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Abstract. The stochastic weather generator CLIGEN can simulate long-term weather sequences as input to
WEPP for erosion predictions. Its use, however, has been somewhat restricted by limited observations at high
spatial–temporal resolutions. Long-term daily temperature, daily, and hourly precipitation data from 2405 sta-
tions and daily solar radiation from 130 stations distributed across mainland China were collected to develop
the most critical set of site-specific parameter values for CLIGEN. Ordinary kriging (OK) and universal kriging
(UK) with auxiliary covariables, i.e., longitude, latitude, elevation, and the mean annual rainfall, were used to
interpolate parameter values into a 10km× 10km grid, and the interpolation accuracy was evaluated based
on the leave-one-out cross-validation. Results showed that UK generally outperformed OK. The root mean
square error between UK-interpolated and observed temperature-related parameters was ≤ 0.88 ◦C (1.58 ◦F).
The Nash–Sutcliffe efficiency coefficient for precipitation- and solar-radiation-related parameters was ≥ 0.87,
except for the skewness coefficient of daily precipitation, which was 0.78. In addition, CLIGEN-simulated
daily weather sequences using UK-interpolated and observed parameters showed consistent statistics and fre-
quency distributions. The mean absolute discrepancy between the two sequences for temperature was< 0.51 ◦C,
and the mean absolute relative discrepancy for solar radiation, precipitation amount, duration, and maximum
30 min intensity was < 5 % in terms of the mean and standard deviation. These CLIGEN parameter val-
ues at 10 km resolution would meet the minimum data requirements for WEPP application throughout main-
land China. The dataset is available at http://clicia.bnu.edu.cn/data/cligen.html (last access: 20 May 2021) and
https://doi.org/10.12275/bnu.clicia.CLIGEN.CN.gridinput.001 (Wang et al., 2020).

1 Introduction

Weather generators (WGs) are stochastic models that can
generate arbitrarily long sequences of weather variables with
statistical properties that are similar to observations for a
specific location or area (Yin and Chen, 2020). Early WGs
were originally developed to provide surrogate climate series
for hydrological, soil erosion, and agricultural models when
the observed data could not satisfy the application require-
ments due to missing data, limited record length, or spatial
coverage (Wilks and Wilby, 1999). Since the 1990s, WGs

have received increased attention as a statistical downscaling
tool for the assessment of climate change impact (Katz and
Parlange, 1996; Maraun et al., 2010). While global climate
models (GCMs)/regional climate models (RCMs) have been
used for climate projections, outputs from these models were
often too coarse to meet the requirements of earth surface
process models in terms of spatial–temporal resolutions and
were biased compared with observations. Statistical down-
scaling methods, mainly including perfect prognosis (PP),
model output statistics (MOS), and WGs, can be used to
downscale and bias-correct the output from GCMs/RCMs
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prior to earth surface model applications (Maraun and Wid-
mann, 2018; Yin and Chen, 2020).

CLIGEN is a stochastic WG developed based on the gen-
erators used in the EPIC and SWRRB models (Williams et
al., 1985, 1984) and was released in 1995, initially accom-
panying the process-based Water Erosion Prediction Project
(WEPP) model from the United States Department of Agri-
culture (Nicks et al., 1995). CLIGEN can simulate a series of
long-term climate data in daily scale, including maximum
and minimum temperatures, precipitation, solar radiation,
dew point, wind velocity, and direction. In addition, CLIGEN
can generate three inter-storm variables in sub-daily scale,
including storm duration, time to peak intensity (tp), and the
ratio of the peak intensity to the average intensity (ip), from
which an unlimited length of high-resolution breakpoint data
can be generated (Flanagan et al., 2001; Nicks et al., 1995;
Yu, 2003).

Of the 10 CLIGEN-simulated weather elements, seven,
namely daily maximum and minimum temperature, daily
precipitation, duration, tp, ip, and daily solar radiation, are all
that are required for predicting hydrological processes, soil
erosion, and bio-production (Arnold et al., 1998; Flanagan
et al., 2001; USDA-ARS, 2013; Wallis and Griffiths, 1995).
These seven climate elements are considered to meet the
minimum data requirements for WEPP. As CLIGEN is inde-
pendent of WEPP, it can be used to provide simulated climate
series for other surface process models as well (Flanagan et
al., 2014; Yu, 2002).

Thirteen groups of input parameters related to tempera-
ture, solar radiation, and precipitation as listed in Table 1
are all parameters needed by CLIGEN to generate the afore-
mentioned seven climate elements. As a site-specific weather
generator, input parameters for CLIGEN can be directly pre-
pared for stations with observed data. CLIGEN was initially
released in the United States with a set of 2600 weather sta-
tion parameter files (Flanagan et al., 2001). Parameters for
the daily temperature and daily precipitation were calculated
directly based on the observations of temperature and precip-
itation from each station. Parameters for daily solar radiation
and storm pattern were based on 142 weather stations with
daily solar radiation and sub-daily rainfall observations first
and then extended to 2000 other stations using the triangula-
tion interpolation method (Scheele and Hall, 2000).

Parameter regionalization, which extends model parame-
ter values from stations with observations to areas/regions
without observations, is required when the model is going
to be used in these areas/regions. Commonly used param-
eter regionalization methods can be categorized as follows:
(1) the parametric transplantation method, where a reference
area that is spatially near or has similar climate characteris-
tics to the target area is first selected, and then the param-
eters of the reference area are extended to the target area
(Cheng et al., 2016); (2) spatial interpolation methods such
as Thiessen polygon, inverse distance weighted, or ordinary
kriging, which interpolate parameter values based on spatial

correlations of parameters among multiple stations (Hutchin-
son, 1995); (3) parameter transfer as a function of regional
properties such as multiple regression, based on correlations
between parameters and regional characteristics (Cowpert-
wait et al., 1996); (4) regionalization considering both the
spatial correlation of parameters and the correlation between
parameters and regional characteristics, including external
drift kriging and universal kriging that can be treated as com-
bination methods to take advantage of method (2) and (3)
(Haberlandt, 1998; Semenov and Brooks, 1999).

The accuracy of parameter regionalization is known to be
influenced by several factors. Firstly, regionalization of cli-
mate variables with lower or regular spatial variability gen-
erally performs better than highly heterogeneous and dis-
continuous variables. Secondly, for the same climate vari-
able, temporal resolution plays an important role. The cli-
mate variable at a monthly or annual scale tends to per-
form better than variables at a daily or hourly scale be-
cause data with finer resolutions possess greater spatial vari-
ability. Thirdly, adopted approaches affect the efficiency of
regionalization. For example, Wilks (2008) compared and
evaluated the interpolation accuracy of four spatial inter-
polation methods for parameters of WGEN (weather gen-
erator), a weather generator developed by Richardson and
Wright (1984), and results showed that locally weighted re-
gressions outperformed Thiessen polygons and domain-wide
(“global”) regressions. The accuracy of interpolation can be
improved by adopting auxiliary covariables that are corre-
lated with the regionalized climate variables into the region-
alization process (Hengl et al., 2007). For example, elevation
is frequently used as an auxiliary covariable and has been
found to improve the interpolation of temperature and pre-
cipitation (Carrera-Hernández and Gaskin, 2007; Ly et al.,
2013; Verworn and Haberlandt, 2011), especially in moun-
tainous regions with complex terrains (Xu et al., 2018).

Several studies have been attempted at regionalization of
CLIGEN input parameters. Regionalization of CLIGEN in-
put parameters for WEPP has combined the parametric trans-
plantation and spatial interpolation. When CLIGEN was de-
veloped in the United States to provide climate input to
WEPP, parameter values for 2600 stations were regionalized
based on inverse distance weighting (IDW). In the WEPP
application, users identify the targeted location, for which
daily weather sequences using parameters from the nearest
stations will be automatically generated directly or by inter-
polation from surrounding stations (up to 20 stations within
a distance of 1◦ of latitude/longitude). The parameter files
and the internally installed interpolation in the WEPP ap-
plication have facilitated the application of CLIGEN/WEPP
in the United States. However, the accuracy of regionalized
parameters has not been evaluated, and the effect on gener-
ated weather sequences using the interpolated parameters is
largely unknown.

