2017). However, the GEV
distribution has the best performance among all four proba-
bility distributions across all of continental Europe, because
of the lower rejection frequencies of GEV using several
tests (Kolmogorov–Smirnov (K–S), Anderson–Darling (A–
D), and Shapiro–Wilk (S–W)) (Stagge et al., 2015). There-
fore, we choose the GEV distribution fitting the accumulated
climatic water balance to calculate SPEI. The SPEI is suited
to investigate the effects of climate change and global warm-
ing on drought severity. SPEI has been widely used in diverse
studies on drought variability and impact and drought mon-
itoring systems (Boroneant et al., 2011; Fuchs et al., 2012;
Potop et al., 2014; Sohn et al., 2013).

The aim of this study, therefore, is to produce a long
(1961–2018) daily drought index dataset for all of mainland
China. Specifically, we used the new daily SPEI algorithm to
produce the multi-timescale drought dataset at a daily time
resolution. Meteorological data with 427 stations including
multiple factors (daily precipitation, daily average air tem-
perature, daily minimum air temperature, daily maximum air
temperature, and sunshine) are used. The developed drought
dataset at the national scale has the potential to be used to
monitor and assess droughts and their impacts for the sectors
including the agricultural sector, forest sector, hydrological
sector, ecological sector, environmental sector, and so on.

2 Data sources and methods

2.1 Data sources

Daily meteorological data from 1960 to 2018 were collected
from the National Meteorological Science Data Sharing Ser-
vice Platform (http://data.cma.cn/, last access: 15 July 2020).
The data, which have gone through quality controlling, have
been used in many studies on drought (Li et al., 2019; Wang
et al., 2019). In total, there are 839 stations with public data.
To ensure continuous and complete data records, 427 me-
teorological stations are chosen for our study by removing
stations with missing data exceeding 30 d over the whole
period. Meteorological variables include the minimum and
maximum air temperature (◦C), precipitation (mm), and sun-
shine duration (h). The sunshine duration was converted to
solar radiation based on the Ångström function (Chen et al.,
2010; Wang et al., 2015). The station location is shown in
Fig. 1.

Figure 1. The location of meteorological stations across mainland
China.

2.2 Daily SPEI calculation

The daily SPEI can be calculated by the difference between
daily precipitation and daily potential evapotranspiration.
Because air temperature and solar radiation explained at least
80 % of evapotranspiration variability (Martí et al., 2015;
Priestley and Taylor, 1972), the Hargreaves model based on
temperature and solar radiation can be used to estimate the
daily potential evapotranspiration (Hargreaves and Samani,
1982; Mendicino and Senatore, 2013; Wang et al., 2015).
The daily potential evapotranspiration can be obtained by the
following formula:

PET= 0.0023 · (Tmean+ 17.8) ·
√

(Tmax− Tmin) ·Ra, (1)

where Tmean is the daily average air temperature (◦C); Tmax
and Tmin are the daily maximum and minimum air tempera-
tures (◦C), respectively; and Ra is the daily net radiation on
the land surface (MJ m−2 d−1).

SPEI calculation depends on the accumulating deficit or
surplus (Di) of water balance at different timescales. Di can
be determined based on precipitation (P ) and PET formula
given day i:

Di = Pi −PETi . (2)

The obtained Di values are summed at different timescales,
following the same procedure as that for the commonly used
SPEI. The Dki,j on a given day j and year i depends on the
chosen timescale k (days). For example, the accumulated dif-
ference for 1 d in a particular year i with a 30 d timescale (or
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other timescales) is calculated using

Xki,j =
∑30
l=31−k+jDi−1,l +

∑j

l=1Di,l if j < k and

Xki,j =
∑j

l=j−k+1Di,l if j ≥ k.
(3)

We also need to normalize the water balance into a proba-
bility distribution to get the SPEI series. The best distribu-
tion for SPEI calculation is the generalized extreme value
(GEV) distribution (Stagge et al., 2015), which can overcome
the limitation of the original SPEI through generalized logis-
tic distribution for short accumulation (1–2-month) periods
(Stagge et al., 2015; Vicente-Serrano et al., 2010). Therefore,
we adopted the GEV distribution to standardize the D series
into SPEI data series (Monish and Rehana, 2020). The GEV
probability density function is

f (x)=



(
1
σ

)[
(1+ ξz(x))−1/ξ ]ξ+1

e−
[
(1+ξz(x))−1/ξ ]

,

ξ 6= 0,1+ ξz(x)> 0(
1
σ

)
e−z(x)−e−−z(x)

