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Abstract. Widely used sea ice concentration and sea ice cover in polar regions are derived mainly from space-
borne microwave radiometer and scatterometer data, and the typical spatial resolution of these products ranges
from several to dozens of kilometers. Due to dramatic changes in polar sea ice, high-resolution sea ice cover
data are drawing increasing attention for polar navigation, environmental research, and offshore operations. In
this paper, we focused on developing an approach for deriving a high-resolution sea ice cover product for the
Arctic using Sentinel-1 (S1) dual-polarization (horizontal-horizontal, HH, and horizontal-vertical, HV) data in
extra wide swath (EW) mode. The approach for discriminating sea ice from open water by synthetic aperture
radar (SAR) data is based on a modified U-Net architecture, a deep learning network. By employing an inte-
grated stacking model to combine multiple U-Net classifiers with diverse specializations, sea ice segmentation is
achieved with superior accuracy over any individual classifier. We applied the proposed approach to over 28 000
S1 EW images acquired in 2019 to obtain sea ice cover products in a high spatial resolution of 400 m. The
validation by 96 cases of visual interpretation results shows an overall accuracy of 96.10 %. The S1-derived sea
ice cover was converted to concentration and then compared with Advanced Microwave Scanning Radiometer
2 (AMSR2) sea ice concentration data, showing an average absolute difference of 5.55 % with seasonal fluc-
tuations. A direct comparison with Interactive Multisensor Snow and Ice Mapping System (IMS) daily sea ice
cover data achieves an average accuracy of 93.98 %. These results show that the developed S1-derived sea ice
cover results are comparable to the AMSR and IMS data in terms of overall accuracy but superior to these data
in presenting detailed sea ice cover information, particularly in the marginal ice zone (MIZ). Data are available
at https://doi.org/10.11922/sciencedb.00273 (Wang and Li, 2020).

1 Introduction

Sea ice retreat, particularly in the Arctic, has been one of the
most significant responses to global climate change (Serreze
and Barry, 2011). Therefore, sea ice cover and sea ice con-
centration are vital parameters for conducting climate change
research, navigation in polar regions, and the success of off-
shore operations.

Spaceborne microwave radiometers have provided the
longest time series of sea ice concentration data in polar re-
gions. The large-scale recording of sea ice began with the ad-
vent of the Nimbus-5 Electrically Scanning Microwave Ra-
diometer (ESMR) in 1972, followed by the launch of dual-

polarization multifrequency systems such as the Nimbus-
7 Scanning Multichannel Microwave Radiometer (SMMR)
(Gloersen et al., 1993) in 1978. Subsequently, the Special
Sensor Microwave Imager (SSM/I) multichannel radiometer
system (Hollinger et al., 1990) on board the Defense Meteo-
rological Satellite Program (DMSP) satellites and their suc-
cessor, the Special Sensor Microwave Imager and Sounder
(SSMIS) (Kunkee et al., 2008), have provided long time-
series records of sea ice concentration from 1987 to 2016.
The typical sea ice concentration data provided by SSM/I
and SSMIS have a spatial resolution of approximately 25 km
(Comiso et al., 1997; Parkinson et al., 1999). A new gener-
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ation of passive microwave sensors have been launched in
recent decades, mainly represented by the NASA Aqua Ad-
vanced Microwave Scanning Radiometer for the Earth Ob-
serving System (AMSR-E), which launched in May 2002,
followed by the Advanced Microwave Scanning Radiome-
ter 2 (AMSR2) on board the JAXA Global Change Ob-
servation Mission-Water (GCOM-W) satellite that launched
in May 2012. AMSR-E daily average sea ice concentration
products are derived mainly from 19 and 37 GHz channels
with the bootstrap technique (Comiso and Sullivan, 1986)
with a resolution of 12.5 km. AMSR2 provides two types
of sea ice concentration data: one is based on the bootstrap
algorithm (Comiso and Sullivan, 1986) and utilizes verti-
cally polarized brightness temperatures measured from 19
and 37 GHz channels with a resolution of 12.5 km, while the
other is based mainly on the ARTIST sea ice (ASI) algorithm
(Spreen et al., 2008, 2005) and employs information from a
higher frequency of 89 GHz, resulting in an increased spatial
resolution of 6.25 km. To date, operationally available sea ice
concentration data retrieved by spaceborne radiometers have
provided reliable measurements of sea ice variations in po-
lar regions. For instance, research shows that the Arctic sea
ice extent has decreased since 1978 (Stroeve et al., 2005) and
that warming in the Arctic will continue with a rate greater
than the current global average (Pachauri et al., 2014).