Chen (2008) explored four spatial interpolation methods,
inverse distance weighting (IDW), ordinary kriging (OK),
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Table 1. Summary of CLIGEN input parameters and the data used for the calculation of parameters.

Inputs Parameter description Unita Number of parameters Data used

TMAX AV Average of daily maximum temperature ◦F Monthly, 12 in total Daily temperature
SD TMAX Standard deviation of daily maximum temperature ◦F Monthly, 12 in total Daily temperature
TMIN AV Average of daily minimum temperature ◦F Monthly, 12 in total Daily temperature
SD TMIN Standard deviation of daily minimum temperature ◦F Monthly, 12 in total Daily temperature
SOL.RAD Average of daily solar radiation Ly Monthly, 12 in total Daily solar radiation
SD SOL Standard deviation of daily solar radiation Ly Monthly, 12 in total Daily solar radiation
MEAN P Mean precipitation on rainy days in. Monthly, 12 in total Daily precipitation
S DEV P Standard deviation of precipitation on rainy days in. Monthly, 12 in total Daily precipitation
SKEW P The skewness coefficient of precipitation on rainy days Monthly, 12 in total Daily precipitation
P (W |D) The probability of a wet day following a dry day Monthly, 12 in total Daily precipitation
P (W |W ) The probability of a wet day following a wet day Monthly, 12 in total Daily precipitation
MX.5P Maximum rainfall intensity per 30 min (0.5 h) of a month in./h Monthly, 12 in total Hourly precipitation
TimePkb Relative time to the peak rainfall intensity Cumulative frequency, 12 in total Hourly precipitation

a CLIGEN input parameter values are required to have a US customary unit. b The 12th parameter of TimePk for all stations is equal to 1.

global polynomial interpolation (GPI), and local polynomial
interpolation (LPI), to regionalize the daily temperature- and
precipitation-related input parameters of CLIGEN for 12 sta-
tions in the Loess Plateau of China. Paired t tests showed that
the temperature and precipitation series generated using in-
terpolated input parameters were not significantly different
from those generated using input parameters computed us-
ing observations for the 12 stations considered (Chen, 2008).
However, solar-radiation- and storm-pattern-related parame-
ters used to generate daily solar radiation and storm charac-
teristics were not considered in Chen’s study (Chen, 2008).
Input parameters for simulating the seven weather variables
mentioned above, listed in Table 1, meet the minimum data
requirements for WEPP at a specific station. Without solar-
radiation- and storm-pattern-related parameter values, CLI-
GEN cannot be used to generate the required weather se-
quences for WEPP.

The overall aim of this study was to enable widespread
use of CLIGEN to generate daily temperature, solar radia-
tion, precipitation, and sub-daily precipitation variables any-
where in mainland China and to gain better understanding of
the performance of various spatial interpretation techniques.
Specific objectives of this study were to (1) assemble CLI-
GEN input parameter values for 2405 stations in mainland
China based on meteorological observations; (2) evaluate
spatial interpolation techniques for regionalizing CLIGEN
parameters; and (3) produce grid-based CLIGEN tempera-
ture, solar radiation, and precipitation parameter values at
10 km resolution for mainland China.

2 Data and methods

2.1 Data collection

Four datasets consisting of daily temperature, daily rain-
fall, and hourly rainfall from 2405 meteorological stations,
as well as solar radiation data from 130 stations distributed

across mainland China, were collected (Fig. 1) from the
National Meteorological Information Center (NMIC) of the
China Meteorological Administration (CMA) and have been
quality controlled by NMIC. Data lengths were different for
these four datasets (Table 2). Daily temperature and daily
rainfall data were characterized by longer periods of ob-
servation for most stations compared with hourly rainfall
data, especially for stations located in the northwest arid
area and the Qinghai–Tibet Plateau where gauges for ob-
serving hourly rainfall for some stations were installed very
late (Zhao, 1983; Wang and Zuo, 2009). Based on these four
datasets, a total of 156 parameter values were calculated
for each station. It should be noted that the 12th value of
TimePk is equal to 1 by definition, and 155 parameters were
involved in the calculation and interpolation. The siphon
rain gauges used to record hourly rainfall were stopped in
winter to avoid freezing failures; therefore, hourly rainfall
was only available for the warm rainy season for some
northern and western stations. Nine stations distributed in
North China (Miyun, Zhengzhou, Harbin), Northwest China
(Lanzhou, Ürümqi), the Tibetan Plateau (Lhasa), and South
China (Fuzhou, Changsha, Haikou) were selected to further
display the regional differences and monthly variability of
input parameters (Fig. 1).

2.2 Site-based input parameters and simulation

CLIGEN requires 13 groups of input parameters and 12 val-
ues for each group to stochastically simulate temperature,
solar radiation, and precipitation (Table 1). Temperature-
related input parameters, TMAX AV, SD TMAX, TMIN AV,
and SD TMIN, are used to simulate the daily maximum and
minimum temperature for each simulated day and to decide
whether the simulated precipitation occurred as snowfall or
rainfall (Table 1). These four values can be calculated us-
ing daily maximum and minimum temperature data for each
month directly. Solar-radiation-related inputs SOL.RAD and
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Table 2. Data lengths for daily temperature, daily and hourly precipitation, and daily solar radiation for stations used in this study.

Data length Daily temperature Daily rainfall Hourly rainfall Daily solar radiation
(years) (1951–2014) (1951–2015) (1951–2012) (1957–2017)

≤ 10 19 16 215 5
10–20 17 19 34 9
20–30 20 20 94 44
30–50 269 240 1302 16
> 50 2080 2110 760 56

Sum 2405 2405 2405 130

Figure 1. Map of the study area showing the locations of meteorological stations used in this study.

SD SOL are used to generate daily solar radiation and can be
directly obtained from observed daily solar radiation.

The wet-following-wet and wet-following-dry day transi-
tion probabilities, P (W |D) and P (W |W ), are used to de-
termine the occurrence of rainy days with a first-order two-
states Markov chain prepared as follows:

P (W |W )=
Nww

Nwd+Nww
, (1)

P (W |D)=
Ndw

Ndw+Ndd
, (2)

in which Nww, Nwd, Ndw, and Ndd represent the number of
days in a month that a wet day followed a wet day, a wet day
followed a dry day, a dry day followed a wet day, and a dry

day followed a dry day, respectively. For each simulated wet
day, MEAN P, S DEV P, and SKEW P are used to simulate
the daily precipitation amount using a skewness normal dis-
tribution. These three parameters can be computed directly
from daily precipitation month by month. As CLIGEN as-
sumes there is only one storm occurring on a wet day, daily
precipitation depths in CLIGEN are equal to storm precipita-
tion amount.

MX.5P and TimePk are used to simulate inter-storm vari-
ables, including storm duration (D, h) and two normalized
dimensionless variables, the ratio of peak intensity to aver-
age intensity (ip), and the ratio of time to the peak intensity
to storm duration (tp) (Nicks et al., 1995; Yu, 2002; Yu, 2003;
Zhang and Garbrecht, 2003). MX.5P represents the average
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maximum 30 min intensity for each month. The maximum
30 min intensity for a wet day is denoted as I30. If a month
has n wet days, the maximum I30 among n wet days can be
denoted by maxI30; and for a specific month in a data series
of k years, the MX.5P is given by

MX.5P=
1
k

∑
maxI30. (3)

Ideally, MX.5P values should be prepared using rainfall data
with a resolution of 30 min or less. Depending on the tem-
poral resolution, I30 can be calculated directly from moving
averages of the original data over successive 30 min. Given
the limited availability of high-resolution rainfall observa-
tions for this study, MX.5P was estimated using hourly data
described in detail elsewhere (Wang et al., 2018).