,

ξ 6= 0,−∞< x <∞,

(4)

where

z(x)=
x−µ

σ
, (5)

where ξ , σ , and µ are the shape, scale, and location parame-
ters, respectively. The cumulative distribution function F (x)
of GEV can be calculated by the following equation:

F (x)= e−(t(x)), (6)

where

t(x)=


(

1+ ξ
(

(x−µ)
σ

))−1
ξ
, if ξ 6= 0

e−(x−µ)/σ , if ξ = 0.
(7)

Thus, the probability distribution function of the D series is
given by

F (x)=

[
1+

(
α

χ − γ

)β]−1

. (8)

With F (x), the SPEI can easily be obtained as the standard-
ized values of F (x). Following the classical approximation
of Abramowitz and Stegun (1965),

SPEI=W −
C0+C1W +C2W

2

1+ d1W + d2W 2+ d3W 3 , (9)

where W =
√
−2ln(P ) for P ≤ 0.5 and P is the probability

of exceeding a determined D value, P = 1−F (x). If P >
0.5, then P is replaced by 1−P and the sign of the resultant
SPEI is reversed. The constants are C0 = 2.515517, C1 =

0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269,
and d3 = 0.001308.

Table 1. Categorization of drought and wet grade according to the
SPEI (Wang et al., 2014).

Categorization SPEI values

Extremely wet SPEI≥ 2
Severely wet 1.5≤ SPEI< 2
Moderately wet 1≤ SPEI< 1.5
Mildly wet 0.5< SPEI< 1
Normal −0.5≤ SPEI≤ 0.5
Mild drought −1< SPEI<−0.5
Moderate drought −1.5< SPEI≤−1
Severe drought −2< SPEI≤−1.5
Extreme drought SPEI≤−2

2.3 Drought analysis method

The daily SPEI dataset was calculated in five accumulating
periods (30, 90, 180, 360, 720 d) based on the water balance
(difference between precipitation and PET). The classifica-
tions for the SPEI drought classes are presented in Table 1.

We used the method described by Yevjevich (1967) to de-
fine the drought characteristics (severity, duration, and inten-
sity). A drought event can first be determined by drought
start and end dates, and its duration and severity were then
assigned. Thus, we accounted for the continuity of drought
propagation. The continuous days with SPEI values less than
the threshold (such as −0.5, −1.0, −1.5, −2) are defined as
the duration of a drought event. The severity is the integral
area between absolute value of the SPEI with value <−0.5
and the horizontal axis (SPEI= 0) from the drought start day
to the drought end day. The drought frequency is the total
number of drought events in a period. The drought event and
its characteristics (severity, duration, and intensity) can be
seen in Fig. 2.

The SPEI data based on 90 d (3-month) timescales can
be used to identify soil moisture or agriculture droughts
(Wang et al., 2014). Due to its important applications, we
selected the SPEI data with the 90 d timescales as the exam-
ple data for analysis in the present study. To investigate the
spatial–temporal characteristics of the example data, we de-
fined three variables including annual total drought severity
(ATDS), annual total drought duration (ATDD), and annual
total drought frequency (ATDF). The three variables were
obtained by summing the severity, duration, and frequency
of all the drought events in each year at 427 stations.

We also used the non-parametric Mann–Kendall (MK) test
to detect monotonic trends (Kendall, 1948; Mann, 1945), be-
cause the MK test does not require data normality (Mann,
1945; Wang et al., 2020a, b). We computed slopes for ATDS,
ATDD, and ATDF using the Sen method (Sen, 1968). These
statistical methods are commonly used in analyses of water
resources, climate, and ecology data. For the MK test, the
global trend for the entire series is significant when P value
< 0.05.
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Figure 2. Schematic diagram of drought and wet events (the red shaded area denotes the drought events; the blue shaded area denotes the
wet events).

3 Analysis results

3.1 Spatial distribution of drought characteristics

The ATDS can be used to identify hot spots with more se-
vere drought conditions. Figure 3 shows the calculated ATDS
values across mainland China. We categorized ATDS values
into two main groups, with higher ATDS values indicating
more severe drought conditions. The distribution of ATDS
values shows that, in general, the northeastern parts of China
had more severe drought conditions than the southern parts.
However, our results also indicate that the humid climate
zone in the south also experienced severe drought conditions,
though not as much as for northern parts of China (Fig. 3).