Due to their large spatial coverage and polar orbits, the
microwave radiometers mentioned above are able to acquire
daily sea ice concentration information over the Arctic and
Antarctic. However, the typical spatial resolution of sea ice
data from a spaceborne microwave radiometer ranges from a
few to tens of kilometers. Arctic sea ice is experiencing an
ongoing rapid decline (Onarheim et al., 2018) and is conse-
quently becoming younger (Nghiem et al., 2007) and thinner
(Kwok and Rothrock, 2009) and is drifting faster (Rampal et
al., 2009). On the other hand, while there is the retreat of sea
ice, the spatial and temporal variations of the Arctic marginal
ice zone (MIZ) draws increasing attention (Strong and Rigor,
2013), where the significant interaction between sea ice and
ocean dynamics might be an important feedback to sea ice
retreat (Thomson and Rogers, 2014). Hence, to better under-
stand sea ice dynamics and its interaction with ocean dynam-
ics (particularly in the MIZ) at different spatial and temporal
scales, remote-sensing-based sea ice information with a high
spatial resolution is more desirable than ever.

Spaceborne synthetic aperture radar (SAR) has proven to
be an ideal remote sensing technique for generating detailed
sea ice information because of its inherent capability to im-
age the surface at a high resolution (up to 1 m to date) inde-
pendent of sunlight and weather conditions. Moreover, its po-
larimetric capability enables SAR to have different responses
to sea ice types and open water. Since the first civilian SAR
instrument, Seasat, was launched in 1978, sea ice monitor-
ing in polar regions has become a primary task of operat-
ing spaceborne SAR satellites. Previous studies on sea ice
monitoring by spaceborne SAR have focused mainly on the

discrimination of sea ice and open water (Hong and Yang,
2018; Komarov and Buehner, 2017), the classification of sea
ice types (Wang et al., 2018; Boulze et al., 2020), the detec-
tion of icebergs (Power et al., 2001), and the investigation of
sea ice drift (Frost et al., 2017). The present study concerns
the extraction of sea ice by spaceborne SAR; accordingly, a
brief summary of the state-of-the-art SAR-related segmenta-
tion techniques for sea ice and open water is given below.

Among the existing SAR-based sea ice segmentation ap-
proaches, it is widely agreed that observations acquired un-
der cross-polarization (horizontal-vertical, HV, or vertical-
horizontal, VH) are more effective than those retrieved un-
der co-polarization (horizontal-horizontal, HH, or vertical-
vertical, VV) because the former is less sensitive to sea
surface backscatter (Dierking, 2013; Scheuchl et al., 2004).
However, the strong contrast between sea ice and open wa-
ter in cross-polarization can be limiting for thin ice with a
smooth surface or for open water under strong winds. The
difference between co-polarization and cross-polarization
data has proven to be an optimal combination for distinguish-
ing between sea ice and open water (Karvonen, 2013; Tan
et al., 2018). Recently proposed sea ice segmentation ap-
proaches are based mainly on traditional machine learning
methods. First, texture features, such as the gray-level co-
occurrence matrix (GLCM), energy, correlation, dissimilar-
ity, and entropy, are manually selected and extracted. Then,
those texture features are fed into traditional machine learn-
ing algorithms such as a support vector machine (SVM) (Za-
khvatkina et al., 2017; Leigh et al., 2013; Liu et al., 2014;
Li et al., 2020), a random forest algorithm (Tan et al., 2018),
or an artificial neural network (Ressel et al., 2015). The per-
formance of traditional machine learning depends heavily on
the selection of features. Moreover, although various studies
have demonstrated that texture features (such as those based
on the GLCM) can effectively reflect the discrepancies be-
tween sea ice and open water patterns (Soh and Tsatsoulis,
1999; Clausi and Zhao, 2003; Clausi, 2001), these features
fail in cases where sea ice and open water have similar pat-
terns in SAR images (such as an SAR image presenting both
windy sea and thin ice surfaces).