In CLIGEN (Nicks et al., 1995), as in Arnold and Williams
(1989), it is assumed that the magnitude of precipitation in-
tensity decreases exponentially from the maximum rate when
time distribution of precipitation intensities is discarded.
Therefore, the precipitation depth P1t in any given interval
1t can be described by

P1t = ip

1t∫
0

e−t/τdt = τ ip
(
1− e−1t/τ

)
. (4)

For hourly data, the interval 1t = 1 h, and the maximum 1 h
precipitation P1 h and maximum 2 h precipitation P2 h were
known:

P1 h

P2 h
=

1− e−1/τ

1− e−2/τ , (5)

where τ can be solved and then ip can be readily obtained as

ip =
P1 h

τ (1− e−
1
τ )
. (6)

Once τ and ip are known, the maximum 30 min precipitation
P0.5 can be determined as

P0.5 h = τ ip(1− e−
1

2τ ). (7)

The maximum 30 min rainfall intensity is given simply as

I30 min = 2P0.5 h. (8)

In reference to Wang et al. (2018), MX.5P can be directly
prepared using hourly rainfall data.

There are 12 discrete values of TimePk for each station,
describing an empirical cumulative probability distribution
of time to peak (Nicks et al., 1995). The observed interval is
1t , and the storm duration, D, consists of n intervals. If the
peak intensity occurs in the ith interval, time to peak inten-
sity, Tp, is estimated as

Tp =

(
i−

1
2

)
1t, (9)

and time to peak as a fraction of duration is

tp =
Tp

D
=

(i− 0.5)
n

. (10)

IfNtp(i) is the number of wet days from all data records with
tp ≤ i/12 for i = 1, 2, . . . 12, then

TimePk(i)=
Ntp (i)
Ntp (12)

. (11)

TimePk computed using 1 min rainfall data and hourly rain-
fall data differs slightly, and it has some small influence
on CLIGEN-simulated intensity and duration (Wang et al.,
2018). Therefore, TimePk was prepared directly using hourly
data in this study for consistency. Given the time increment
(1t) of 1 h, and known storm duration (D) for each wet day,
TimePk can be computed using Eqs. (9) to (11). It is worth
noting that the 12th parameter value of TimePk for all sta-
tions equals to 1 (Eq. 11).

2.3 Spatial interpolation by kriging

Kriging is a spatial interpolation method that gives the best
linear unbiased prediction of intermediate values, assuming
a Gaussian process governed by prior covariance. For a re-
search region with n samples at spatial locations xi(i = 1, 2,
. . . , n), Z (xi) are the sample values at xi . At an unknown tar-
get point x0, the estimated value Ẑ (x0) can be expressed as a
weighted average of the known observations Z (xi) (Wacker-
nagel, 2013):

Ẑ (x0)=
n∑
i=1

λiZ(xi), (12)

where λi represents the weighting coefficients of the known
sample values Z(xi), which depend on the spatial autocor-
relation structure of the sample values and should mini-
mize the prediction error variance. Assuming the variable
value Z(x) can be modeled as a combination of a determin-
istic trend µ(x) and an auto-correlated random error ε(x),
Z(x)= µ (x)+ ε(x), then the best linear unbiased prediction
requires E[Ẑ (x0)−Z (x0)] = 0, and Var[Ẑ (x0)−Z (x0)] is
minimized. Ordinary kriging (OK) assumes that the trend
is constant but unknown, µ (x)=m, while in universal krig-
ing (UK), the trend is assumed to be a linear combination of

some known covariables fl , µ (x)=
k∑
l=1
βlfl . Universal krig-

ing (UK) considers the relationship between the target vari-
able and the auxiliary covariables. Soil, elevation, temper-
ature, and remote sensing images are commonly used auxil-
iary covariables (Haberlandt, 1998; Li et al., 2014; McKenzie
and Ryan, 1999; Semenov and Brooks, 1999).

Both OK and UK were used to interpolate the CLIGEN
input parameters in this study. Stepwise regression was con-
ducted to select appropriate covariables for UK. The lon-
gitude, latitude, elevation, and annual rainfall amount were
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found correlated with the parameters – one for each month
for CLIGEN with the exception of the SKEW P (Table 1);
therefore, all these four variables were adopted as auxiliary
covariables when UK was conducted to interpolate these 12
groups of parameters. SKEW P had low correlations with
all four of these covariates but good correlation with pa-
rameters MEAN P and S DEV P. Therefore, MEAN P and
S DEV P were selected as covariables during the interpola-
tion of SKEW P.

2.4 Assessment of interpolation accuracy

A leave-one-out cross-validation method was used to evalu-
ate the interpolation accuracy of OK and UK. First, 1 of the
2405 stations was excluded from data analysis and treated
as unknown, and data for the remaining 2404 stations were
then used to predict parameter values for the excluded sta-
tion using OK or UK. This leave-one-out procedure was re-
peated for 155 parameters for each of the 2405 stations (13
groups×12 input parameters−1, as the value of the 12th pa-
rameter of TimePk is always 1, Table 1). Denoting CLIGEN
parameters based on observations as PO and the correspond-
ing predicted CLIGEN parameters obtained using OK or UK
as PK, three indicators – root mean square error (RMSE),
Nash–Sutcliffe efficiency coefficient (NSE), and percent bias
(PBIAS) – were selected to evaluate and compare the perfor-
mances of OK and UK as follows (Yin et al., 2019):

RMSE=

√
1
n

∑
n
(PO−PK)2, (13)

NSE= 1−
∑
n(PO−PK)2∑
n(PO− P̄O)2

, (14)

PBIAS=
∑
n(PO−PK)∑

nPO
· 100. (15)

NSE and PBIAS are inappropriate for temperature-related
parameters which are in interval scales, and the same is true
of probabilities. NSE and PBIAS were computed for param-
eters in ratio scales only, i.e., MEAN P, S DEV P, SKEW P,
SOL.RAD, and SD SOL. By calculating the above three in-
dicators, the better of the two interpolation techniques, OK
and UK, was determined and applied to calculate the region-
alization of CLIGEN input parameters for mainland China.
A two-dimensional grid database was established at a spatial
resolution of 10km×10km based on the 155 sets of interpo-
lated parameters.

Input parameters based on observed data and interpolated
data using the better interpolation technique were input into
CLIGEN to evaluate the influence of regionalized parameters
on the simulation. For each station, 100 years of continu-
ous climate series were generated using the default CLIGEN
stochastic seed without interpolation between months, and
the simulated data predicted by PO and PK were denoted as
GO and GK, respectively. The maximum and minimum tem-
perature (◦C), daily solar radiation (langley), daily rainfall

amount (mm), storm duration (h), and ip and tp of each sim-
ulation day were derived from GO and GK for each station,
and the maximum 30 min intensity (I30, mm/h) was calcu-
lated based on an assumed bi-exponential storm pattern (Yu,
2002). CLIGEN input parameter values are required to have
a US customary unit as shown in Table 1, while CLIGEN
output is produced in SI units as input to WEPP.