Figure 4 shows that ATDD values ranged from 100 to
110 d for most stations across mainland China. This indi-
cates that there was nearly one-third of a year when most
stations were experiencing drought conditions. More stations
with ATDD values ranging from 100 to 110 were found com-
pared with stations with ATDD values of 120–130 (Fig. 4).
For drought years, the duration days of drought events are
expected to be longer. The ATDD had similar spatial distri-
bution characteristics to those of the ATDS, indicating that
droughts also occurred in the humid climate zone.

Figure 5 shows the spatial distribution of ATDF values
across mainland China. In general, most stations had four
to six annual drought events. There were fewer stations with
six to eight annual drought events compared with stations
with two to four annual drought events. We also detected that
drought events could occur in both arid and humid regions
based on spatial distributions of ATDF values (Fig. 5). Since

Figure 3. The spatial distribution of ATDS across mainland China.
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the ATDF indicated only the annual average drought events,
we could expect that for the more severe drought years the
ATDF would have greater values for different stations.

3.2 Trends in drought characteristics

The changing trends of ATDS can be used to detect whether
drought severity is weakening or intensifying with time. Fig-
ure 6 shows the spatial distribution of changing trends of
ATDS from 1961 to 2018 across mainland China. In general,
there were more stations with weakening trends in drought
severity than those with intensifying trends across all sta-
tions (Fig. 6). It seems that both weakening and intensify-
ing absolute values were largest in the northeast, northwest,
and central China compared with other parts. However, after
scrutiny, we found that drought severity tended to weaken in
the northeast, northwest, and central China, with more sta-
tions having significant weakening trends according to sta-
tistical tests (P value < 0.05; Fig. 6). For southern China,
most stations had no significant trends in either weakening
or intensifying of drought severity (P value > 0.05; Fig. 6).

The changing trends of ATDD can be used to detect
whether drought duration is getting shorter or longer. Fig-
ure 7 shows the spatial distribution of changing trends for the
ATDD across all stations. In general, stations in the southeast
demonstrated downward trends with shortening drought du-
ration, while stations in the northwest had upward trends for
the ATDD with increasing drought duration (Fig. 7). Note
that the increasing or decreasing trends for ATDD were sig-
nificant (P value < 0.05) for stations across central China,
indicating that the central China regions were suffering dra-
matic changes of drought conditions.

The changing trends of ATDF can be used to detect
whether the frequency of drought events is increasing or de-
creasing with time. Figure 8 shows the spatial distribution
of changing trends of ATDF across all stations. Most stations
demonstrated no significant trend in the frequency of drought
events, except for dozens of stations in western China hav-
ing significant upward trends (P value < 0.05) with increas-
ing frequency in drought events, and stations in northeastern
China demonstrated significant downward trends (P value
< 0.05) with decreasing frequency of drought events.

4 Discussion

The reason for selecting a 90 d (3-month) timescale to assess
spatial and temporal characteristics of drought conditions
across mainland China is because the SPEI with the 90 d (3-
month) timescale can indicate the agricultural drought (or
soil moisture) (Van der Schrier et al., 2011; Wang et al.,
2014, 2017), and its results are comparable with the PDSI
(Dai et al., 2004; Van der Schrier et al., 2011) and other
drought indices including the surface water supply index
(SWSI) and moisture adequacy index (MAI) (Doesken et al.,
1991; McGUIRE and Palmer, 1957). The commonly used

Figure 4. The spatial distribution of ATDD across mainland China.

Figure 5. The spatial distribution of ATDF across mainland China.
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Figure 6. The spatial distribution of the changing trends of ATDS
(the red and green triangles indicate increasing and decreasing
trends, respectively. “***” denotes P value < 0.001, “**” denotes
P value < 0.01, and “*” denotes P value < 0.05).

monthly SPEI has been used to assess drought characteris-
tics and their impacts worldwide from the regional scale to
the global scale (Stagge et al., 2015; Vicente-Serrano et al.,
2010; Wang et al., 2014). The SPEI with different timescales
is relevant for meteorological drought (1-month timescale),
agricultural drought (3–6-month timescale, about 90–180 d),
hydrological drought (12-month timescale, about 360 d), and
socioeconomic drought (24-month timescale, about 720 d),
respectively (Homdee et al., 2016; Potop et al., 2014; Tiri-
varombo et al., 2018; Vicente-Serrano et al., 2010).