The difficulty in designing suitable features for segmen-
tation stems from the complex nature of weather conditions
and sea ice states. Hence, manually exhausting all useful tex-
ture features for distinguishing sea ice and open water in dif-
ferent situations is challenging. A convolutional neural net-
work (CNN) is a good way to solve this problem. Rather
than using hand-crafted features, the CNN input is the orig-
inal data (image), and a CNN can automatically and hier-
archically learn the features in each network layer. There-
fore, the sea ice segmentation model proposed in this study is
built upon a particularly successful CNN called U-Net (Ron-
neberger et al., 2015), which has been widely used in im-
age segmentation and has achieved competitive performance.
The novel character of the U-Net architecture provides op-
portunities for deriving pixelwise sea ice segmentation re-
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sults by high-resolution spaceborne SAR data and with a rel-
atively small number of training samples.

Although various algorithms and methods have been de-
veloped for sea ice segmentation by spaceborne SAR data, it
seems that valuable SAR-derived sea ice information has not
been widely exploited compared with radiometer-retrieved
sea ice concentration data, which are routinely utilized for
sea ice monitoring in polar regions. This situation may be
attributed to two aspects. On the one hand, the existing
methodologies have limitations and have seldom been val-
idated with a large dataset. On the other hand, spaceborne
SAR data acquisitions over polar regions are often discon-
tinuous due to the limitations of onboard storage or other
requested tasks. Alternatively, Sentinel-1A and Sentinel-1B
(S1A and S1B, respectively) compose a spaceborne SAR
constellation that boasts a significantly shortened revisit fre-
quency of less than 1 d at high latitudes, e.g., polar regions.
Moreover, S1A and S1B have broadly acquired extensive
amounts of data in polar regions since their constellation was
formed: more than approximately 2500 SAR images in ex-
tra wide swath (EW) mode are acquired each month by these
two satellites in the Arctic. Therefore, S1A and S1B provide
a unique chance to generate high-resolution sea ice informa-
tion with a high coverage frequency in polar regions.

In this study, we focused on developing a method for de-
riving high-resolution Arctic sea ice cover information from
S1A and S1B based on a deep learning architecture, namely,
U-Net. Moreover, aiming for a future operational service,
we attempted to generate a standard SAR-derived sea ice
cover product by using a full year of S1 images acquired
in the Arctic. The remainder of this paper is organized as
follows. The datasets used for developing and validating the
algorithm are briefly described in Sect. 2. Section 3 presents
the proposed sea ice segmentation approach based on the U-
Net architecture. Following the development of the proposed
algorithm, comparisons among SAR-derived sea ice cover
data, visual interpretation results, AMSR2 sea ice concen-
tration data, and Interactive Multisensor Snow and Ice Map-
ping System (IMS) daily sea ice cover data are presented in
Sect. 4. Section 5 describes the generated S1-derived Arc-
tic sea ice cover product based on the proposed approach. A
discussion and the conclusions are presented in the last two
sections.

2 Datasets

2.1 Sentinel-1 data

To effectively cover the vast Arctic region, S1A and S1B ex-
tensively acquire SAR data in EW mode, which has a swath
width of approximately 400 km. Moreover, the EW mode
data in the Arctic are acquired in dual-polarization (HH and
HV) and are particularly suitable for sea ice monitoring. The
S1 EW images used are in ground-range-detected, medium-
resolution (GRDM) format with a pixel size of 40 m× 40 m.

Figure 1. Number of S1 EW images collected in the Arctic region
(72.5–83◦ N) in each month in 2019.

The incidence angle of the EW data varies from 18.9◦ in the
near range to 47.0◦ in the far range. More than 28 000 S1 EW
images in dual polarization were collected over the Arctic re-
gion (72.5–83◦ N) during 2019. The processing scheme ap-
plied to the S1 EW images is described in detail in Sect. 3.1.

2.2 AMSR2 sea ice concentration data

The daily AMSR2 sea ice concentration product with a spa-
tial resolution of 6.25 km released by the University of Bre-
men was used for a comparison with the S1-derived Arctic
sea ice cover data. The AMSR2 sea ice concentration data are
retrieved mainly based on the ASI algorithm (Spreen et al.,
2008, 2005), which contains an empirical model to retrieve
the sea ice concentration and a statistical model of the atmo-
spheric influence. The ASI algorithm mainly uses the differ-
ence between the brightness temperatures at 89 GHz under
vertical (V) and horizontal (H) polarizations. The 89 GHz
channel has the highest resolution among all the channels
of the AMSR2 instrument but is more influenced by the at-
mosphere (e.g., water vapor and cloud liquid water). Thus,
the bootstrap algorithm (Comiso and Sullivan, 1986) is em-
ployed in conjunction, as it uses the 19 and 37 GHz channels
and is therefore less sensitive to atmospheric phenomena (but
has a coarser resolution). Accordingly, the S1-derived sea
ice cover data were first converted into sea ice concentration
data on a regular grid of 6.25 km and then matched with the
AMSR2 sea ice concentration data on a pixel-by-pixel basis.