Three basic statistics – the average, standard deviation, and
skewness coefficient – were calculated for each CLIGEN-
generated variable. The absolute error (AE) and mean abso-
lute error (MAE) were calculated to examine the differences
between the two sets of statistics for generated temperatures.
Relative error (RE) and mean absolute relative error (MARE)
were calculated to examine the differences between the two
sets of statistics for generated daily solar radiation, daily pre-
cipitation, and sub-daily storm pattern:

|AE| = |GO−GK|, (16)

MAE=
1

2405

∑
|(GO−GK)| , (17)

|RE| = 100%|(GO−GK)/GO |, (18)

MARE=
100%
2405

∑
|(GO−GK)/GO| . (19)

3 Results

3.1 Spatial–temporal distribution of CLIGEN input
parameters

Thirteen groups of CLIGEN temperature and precipitation
parameters from 2405 stations and solar radiation parameters
from 130 stations were plotted to examine the inter-annual
variation and the differences among parameters (Fig. 2). The
average maximum temperature and minimum temperature,
TMAX AV and TMIN AV (in unit of ◦F, 1 ◦F= 1 ◦C / 1.8+
32), and the average and standard deviation of solar radiation,
SOL.RAD and SD SOL (in unit of langley, 1 Ly= 4.184×
10−2 MJ/m2), showed strong seasonality, and the spatial vari-
ance became smaller from the cold season to the warm one
(Fig. 2a, c, e–f). The spatial distributions of CLIGEN tem-
peratures and solar-radiation-related inputs in August based
on the UK-interpolated results were depicted as examples
(Fig. 3), from which we can find a differentiation rule for
latitude and vertical zonality for TMAX AV and TMIN AV
(Fig. 3a and c). SD TMAX and SD TMIN varied with sea-
son with a similar pattern and with generally higher values
in spring and autumn (Fig. 2b and d), because these two sea-
sons are transitional periods between warm and cold seasons
when temperature fluctuations are larger.

The average and standard deviation of daily precipitation,
MEAN P and S DEV P (in inches, 1 in.= 25.4 mm), and the
average monthly maximum 30 min intensity, MX.5P (in unit
of in./h, 1 in./h= 25.4 mm/h), showed a similar seasonal pat-
tern with the parameter values becoming gradually higher
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Figure 2. Boxplot of CLIGEN temperature, solar radiation, and precipitation parameters obtained from observations in mainland China.

from the cold season to the warm (Fig. 2g–h and l). Pre-
cipitation in China is influenced by the East Asian summer
monsoon and the location relative to land and sea. From
the spatial distribution of daily precipitation in August we
found a general decreasing trend from southeast to south-
west (Fig. 4a–b). The August rain belt is located in North
and Northeast China, while the South China region is con-
trolled by the subtropical high-pressure belt and experiences
a summer drought. Therefore, MEAN P and MX.5P in North
China were apparently greater than in South China. In com-
parison, skewness of daily precipitation, SKEW P, showed
imperceptible differences among months and no apparent lat-
itudinal or longitudinal zonality (Fig. 4c). This may be one of
the reasons leading to the low spatial interpolation accuracy
of SKEW P.

The wet-following-dry transition probability P (W |D)
showed a clear inter-annual variability in that the probability
increased from cold season to warm (Fig. 2j), while the wet-
following-wet transition probability P (W |W ) was character-
ized by greater regional differences but smaller monthly vari-
ability for most stations compared with P (W |D) (Fig. 2k).
The spatial–temporal variation in these two transition proba-
bilities revealed the stepwise northward progress of the East
Asian monsoon and the north–south advance of the frontal
cyclone (Liao et al., 2004). Due to the pre-monsoon rainy
season before June, strong convection in summer, and the re-
treating monsoon rain belt after August, the southern region
was characterized by a longer rainy season than North China

(Yu and Zhou, 2007). Therefore, P (W |W ) of the southern re-
gion was generally higher than other regions, and its seasonal
variations were relatively insignificant (Fig. 5b).

MX.5P of nine example stations showed the regional dif-
ferences more clearly in that the parameters of southern sta-
tions were relatively higher (Fig. 5c). Differences among
southern and northern stations became gradually smaller in
the warm season. It should be noted that the narrower range
of MX.5P in winter was partially related to the limited avail-
ability of hourly data. Due to the restriction of low tempera-
tures on siphon rain gauge observations, MX.5P in cold sea-
sons was available for fewer stations than in warm seasons.

TimePk consists of 12 discrete values representing the cu-
mulative distribution of time to peak intensity ranging from
0 to 1 for a specific location. The sixth value for TimePk
represents the cumulative ratio of storms with peak inten-
sity occurring before 1/2 duration and related ratios for 2405
stations ranging from 60 % to 80 % (Fig. 2m). TimePk for
nine example stations shows the cumulative ratio of time
to peak intensity in different regions, consistently indicat-
ing that most peak intensities tend to occur earlier during the
storms, with no obvious regional differences found for this
parameter (Fig. 5d).
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Figure 3. Map of the study area showing the spatial distribution of CLIGEN temperature-related parameters of mainland China in August.
All parameters were regionalized using universal kriging.

3.2 Evaluation of interpolated parameters using OK and
UK

3.2.1 Parameters at the daily scale

The leave-one-out cross-validation showed that four groups
of temperature parameters (TMAX AV, SD TMAX, TMIN
AV, SD TMIN), two groups of solar radiation (SOL.RAD,
SD SOL), and four groups of precipitation parameters at a

daily scale (MEAN P, S DEV P, P (W |D), and P (W |W ))
were well predicted by ordinary kriging (OK) and universal
kriging (UK). RMSE for all these parameters were relatively
low compared with the average of observed inputs (Table 3).
For all these four groups of temperature-related parameters,
RMSE values between the UK-interpolated and observed
were less than ≤ 1.58 ◦F (0.88 ◦C). NSE values were greater
than 0.87 for parameters of MEAN P, S DEV P, SOL.RAD,
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Figure 4. Map of the study area showing the spatial distribution of CLIGEN precipitation-related parameters of mainland China in August.
All parameters were regionalized using universal kriging.

and SD SOL in ratio scales. The PBIAS values were all
smaller than 1 %, suggesting that parameters based on ob-
servation and interpolation have a very close average trend
and showed no obvious bias. In contrast, the interpolated
accuracy of the skewness coefficient of daily precipitation,
SKEW P, was not very satisfactory, with NSE being 0.48 us-
ing OK and 0.78 using UK. Parameters related to daily aver-
age (TMAX AV, TMIN AV, SOL.RAD, and MEAN P) were

generally better predicted than corresponding parameters re-
lated to standard deviation (SD TMAX, SD TMIN, SD SOL,
and S DEV P), and the skewness coefficient was the least
accurately simulated.

In comparison with OK, the overall and monthly pre-
dicted accuracy using UK with auxiliary covariables obvi-
ously improved TMAX AV, TMIN AV, SOL.RAD, MEAN P,
SKEW P, P (W |W ), and P (W |D) (Fig. 6). The predicted ac-
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Figure 5. P (W |D), P (W |W ), MX.5P, and TimePk of nine stations determined by observed daily precipitation.

Table 3. Comparison of the accuracy of OK and UK using the leave-one-out cross-validation.

CLIGEN inputs Observations RMSEc NSEd PBIASd (%)

AVa SDb OK UK OK UK OK UK

TMAX AV (◦F) 67.54 18.02 2.94 1.34 – – – –
SD TMAX (◦F) 7.58 1.91 0.36 0.35 – – – –
TMIN AV (◦F) 48.91 19.84 2.67 1.58 – – – –
SD TMIN (◦F) 6.05 1.94 0.45 0.46 – – – –
SOL.RAD (langley) 347.46 116.18 30.59 27.11 0.93 0.95 0.14 0.24
SD SOL (langley) 138.70 41.33 14.34 15.14 0.88 0.87 −0.05 0.97
MEAN P (in.) 0.26 0.16 0.03 0.02 0.97 0.98 −0.02 0.07
S DEV P (in.) 0.40 0.27 0.05 0.05 0.96 0.97 −0.06 0.01
SKEW P 3.12 1.01 0.73 0.47 0.48 0.78 0.08 0.09
P (W |D) 0.23 0.12 0.03 0.02 – – – –
P (W |W ) 0.53 0.15 0.04 0.03 – – – –
MX.5P (in./h) 0.93 0.64 0.14 0.14 0.95 0.95 −0.05 0.04
TimePk 0.58 0.32 0.01 0.01 – – – –

a Overall average (AV) and b standard deviation (SD) for all months and stations; the unit is identical with parameters. c The unit of
RMSE is identical with the unit of each group of parameters. d NSE and PBIAS were only calculated for parameters in the ratio scale
with true zero.

curacy for SD TMAX and S DEV P using the two techniques
showed no evident difference. For SD TMIN and SD SOL,
the predicted accuracies were approximate except for July,
when the RMSE values of UK were obviously larger than
those of OK and the reason was unclear. Although the pre-
diction of SKEW P using UK was not as good as other pa-
rameters at a daily scale, the improvement compared with
OK was quite obvious, as the NSE over 12 months increased
from 0.48 for OK to 0.78 for UK, and the RMSE decreased
from 0.73 to 0.47 mm (Table 3). Predicted inputs using OK
and UK versus inputs based on observations from August

were plotted to show the difference between two methods as
examples (Fig. 7a–k).