Our new SPEI dataset with multiple timescales was de-
veloped and compiled using the daily SPEI algorithm in the
previous study (Wang et al., 2015). The daily SPEI has been
used in drought characterization and assessment and was val-
idated by drought characterization and assessment (Jevše-
nak, 2019; Jia et al., 2018; Salvador et al., 2019; Wang et
al., 2015, 2017). The global SPEI database with monthly
temporal resolution and 0.5◦ spatial resolution is available
(https://spei.csic.es/database.html, last access: 25 July 2017).
The database covers the period between January 1901 and
December 2018. Although the database can be used effec-
tively for meteorological, agricultural, hydrological, and so-
cioeconomic droughts, it cannot identify and detect flash
drought with less than 1-month duration. In addition, the
monthly database can only detect the start month and end
month of drought events, and therefore it fails to determine

Figure 7. The spatial distribution of the changing trends of ATDD
(the red and green triangles indicate increasing and decreasing
trends, respectively. “***” denotes P value < 0.001, “**” denotes
P value < 0.01, and “*” denotes P value < 0.05).

the start and end dates of a drought event (Kassaye et al.,
2020; Vicente-Serrano et al., 2010; Wang et al., 2014). Our
newly developed daily SPEI can compensate for the short-
comings of monthly SPEI in drought characterization and as-
sessment. In addition, we used the well-received GEV prob-
ability distribution for the SPEI calculation for our dataset
(Stagge et al., 2015).

Although the daily SPEI has better performance in drought
characterization and assessment (Jevšenak, 2019; Wang et
al., 2017), the uncertainty of daily SPEI still needs to be
evaluated in future works. Our daily SPEI dataset used the
simple Hargreaves model based on temperature and solar ra-
diation to estimate daily potential evapotranspiration (Harg-
reaves and Samani, 1982; Wang et al., 2017). We will fur-
ther investigate effects of various evapotranspiration mod-
els (such as the CRAE model, Penman algorithm, Thorn-
thwaite algorithm, Makkink algorithm, and Priestley–Taylor
algorithm) on the calculation of SPEI (Makkink, 1957; Mor-
ton, 1983; Penman, 1948; Priestley and Taylor, 1972; Thorn-
thwaite, 1944). We only chose SPEI based on the 90 d (3-
month) timescale as an example to analyze drought charac-
teristics, and the results demonstrated that there were no ob-
vious intensifying trends for drought across mainland China,
which is consistent with other studies (Han et al., 2020).
Meanwhile, our newly developed daily SPEI will be further
validated in other regions of the world. In addition, SPEI val-
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Figure 8. The spatial distribution of the changing trends of ATDF
(the red and green triangles indicate increasing and decreasing
trends, respectively. “***” denotes P value < 0.001, “**” denotes
P value < 0.01, and “*” denotes P value < 0.05).

ues at different timescales can be used as a proxy for other
types of droughts, but it lacks the complete picture (no soil
moisture condition, streamflow, etc.) (Zargar et al., 2011).

Our long-term daily SPEI dataset has contributed signifi-
cantly to our understanding of drought evolution, especially
flash drought. The dataset can be used to monitor and as-
sess different drought types (meteorological drought, agri-
cultural drought, and hydrological drought) through different
timescale data. It can also identify the start and end dates for
drought. The dataset is valuable to meteorological research
and natural hazard communities for various purposes such as
assessment of extreme climate or drought effect evaluation.

5 Data availability

All daily SPEI datasets including data and their descrip-
tion at 427 observed meteorological stations are provided
open access via figshare (Wang et al., 2020c), available at
https://doi.org/10.6084/m9.figshare.12568280. This deposi-
tory includes the five files of the daily SPEI data with five
scales (30 d about 1 month, 90 d about 3 months, 180 d about
6 months, 360 d about 12 months, 720 d about 24 months)
and station information for 427 meteorological stations.

6 Summary

In the present study, we have produced a daily SPEI dataset
from 1960 to 2018 at 427 meteorological stations across
mainland China. Our open-access dataset is an important
contribution to drought assessment, and it can overcome the
disadvantages of the commonly used monthly SPEI database.
Our daily dataset can help monitor and assess the spatial
and temporal characteristics of droughts. It can be used to
assess the impacts of droughts on ecological systems, hy-
drological processes, and other natural resources. Our daily
multi-timescale SPEI dataset can be widely used in studies
on meteorological drought (1-month timescale), agricultural
drought (3–6-month timescale), hydrological drought (12-
month timescale), and socioeconomic drought (24-month
timescale). The dataset will reduce the time spent on research
and avoid the duplication of efforts, which will be highly at-
tractive to meteorological, geographical, and natural hazard
researchers and researchers from other areas.
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