2.3 IMS sea ice cover data

Another reference dataset, the sea ice cover data from the
IMS (https://nsidc.org/data/G02156/versions/1, last access:
10 June 2021) released by the National Snow and Ice Data
Center (NSIDC), was employed for a comparison with the
S1-derived Arctic sea ice cover data. The data are considered
valid at 00:00 UTC each day. To determine the presence of
sea ice, visible imagery is first retained when not obstructed
by clouds; then, passive microwave data and the National Ice
Center (NIC) weekly sea ice analysis product are applied
depending on the time of year, resolution, and data latency
(Ramsay, 1998). In this study, IMS data at a spatial resolu-
tion of 1 km are used. As both sources of data record sea ice
cover information, the IMS data and S1-derived data were
compared directly in corresponding pixels.
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Figure 2. Flowchart of the proposed method for deriving sea ice
cover information from S1 EW images in HV and HH polarization.

3 Methodology

3.1 Overall S1-based sea ice segmentation approach

The overall architecture of the proposed approach for deriv-
ing sea ice cover from S1 EW images in HV and HH polar-
ization is depicted in Fig. 2. First, the S1 EW images are pre-
processed, which includes radiometric calibration, denois-
ing, incidence angle correction, resampling, and land mask-
ing. Then, the preprocessed HV- and HH-polarized data are
synthesized into an RGB false-color composite, which serves
as the input for the proposed sea ice segmentation model.
During the training process, a small proportion of the RGB
false-color composites is labeled as training data and fed into
the U-Net segmentation model, generating well-trained sea
ice classifiers. The integrated stacking model combines the
classifiers from the U-Net model to generate an aggregate
sea ice classifier. The aggregate classifier is then applied to
all other unlabeled data to generate Arctic sea ice cover data.

3.2 S1 image preprocessing

S1A and S1B EW data in HV and HH polarization were used
to develop the proposed algorithm and generate the Arctic
sea ice cover product.

The radar backscatter of S1 EW images in HH polariza-
tion changes rapidly with variation in the incidence angle.
Thus, prior to using these data to derive sea ice cover infor-
mation, all the EW data in HH polarization are processed for
an incidence angle correction. The linear regression method
for the HH backscatter versus elevation angle introduced in
Murashkin et al. (2018) is used. Figure 3a and b show an
example of an S1 EW HH-polarized image before and after
an incidence angle correction. In contrast, the HV-polarized
image does not reveal a significant sensitivity to the inci-

dence angle; therefore, the incidence angle correction is not
applied.

The S1 EW images in HV polarization are strongly af-
fected by the scalloping effect and thermal noise. Thus,
all the EW data in HV polarization are denoised using
the method proposed in Sun and Li (2020). This denoising
method improved upon previous methods (Park et al., 2017)
by segmenting the image into more azimuthal blocks and
introducing a variance factor to discriminate homogeneous
and inhomogeneous blocks, thereby deriving a more accurate
scaling factor and balancing factor. In addition, we proposed
a new method in Sun and Li (2020) for eliminating residual
noise (i.e., multiplicative noise) at the sub-swath boundaries
of EW data. Figure 3c and d show an example of an S1 EW
HV-polarized image before and after denoising, demonstrat-
ing good performance in removing both additive and multi-
plicative noise present in the EW HV-polarized image.

As the original S1 EW images are quite large, these data
are downsampled to achieve a more manageable file size to
be handled by the sea ice segmentation model. The denoised
and calibrated S1 images are averaged by a 10× 10 window,
resulting in a change in pixel size from 40 m to 400 m. Thus,
the pixel-based sea ice segmentation results also have a pixel
size of 400 m. The land area is masked as black in the images
by the Global Self-consistent Hierarchical High-resolution
Geography Database (GSHHG; https://www.ngdc.noaa.gov/
mgg/shorelines/gshhs.html, last access: 10 June 2021) with
the full grid resolution of 1× 1 arcmin.