3.2.2 Parameters at the sub-daily scale

Cross-validation results showed that the interpolation of the
two parameters related to storm patterns, i.e., MX.5P and
TimePk, performed well. Three cross-validation statistics for
these two parameters using two methods were numerically
similar (Table 3). NSE over 12 months for MX.5P interpo-
lated with OK and UK were both equal to 0.95. The seasonal
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Figure 6. Comparison of the interpolation quality in terms of the root mean square error (RMSE) using ordinary kriging (OK) and universal
kriging (UK) for temperature, solar radiation, and precipitation parameters.

variation in RMSE based on OK and UK follows a similar
pattern (Fig. 6l–m). For TimePk, the RMSE values using OK
were slightly lower than those using UK for the third, fourth,
and fifth parameters but slightly higher for the others.

Interpolation accuracy has been adequately estimated
through cross-validation, and these results indicated that the
accuracy of interpolation results based on UK was gener-
ally higher than those based on OK. Therefore, two sets of
CLIGEN-simulated climate series using observed inputs and
UK-interpolated inputs were generated and compared to fur-
ther evaluate the regionalized parameters using UK for the
simulation of CLIGEN.

3.3 Assessment of parameters’ regionalization on the
CLIGEN outputs

3.3.1 Simulated climate elements at a daily scale

CLIGEN-simulated daily temperature and solar radiation
based on UK-interpolated input parameters agreed well with
those simulated based on observed parameters. The aver-
age, standard deviation, and skewness coefficient of gen-
erated daily maximum temperature, minimum temperature,
solar radiation, and daily precipitation generated using ob-
served and interpolated input parameters were calculated for
each station, and the simulated accuracies of the average and
standard deviation were found to be better than that of the
skewness coefficient. The RMSE of the mean and standard

deviation were all less than 0.79◦C, 18 Ly/d (0.75 MJ/d), and
0.71 mm, respectively, for daily temperatures, solar radiation,
and precipitation (Tables 4 and 5). The NSE of the skewness
coefficient for solar radiation was 0.56, obviously lower than
that for the mean and standard deviation (Table 4). Mean-
while, the NSE of the skewness coefficient of daily precipi-
tation was low (Table 5), indicating a relatively low interpo-
lation accuracy of SKEW P. In fact, the accuracy of SKEW
P was the lowest among all input parameters (Table 3).

The absolute error (AE) of the average, standard deviation,
and skewness coefficient between the simulated daily tem-
perature of GO and GK were statistically similar (Table 4).
The mean absolute error (MAE) over 2405 stations were all
lower than 0.51 ◦C. For daily solar radiation, the relative er-
rors (REs) for the mean and standard deviation were lower
than 10 % for more than 90 % stations, and the mean abso-
lute relative error (MARE) values were lower than 4 %.

For generated daily precipitation, 94.1 % and 91.4 % of
stations yielded RE of the average and standard deviation
below 10 %, and the MARE values for 2405 stations were
3.72 % and 4.56 %, respectively. The bias between annual
rainy days of GO and GK was small as well. RE values of
92.9 % of stations were lower than 10 %. The frequency dis-
tributions of daily precipitation generated using two sets of
inputs were well matched for most stations. Figure 8a de-
picted the frequency distributions of simulated daily precip-
itation for Fuzhou station as an example, with RE slightly
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Figure 7. Comparison of the interpolation quality using ordinary kriging (OK) and universal kriging (UK) for CLIGEN temperature, solar
radiation, and precipitation parameters in August, and the eighth parameter of TimePk.

Table 4. Comparison of CLIGEN generated daily temperature and solar radiation based on observed input parameters and UK-interpolated
ones.

Estimation Daily maximum Daily maximum Daily solar radiation
indicators temperature (◦C) temperature (◦C) (Ly/d)

AVa SDb SKEWc AV SD SKEW AV SD SKEW

RMSE 0.68 0.25 0.03 0.79 0.35 0.04 18.00 7.24 0.07
NSE – – – – – – 0.87 0.87 0.56
PBIAS (%) – – – – – – 0.39 0.39 −0.14
|AE| (%)d (%) (%) (%) (%) (%) |RE| (%)e (%) (%)
< 1 ◦C 93.7 99 100 86.2 97.5 100 < 10 % 93.3 91.7 60.8
< 2 ◦C 98.5 99.8 100 97.4 99.6 100 < 20 % 99.2 99.2 83.3
< 5 ◦ 99.8 100 100 99.9 100 100 < 50 % 100 100 93.3
MAE (◦C) 0.51 0.21 0.02 0.34 0.14 0.02 MARE (%) 3.81 4.00 16.75

a The average (AV), b the standard deviation (SD), and c the skewness coefficient (SKEW) of daily maximum/minimum temperature and solar
radiation simulated by CLIGEN. d Percent of stations with |AE| in a range. e Percent of stations with |RE| in a range.

higher than MARE over 2405 stations. Meanwhile, some sta-
tions do not satisfactorily simulate the frequency distribution.
The frequency distribution of Tuokexun, whose simulation
quality was approximately the worst among 2405 stations,
was offered as an example (Fig. 8d). It showed that the fre-
quency of daily precipitation ranging from 0–1 mm was un-
derestimated, whereas that for values greater than 1 mm was
overestimated (Fig. 8d).

3.3.2 Simulated storm-pattern-related variables

The average and standard deviation of storm duration and the
maximum 30 min intensity (I30) generated using observed
and UK-interpolated input parameters possessed a generally
small bias. The NSE of the average and standard deviation
for both duration and I30 were above 0.87. Compared with
the average and standard deviation, the accuracy of skew-
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Table 5. Comparison of CLIGEN-generated daily rainfall and annual rainy days based on observed input parameters and UK-interpolated
ones.

Estimation indicators Daily precipitation (mm) Annual rainy days Storm duration (h) I30 (mm/h)

AVa SDb SKEWc AV AV SD SKEW AV SD SKEW

RMSE 0.36 0.71 0.63 7.62 0.21 0.17 0.23 0.28 0.52 0.24
NSE 0.98 0.97 0.48 0.97 0.92 0.87 0.26 0.99 0.98 0.66
PBIAS −0.06 0.27 0.94 −0.01 0.28 0.73 0.13 −0.34 −0.2 −0.15
|RE| (%)d (%) (%) (%) (%) (%) (%) (%) (%) (%)
< 10 % 94.1 91.4 61.2 92.9 94.7 90.8 74.1 97.7 96.7 88.6
< 20 % 98.6 98.6 87.4 98.4 98.8 97.9 93.5 99.7 99.4 98.3
< 50 % 100 99.9 99.6 99.7 99.9 99.8 99.7 100 99.9 100
MARE (%) 3.72 4.56 10.07 4.09 3.47 4.61 7.71 2.36 3.07 5.08

a The average (AV), b the standard deviation (SD), and c the skewness coefficient (SKEW) of daily precipitation, annual rainy days, storm duration, and I30 by
CLIGEN. d Percent of stations with |RE| in a range.