3.3 Combination of S1 co- and cross-polarization data

For sea ice segmentation by spaceborne SAR data, the radar
backscatter intensity naturally constitutes the basis of the
determination. Many studies consider the cross-polarization
channel to be very effective for sea ice detection because it is
sensitive to ice-induced volume scattering, while the sea sur-
face generally presents surface scattering. Thus, in the cross-
polarization channel, the radar backscatter of sea ice is gen-
erally higher than that of open water. However, this is not
always the case. Under strong winds, open water can present
radar backscatter intensities comparable to those of sea ice
(an example is shown in Fig. 4b, where the sea surface wind
speed varies between approximately 8 and 18 m s−1 accord-
ing to the ERA5 reanalysis wind field at synoptic time; Hers-
bach et al., 2020). Moreover, sea ice with a smooth surface
can have a low backscatter intensity (Aldenhoff et al., 2019)
(see Fig. 4d for example). These substantial variations in the
SAR radar backscatter intensities of sea ice and open water
make sea ice segmentation a challenging task. As mentioned
in the introduction, the difference between co-polarization
and cross-polarization data on sea ice and open water is also
effective for distinguishing between sea ice and open wa-
ter. Therefore, in addition to incorporating cross-polarization
data directly, we adopted polarization ratio (HH / HV) and
polarization difference (HH−HV) data in the proposed ap-
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Figure 3. Example of the denoising process. (a) The origi-
nal S1 EW HH-polarized image. (b) S1 EW HH-polarized im-
age after an incidence angle correction. (c) The original S1
EW HV-polarized image. (d) Denoised S1 EW HV-polarized
image using the denoising method (Li, 2020). (Image ID:
S1B_EW_GRDM_1SDH_20180711T073522_
20180711T073622_011760_015A2A_4965).

proach, which has been proved to be useful for sea ice dis-
crimination and other feature extraction from SAR data (e.g.,
Dong et al., 2012; Murashkin et al., 2018).

Figure 5 illustrates the process of combining the HV-
polarized data with the polarization ratio and polarization
difference data into an RGB false-color composite, which
serves as the input in the sea ice segmentation process. For
the HV-polarized S1 images, the radar backscatter in linear
units is scaled to 0–255 after discarding 2 % of the maximum
and minimum values each. Then, each image is scaled ac-
cording to its data range to maximize the texture features.
The HH / HV and HH−HV data are first converted into
decibel units and then stretched to fixed thresholds of [2 dB,
7 dB] and [−2 dB, 3.5 dB], respectively, to keep the absolute
difference between the HV- and HH-polarized data. These
thresholds ensure approximately 95 % of the HH / HV and
HH−HV values falling into the range, which were deter-
mined according to the statistics of more than 200 S1 EW
images acquired under different scenarios of sea ice and
open water. The polarization ratio or polarization difference
values beyond these two ranges are replaced by the corre-
sponding thresholds, and then a linear stretch to 0–255 is
applied. Finally, the scaled HV-polarized data, polarization
difference data, and polarization ratio data serve as the red,
green, and blue channels, respectively, to synthesize an RGB
false-color composite image. The RGB false-color compos-
ite clearly presents more textures and details than either the

Figure 4. Examples of S1 EW images presenting the challenges
in sea ice segmentation. (a) HH-polarized and (b) HV-polarized S1
EW images of a windy sea surface. (c) HH-polarized and (d) HV-
polarized S1 EW images of a smooth thin ice surface. (Image ID: a
and b S1A_EW_GRDM_1SDH_20190130T060740_
20190130T060840_025703_02DB20_85BC; c and d S1B_EW_
GRDM_1SDH_20190115T194015_20190115T194115_
014509_01B066_11F1).

HV-polarized image or the HH-polarized image and there-
fore lays a better foundation for further sea ice segmentation
tasks.

3.4 Generation of training samples

Precisely labeled samples are necessary for the successful de-
velopment of machine learning algorithms. We first discrim-
inated sea ice and open water by using 251 S1 EW images
based on our previously developed SVM classification (Li
et al., 2020), from which the good results (judged by visual
inspection) were further used as initial training data. Then,
manual checking was performed to improve the correctness
and completeness of the classification results. The selection
of the training data considered both the data acquisition loca-
tion (see Fig. 6a) and the data acquisition season (see Fig. 6b)
to represent diverse sea ice conditions. Figure 6c shows ex-
amples of four RGB false-color composite images and their
corresponding precisely labeled data, in which sea ice is la-
beled 1 (white) and open water is labeled 0 (black).