Figure 8. Frequency distribution of daily precipitation, duration, and maximum 30 min intensity (I30) generated by CLIGEN using inputs
based on observations and interpolation predicted parameters: Fuzhou station (a–c) and Tuokexun station (d–f) as examples.

ness was the worst, with the NSE being 0.26 for the duration
and 0.66 for the peak intensity index. Comparison of the fre-
quency distribution of the duration and I30 for Fuzhou sta-
tion showed that the frequency of simulated storm patterns
was well preserved using data employing UK-interpolated
parameters (Fig. 8b–c). The frequency distribution of the du-
ration and I30 for Tuokexun station showed that interpolated
parameters seemed to underestimate low values and overes-
timate high values (Fig. 8e–f).

4 Discussion

Both AE and RE indexes were adopted to evaluate the sim-
ulated results in this study. The RE index was applied for
solar-radiation- and precipitation-related outputs, while the
AE index was applied for the assessment of temperature-
related outputs, as RE was not an appropriate indicator to
evaluate the temperature which was in interval scale. For sta-
tions located in high-latitude or high-altitude areas, the mean
annual temperature may be close to zero, resulting in an ex-
tremely high RE. For example, the mean maximum temper-
ature of Qian’an station (Fig. 1) using observed inputs was
−0.01 ◦C, and that using interpolated inputs was −0.33 ◦C,
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Table 6. Station density and simulation quality of CLIGEN for three Chinese physical-geographical regions.

Eastern monsoon area Northwest arid area Qinghai–Tibet Plateau

Temperature and precipitation

No. of stations 2044 233 128
Density (n/104 km2) 4.57 0.97 0.50
MAE of max temperature (◦C) 0.44 0.90 0.93
MAE of min temperature (◦C) 0.30 0.42 0.82
MARE of daily precipitation (%) 3.13 6.92 7.25
MARE of duration (%) 2.95 5.93 7.31
MARE of I30 (%) 2.00 4.50 4.11

Solar radiation

No. of stations 92 26 12
Density (n/104 km2) 0.21 0.11 0.05
MARE of daily solar radiation (%) 3.92 2.87 5.14

resulting in a RE between the two values of 2912.7 %, which
was an extremely large error. However, the mean maximum
temperature simulated using the two datasets was very sim-
ilar, with an AE of 0.32 ◦C. If RE was used to evaluate the
simulated temperature, the actual simulation quality may be
strongly underestimated. Therefore, AE values were used to
demonstrate errors between generated temperature based on
observed and interpolated inputs.

The frequency distributions of CLIGEN-simulated daily
precipitation, duration, and peak intensity at Tuokexun sta-
tion using observed inputs were all not well preserved by
those simulated using UK-interpolated inputs (Fig. 8). The
simulation quality for Tuokexun was almost the worst among
2405 stations, as RE values for all these three precipitation-
related variables were greater than 99 % of stations. This may
be explained partially because Tuokexun is located in the
northwest arid area of China (Fig. 1), with a station den-
sity of 0.97/104 km2, which is much lower than that in the
eastern monsoon area (Table 6). Stations involved in the in-
terpolation were separated by far distances, with a negative
influence on the interpolation accuracy (Oliver and Webster,
2014). Other stations with extremely low simulated quality
similar to Tuokexun are almost located in the northwest arid
area or the Qinghai–Tibet Plateau, where the station density
is lower. The MAE and MARE for generated temperature
and precipitation in the eastern monsoon area were the low-
est among three physical-geographical regions of China (Ta-
ble 6). The standard errors of the interpolation results for the
two parameters, i.e., TMAX AV and MEAN P, in August
are shown as an example (Fig. 9). It can be seen that the
errors are relatively high in the western part of China, espe-
cially in the northwestern part of the Qinghai–Tibet Plateau,
where there is a large area without stations and characterized
with the highest standard errors for both parameters (Figs. 1
and 9).

The number and density of weather stations for solar ra-
diation were considerably less than for those for temperature
and precipitation (Table 6). However, the mean and standard
deviation of daily solar radiation using the UK-interpolated
parameters was in good agreement with that simulated using
observation-based parameter values (Table 4), and MARE of
solar radiation was similar to that of daily precipitation. Solar
radiation is characterized with much lower spatial variability
in comparison to that for the temperature and precipitation.
As a result, solar-radiation-related parameters were easier to
regionalize, and parameter values could readily be interpo-
lated for regions with limited observations.

CLIGEN-input parameters in the United States were re-
gionalized from 2600 stations using the inverse distance
weighted method (IDW), which was employed in the ini-
tial attempt to regionalize CLIGEN input parameters. In
this study, UK was adopted to interpolate CLIGEN param-
eters for mainland China. Interpolated parameter values us-
ing IDW and UK were compared for four selected parame-
ters in August as shown in Fig. 10. It can be seen that UK
performed better than IDW for all four parameters selected.
UK-interpolated parameter values were concentrated mostly
along the 1 : 1 line. The RMSE values of all four groups of
parameters interpolated using UK were lower than those pre-
dicted using IDW. A noticeable improvement was noted for
SKEW P, with the RMSE improving from 0.84 to 0.49 using
UK instead of IDW. Therefore, UK appears to be consistently
superior to IDW when regionalizing CLIGEN input parame-
ters based on the limited comparison for selected parameters.

5 Code availability

Source code for data extraction, processing, and analysis is
available from the authors upon reasonable request.
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Figure 9. Map of the study area showing the spatial distribution of the standard error for interpolation results of TMAX AV (a) and
MEAN P (b) using universal kriging.

Figure 10. Comparison of interpolation quality using universal kriging (UK) and the inverse distance weighted method (IDW) for CLIGEN
temperature- and precipitation-related parameters for 2405 stations in August.

6 Data availability

The gridded CLIGEN input parameter dataset
of China at 10 km resolution is available at the

home page of the CLImate Change Impact As-
sessment (CLICIA) group at http://clicia.bnu.edu.
cn/data/cligen.html (last access: 20 May 2021) and
https://doi.org/10.12275/bnu.clicia.CLIGEN.CN.gridinput.001
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(Wang et al., 2020). Additional materials including the data
manual and grid information are also available at the same
website and can be downloaded.

7 Summary and conclusion

The widely used stochastic weather generator CLIGEN can
simulate long-term climate data to drive hydrological, soil
erosion, and crop-yield models. Limitations in high spatial–
temporal observations, especially at the sub-daily scale, have
partially restricted its application. Daily temperature, daily
precipitation, and hourly precipitation data for 2405 stations
and daily solar radiation for 130 stations distributed across
mainland China were collected to establish the CLIGEN in-
put parameter files and to explore an appropriate method
for regionalizing these parameters from stations to the entire
region. The predicted quality using two interpolation tech-
niques, OK and UK, was compared and fully assessed, yield-
ing the following results.

1. UK generally performed better than OK when inter-
polating CLIGEN parameters. Compared with OK, the
interpolation accuracy was markedly improved for pa-
rameters TMAX AV, TMIN AV, SOL.RAD, MEAN P,
SKEW P, P (W |D), and P (W |W ). For the remaining pa-
rameters, the comparative interpolation accuracies were
numerically approximate between the two techniques.

2. UK can accurately predict temperature, solar radiation,
and precipitation input parameters for CLIGEN. RMSE
values in UK-interpolated parameter values for tem-
perature were less than ≤ 0.88 ◦C (1.58 ◦F)„ and NSE
for precipitation and solar radiation parameters were all
greater than 0.87, except for the skewness coefficient
(SKEW P), with a relatively lower interpolation accu-
racy (NSE= 0.78).

3. Basic statistics and frequency distributions for
CLIGEN-simulated climate elements using UK-
interpolated parameters agreed well with those
simulated using observations. The mean absolute error
(MAE) values for the average, standard deviation, and
skewness coefficient for the two simulated series of
temperature across 2405 stations were all less than
0.5 ◦C. The mean absolute relative error (MARE)
values for same statistics for simulated solar radiation
were less than 0.1 %. MARE for the average and stan-
dard deviation for precipitation amount, duration, and
I30 were less than 5.0 %, while errors for the skewness
coefficient for these three groups of parameters were
less than 10.1 %.

The developed gridded input parameter database can be ap-
plied using CLIGEN, with an established and reliable sim-
ulation quality, to the stochastic simulation of temperature,
solar radiation, and precipitation at a daily scale and to pre-
cipitation at a sub-daily scale for any single point in China.

CLIGEN can simulate the dew point and wind as well, which
is not regionalized in this study. As a site-based weather gen-
erator, simulated climate series using CLIGEN are indepen-
dent of each other and lack spatial correlations among sta-
tions. Further research might focus on the rebuilding of cor-
relations among climate elements and between nearby sta-
tions.

Author contributions. WW calculated the input parameters, de-
veloped the programming code, and wrote the original draft; SY
provided the main conceptualization, supervised the project, and re-
viewed the draft; BY provided advice about the methodology and
reviewed the draft; SW reviewed the draft.

Competing interests. The authors declare that they have no con-
flict of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We would like to thank the high-
performance computing support from the Center for Geodata
and Analysis, Faculty of Geographical Science, Beijing Normal
University (https://gda.bnu.edu.cn/, last access: 12 April 2021).

Financial support. This research has been supported by
the National Natural Science Foundation of China (grant
no. 41877068) and the China Postdoctoral Science Foundation
(grant no. 2020M680433).

Review statement. This paper was edited by David Carlson and
reviewed by two anonymous referees.

References

Arnold, J. G. and Williams, J. R.: Stochastic generation of in-
ternal storm structure at a point, Trans. ASAE, 32, 161–167,
https://doi.org/10.13031/2013.30976, 1989.

Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J.
R.: Large area hydrologic modeling and assessment Part 1:
Model development, J. Am. Water Resour. As., 34, 73–89,
https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.

Carrera-Hernández, J. J. and Gaskin, S.J: Spatio tem-
poral analysis of daily precipitation and temperature
in the Basin of Mexico, J. Hydrol., 336, 231–249,
https://doi.org/10.1016/j.jhydrol.2006.12.021, 2007.

Chen, J.: Applicability assessment and improvement of CLIGEN
for the Loess Plateau of China, Thesis for Master Degree, North-
west A&F University, Xi’an, 2008 (in Chinese with English ab-
stract).

Earth Syst. Sci. Data, 13, 2945–2962, 2021 https://doi.org/10.5194/essd-13-2945-2021

https://gda.bnu.edu.cn/
https://doi.org/10.13031/2013.30976
https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
https://doi.org/10.1016/j.jhydrol.2006.12.021


W. Wang et al.: CLIGEN parameter regionalization for mainland China 2961

Cheng, Y., Ao, T., Li, X., and Wu, B.: Runoff simulation by
SWAT model based on parameters transfer method in ungauged
catchments of middle reaches of Jialing River, Transactions of
the Chinese Society of Agricultural Engineering, 32, 81–86,
https://doi.org/10.11975/j.issn.1002-6819.2016.13.012, 2016 (in
Chinese with English abstract)

Cowpertwait, P. S. P., O’Connell, P. E., Metcalfe, A. V., and
Mawdsley, J. A.: Stochastic point process modelling of rainfall.
II. Regionalisation and disaggregation, J. Hydrol., 175, 47–65,
https://doi.org/10.1016/S0022-1694(96)80005-9, 1996.

Flanagan, D. C., Meyer, C. R., Yu, B., and Scheele, D. L.: Evalu-
ation and enhancement of the CLIGEN weather generator: Soil
Erosion Research for the 21st Century: Proc, International Sym-
posium, American Society of Agricultural Engineers, St. Joseph,
Michigan, USA, 107–110, 2001.

Flanagan, D. C., Trotochaud, J., Wallace, C. W., and Engel, B. A.:
Tool for obtaining projected future climate inputs for the WEPP
and SWAT models: 21st Century Watershed Technology Con-
ference and Workshop Improving Water Quality and the Envi-
ronment Conference Proceedings, University of Waikato, New
Zealand, American Society of Agricultural and Biological Engi-
neers, St. Joseph, Michigan, USA, 8 pp., 2014.

Haberlandt, U.: Stochastic rainfall synthesis using region-
alized model parameters, J. Hydrol. Eng., 3, 160–168,
https://doi.org/10.1061/(ASCE)1084-0699(1998)3:3(160),
1998.

Hengl, T., Heuvelink, G. B., and Rossiter, D. G.: About regression-
kriging: From equations to case studies, Comput. Geosci., 33,
1301–1315, https://doi.org/10.1016/j.cageo.2007.05.001, 2007.

Hutchinson, M. F.: Interpolating mean rainfall using thin plate
smoothing splines, Int. J. Geogr. Inf. Syst., 9, 385–403,
https://doi.org/10.1080/02693799508902045, 1995.

Katz, R. W. and Parlange, M. B.: Mixtures of stochastic processes:
application to statistical downscaling, Clim. Res., 7, 185–193,
https://doi.org/10.3354/cr007185, 1996.

Li, L., Shi, R., Zhang, L., Zhang, J., and Gao, W.: The data fusion
of aerosol optical thickness using universal kriging and stepwise
regression in East China, Remote Sens. Model. Ecosyst. Sustain.
XI, 9221, 922112, https://doi.org/10.1117/12.2061764, 2014.

Liao, Y., Zhang, Q., and Chen, D.: Precipitation simulation in China
with a weather generator, Acta Geographica Sinica, 59, 698–707,
2004 (in Chinese with English abstract).

Ly, S., Charles, C., and Degré, A.: Different methods for spatial in-
terpolation of rainfall data for operational hydrology and hydro-
logical modeling at watershed scale: a review, Biotechnologie,
agronomie, société et environnement, 17, 392–406, 2013.

Maraun, D. and Widmann, M.: Statistical downscal-
ing and bias correction for climate research, Cam-
bridge University Press, Cambridge, United Kingdom,
https://doi.org/10.1017/9781107588783, 2018.

Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon,
E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T.,
and Themeßl, M.: Precipitation downscaling under climate
change: Recent developments to bridge the gap between dy-
namical models and the end user, Rev. Geophys., 48, 219–234,
https://doi.org/10.1029/2009RG000314, 2010.

McKenzie, N. J. and Ryan, P. J.: Spatial prediction of soil prop-
erties using environmental correlation, Geoderma, 89, 67–94,
https://doi.org/10.1016/S0016-7061(98)00137-2, 1999.

Nicks, A. D., Lane, L. J., and Gander, G. A.: Weather generator,
Chapter 2, US Department of Agriculture (USDA) Water
Erosion Prediction Project, Technical Documentation, National
Soil Erosion Research Laboratory (NSERL) Report, 2.1–2.22,
NSERL, West Lafayette, available at: https://www.ars.usda.gov/
midwest-area/west-lafayette-in/national-soil-erosion-research/
docs/wepp/wepp-model-documentation/ (last access:
20 May 2021), 1995.

Oliver, M. A. and Webster, R.: A tutorial guide to geostatistics:
Computing and modelling variograms and kriging, Catena, 113,
56–69, https://doi.org/10.1016/j.catena.2013.09.006, 2014.

Richardson, C. W. and Wright, D. A.: WGEN: A model for gen-
erating daily weather variables, US Department of Agriculture,
Agricultural Research Service, Washington, D.C., 1984.

Scheele, D. L. and Hall, D. E.: Corrections and improvements to the
CLIGEN climate database, Moscow, Idaho, USDA Forest Ser-
vice, Rocky Mountain Research Station, 2000.

Semenov, M. A. and Brooks, R. J.: Spatial interpolation of the
LARS-WG stochastic weather generator in Great Britain, Clim.
Res., 11, 137–148, https://doi.org/10.3354/cr011137, 1999.