We took two thirds of the total 251 labeled S1 EW im-
ages as the training dataset, and we used the remaining one
third of the samples as the evaluation dataset. The labeled
dataset is further grouped for the integrated stacking model,
which is described in a later section. To fit the network, first,
the labeled data are cropped into patches with dimensions
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Figure 5. Illustration of combining HV-polarized data with polarization ratio and polarization difference data into an RGB false-color
composite, which presents more textures and details than either HV- or HH-polarized images.

of 256× 256 pixels. The patch size of 256× 256 pixels is
an empirical value weighed between manageable model size
and sufficient information one patch has. Then, training sam-
ple augmentation is performed for each patch by rotating and
flipping the image, and the expanded dataset is further pro-
cessed by adjusting the hue (as illustrated in Fig. 6d) to gen-
erate additional samples. The augmentation process dramati-
cally increases the quantity and diversity of the training sam-
ples, which improves the performance of the deep learning
model and reduces overfitting. The evaluation dataset is also
cropped, but augmentation is not performed. After patch ex-
traction and training sample augmentation, the total amount
of training and evaluation samples reaches more than 8000.

3.5 Modified U-Net

The overall architecture of the proposed sea ice segmentation
model is shown in Fig. 7. U-Net is particularly good at sea
ice segmentation in SAR images for the following two rea-
sons. (1) The network can perform localization effectively
to provide high-resolution segmentation masks by labeling
each pixel of the input image with a corresponding class, i.e.,
sea ice or open water. (2) The network works well with small
datasets and is relatively robust against overfitting, although
obtaining a large number of labeled samples from remote
sensing data is challenging.

The architecture of the sea ice segmentation model con-
tains two parts, i.e., an encoder part and a decoder part. The
encoder, which captures the discriminative features in the im-
age, is composed of a stack of convolutional layers, batch
norm layers, and rectified linear unit (ReLU) operations, fol-
lowed by a max pooling layer, where each max pooling layer
reduces the spatial resolution of the input layers by a factor of
2. Then, the batch norm layers are added to each of the blocks
to increase the learning speed. The decoder part, which se-
mantically projects the discriminative features learned by

the encoder onto the pixel level, consists of upsampling and
concatenation operations, followed by convolutional layers.
To obtain pixel-based segmentation results, at every decoder
step, we used skip connections by concatenating the output
of the transposed convolutional layers with the feature maps
from the encoder at the same level. High-resolution features
from the contracting layers are combined with the upsam-
pled output; hence, these layers increase the resolution of the
output. A final convolutional operation with a kernel size of
(1, 1) and a sigmoid activation function is performed at the
output side of the network. The network outputs the ultimate
segmentation mask in terms of a 256× 256 matrix (same size
as the input) with values between 0 and 1. In the segmenta-
tion mask, the closer a pixel value is to 1, the more likely it
is sea ice, and vice versa for water.

The network is trained using Adam optimization (Kingma
and Ba, 2014) with a batch size of eight. In our case, the
performance of the model improves with the increasing of
the batch size. However, due to the limitation of the memory
capacity, the batch size of eight is the maximum value the
device can handle. A specialized segmentation loss function
that combines binary cross-entropy and dice loss is chosen to
evaluate the final results as

Hp(q)=−
1
N

N∑
i=1

yi log(p(yi))+ (1−yi) log(1−p(yi)), (1)

where y is the label (1 for sea ice and 0 for water) and p(y)
is the predicted probability of the pixel being sea ice for all
N pixels in each image. A perfect model would have a per-
formance of Hp(q)= 0.

The input RGB false-color composite is cropped into
patches of 256× 256 pixels and then fed into the model. Pre-
dictions made for these patches by the sea ice segmentation
model are regrouped accordingly. Neighboring patches have
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Figure 6. (a) Spatial distribution of the S1 images used for training the sea ice segmentation model. The images are shown as RGB false-color
composites, and the land is masked in gray. (b) Histogram of the seasonal distribution of the training data. (c) Examples of data labeling: the
top row shows four RGB false-color composite images, and the corresponding labeled images are in the bottom row. (d) Illustration of the
augmentation process to increase the quantity and diversity of the samples in the training dataset.

an overlap of 12 pixels to reduce artifacts along the edges of
the patches.