USDA-ARS: Science Documentation, Revised Universal Soil Loss
Equation, Version 2 (RUSLE2), USDA-Agricultural Research
Service, Washington, D.C., USA, 2013.

Verworn, A. and Haberlandt, U.: Spatial interpolation of hourly
rainfall – effect of additional information, variogram inference
and storm properties, Hydrol. Earth Syst. Sci., 15, 569–584,
https://doi.org/10.5194/hess-15-569-2011, 2011.

Wackernagel, H.: Multivariate geostatistics: an introduction with
applications, Springer, Berlin, Heidelberg, Science & Business
Media, https://doi.org/10.1007/978-3-662-05294-5, 2013.

Wallis, T. W. R. and Griffiths, J. F.: An assessment of the
weather generator (WXGEN) used in the erosion/productivity
impact calculator (EPIC), Agr. Forest Meteorol., 73, 115–133,
https://doi.org/10.1016/0168-1923(94)02172-G, 1995.

Wang, J. A. and Zuo, W.: Geographic atlas of China. Beijing, China,
China Atlas Press, Beijing, 2009.

Wang, W., Yin, S., Flanagan, D. C., and Yu, B.: Comparing
CLIGEN-generated storm patterns with 1-minute and hourly pre-
cipitation data from China, J. Appl. Meteorol. Climatol., 57,
2005–2017, https://doi.org/10.1175/JAMC-D-18-0079.1, 2018.

Wang, W., Yin, S., Yu, B., and Wang, S.: CLIGEN parame-
ter regionalization for mainland China [data set], CLICIA,
https://doi.org/10.12275/bnu.clicia.CLIGEN.CN.gridinput.001,
2020.

Wilks, D. S.: High-resolution spatial interpolation of
weather generator parameters using local weighted
regressions, Agr. Forest. Meteorol., 148, 111–120,
https://doi.org/10.1016/j.agrformet.2007.09.005, 2008.

Wilks, D. S. and Wilby, R. L.: The weather generation game: a re-
view of stochastic weather models, Prog. Phys. Geog., 23, 329–
357, https://doi.org/10.1177/030913339902300302, 1999.

Williams, J. R., Nicks, A. D., and Arnold, J. G.: Simulator for
water resources in rural basins, J. Hydraul. Eng., 111, 970–986,
https://doi.org/10.1061/(ASCE)0733-9429(1985)111:6(970),
1985.

Williams, J. R., Jones, C. A., and Dyke, P.: A model-
ing approach to determining the relationship between ero-
sion and soil productivity, Trans. ASAE, 27, 129–144,
https://doi.org/10.13031/2013.32748, 1984.

https://doi.org/10.5194/essd-13-2945-2021 Earth Syst. Sci. Data, 13, 2945–2962, 2021

https://doi.org/10.11975/j.issn.1002-6819.2016.13.012
https://doi.org/10.1016/S0022-1694(96)80005-9
https://doi.org/10.1061/(ASCE)1084-0699(1998)3:3(160)
https://doi.org/10.1016/j.cageo.2007.05.001
https://doi.org/10.1080/02693799508902045
https://doi.org/10.3354/cr007185
https://doi.org/10.1117/12.2061764
https://doi.org/10.1017/9781107588783
https://doi.org/10.1029/2009RG000314
https://doi.org/10.1016/S0016-7061(98)00137-2
https://www.ars.usda.gov/midwest-area/west-lafayette-in/national-soil-erosion-research/docs/wepp/wepp-model-documentation/
https://www.ars.usda.gov/midwest-area/west-lafayette-in/national-soil-erosion-research/docs/wepp/wepp-model-documentation/
https://www.ars.usda.gov/midwest-area/west-lafayette-in/national-soil-erosion-research/docs/wepp/wepp-model-documentation/
https://doi.org/10.1016/j.catena.2013.09.006
https://doi.org/10.3354/cr011137
https://doi.org/10.5194/hess-15-569-2011
https://doi.org/10.1007/978-3-662-05294-5
https://doi.org/10.1016/0168-1923(94)02172-G
https://doi.org/10.1175/JAMC-D-18-0079.1
https://doi.org/10.12275/bnu.clicia.CLIGEN.CN.gridinput.001
https://doi.org/10.1016/j.agrformet.2007.09.005
https://doi.org/10.1177/030913339902300302
https://doi.org/10.1061/(ASCE)0733-9429(1985)111:6(970)
https://doi.org/10.13031/2013.32748


2962 W. Wang et al.: CLIGEN parameter regionalization for mainland China

Xu, X., Xu, Y., Sun, Q., Xie, T., and Zhang, H: Comparison
study on meteorological spatial interpolation approaches in
Kangdian region of China, Journal of Central China Normal
University, 52, 122–129, https://doi.org/10.19603/j.cnki.1000-
1190.2018.01.020, 2018 (in Chinese with English Abstract).

Yin, S. and Chen, D.: Weather generators, in: Oxford Research En-
cyclopedia of Climate Science, Oxford University Press, Oxford,
https://doi.org/10.1093/acrefore/9780190228620.013.768, 2020.

Yin, S., Xue, X., Yue, T., Xie, Y., and Gao, G.: Spatiotem-
poral distribution and return period of rainfall erosivity in
China, Transactions of the Chinese Society of Agricultural
Engineering, 35, 105–113, https://doi.org/10.11975/j.issn.1002-
6819.2019.09.013, 2019 (in Chinese with English abstract).

Yu, B.: Using CLIGEN to generate RUSLE climate inputs, Trans.
ASAE, 45, 993–1001, https://doi.org/10.13031/2013.9952,
2002.

Yu, B.: An assessment of uncalibrated CLIGEN in Australia, Agr.
Forest Meteorol., 119, 131–148, https://doi.org/10.1016/S0168-
1923(03)00141-2, 2003.

Yu, R. and Zhou, T.: Seasonality and three-dimensional structure of
interdecadal change in the East Asian Monsoon, J. Climate, 20,
5344–5355, https://doi.org/10.1175/2007JCLI1559.1, 2007.

Zhang, X. C. and Garbrecht, J. D.: Evaluation of CLIGEN
precipitation parameters and their implication on WEPP
runoff and erosion prediction. Trans. ASAE, 46, 311–320,
https://doi.org/10.13031/2013.12982, 2003.

Zhao, S.: A new scheme for comprehensive physical regionalization
in China, Acta Geographica Sinica, 38, 1–10, 1983 (in Chinese
with English abstract).

Earth Syst. Sci. Data, 13, 2945–2962, 2021 https://doi.org/10.5194/essd-13-2945-2021

https://doi.org/10.19603/j.cnki.1000-1190.2018.01.020
https://doi.org/10.19603/j.cnki.1000-1190.2018.01.020
https://doi.org/10.1093/acrefore/9780190228620.013.768
https://doi.org/10.11975/j.issn.1002-6819.2019.09.013
https://doi.org/10.11975/j.issn.1002-6819.2019.09.013
https://doi.org/10.13031/2013.9952
https://doi.org/10.1016/S0168-1923(03)00141-2
https://doi.org/10.1016/S0168-1923(03)00141-2
https://doi.org/10.1175/2007JCLI1559.1
https://doi.org/10.13031/2013.12982

	Abstract
	Introduction
	Data and methods
	Data collection
	Site-based input parameters and simulation
	Spatial interpolation by kriging
	Assessment of interpolation accuracy

	Results
	Spatial–temporal distribution of CLIGEN input parameters
	Evaluation of interpolated parameters using OK and UK
	Parameters at the daily scale
	Parameters at the sub-daily scale

	Assessment of parameters' regionalization on the CLIGEN outputs
	Simulated climate elements at a daily scale
	Simulated storm-pattern-related variables


	Discussion
	Code availability
	Data availability
	Summary and conclusion
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