3.6 Integrated stacking model

During the training and validation of the U-Net model, it is
almost impossible to find a perfect model for all scenarios.
For example, one model specializes in detecting continuous
and large areas of sea ice but tends to output biased segmen-
tation results for windy sea surfaces (e.g., examples shown
in Fig. 4a and b), while another model performs well at seg-
menting regions with highly mixed sea ice and open water
(particularly over the MIZ) but performs poorly at contain-
ing thin ice with a smooth surface (e.g., examples shown
in Fig. 4c and d). This is understandable, as Wolpert and
Macready (1997) demonstrated in their “no free lunch” the-

orem, because an algorithm that performs well in one class
of problems must “pay” for that accuracy with degraded per-
formance on a set of all remaining issues.

The performance of each model diverges upon being fed
a different set of training data. We divided the training sam-
ples into groups and trained the U-Net model with differ-
ent datasets, thereby generating several classifiers. In our sea
ice segmentation approach, we adopted the idea of stacked
generalization (Wolpert, 1992) to enable each model to fully
utilize its strengths and mitigate its weaknesses, resulting in
higher accuracy and sensitivity. Stacked generalization, or
“stacking”, is an ensemble machine learning algorithm that
involves combining the outputs of several networks into an
aggregate output, which often improves the accuracy over
any individual output.
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Figure 7. The overall architecture of the proposed sea ice segmentation model for the S1 EW data based on the U-Net deep learning
algorithm.

Figure 8. Overall architecture of the proposed integrated stacking model for generating the S1-derived sea ice cover data.

As illustrated in Fig. 8, the architecture of the proposed in-
tegrated stacking model consists of two levels. The first level,
i.e., level 0, is formed by base classifiers. Five U-Net clas-
sifiers with diverse specializations are selected as the base
classifiers of level 0. Figure 9 shows several cases to give a
more visual representation of the selected classifiers and the
integrated stacking model. The first two columns contain S1
images in HV polarization and the corresponding RGB false-
color composites. The following five columns are the outputs
from the selected five classifiers with diverse specializations
presented in grayscale with white for 1 and black for 0: the
closer the number is to 1, the more likely it is sea ice, and
vice versa for water. Notably, models 2 and 3 are specialized
for large areas of sea ice, especially newly formed sea ice,
whereas models 1 and 4 produce fewer wrong segmentation
results for high wind sea surfaces, and models 3 and 5 deliver
more details when ice floes are mixed with water.

The five classifiers are then applied to all the labeled
datasets. The output segmentation results, together with the
four RGB false-color composite images, are then used as the
input data for level 1. We found that the performance of each
classifier in level 0 is highly correlated with the percentage
of sea ice in one S1 EW image; thus, the sea ice proportion
is calculated and added to the inputs for level 1. The process
of integrated stacking can be considered as several classi-
fiers vote for the final segmentation. The classifier will have
higher voting weights in their specialized scenarios. The sce-
narios are described by ice cover proportion to the full cover-
age of a S1 EW scene, which is one of the inputs for our in-
tegrated stacking model. For instance, for the scenarios with
high ice proportion, models 2 and 3 will have greater voices.
The weights allocation is realized by a neural network con-
taining 10 hidden layers that combine the outputs of the base
models, marked as level 1 in Fig. 8. Note that level 0 and level
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Figure 9. Five cases illustrating the combination of selected U-Net classifiers into the integrated stacking model. The first two columns are
S1 images in HV polarization and the corresponding input RGB false-color composites. The following five columns are the outputs from the
five classifiers selected with diverse specializations, and the last column is the final output of sea ice cover (yellow, cyan, and gray represent
sea ice, open water, and land, respectively).

1 use the same training set; however, the dataset in level 0 is
divided into several subsets for a different classifier, but in
level 1, all the data are fed into the neural network. For the
final output of the integrated stacking model, a value of 0.5
is taken as the threshold to judge whether a pixel is classified
as 0 (open water) or 1 (sea ice), as shown in the last column
of Fig. 9, with yellow representing sea ice, cyan representing
open water, and gray representing land.

4 Results

We applied the developed U-Net-based sea ice segmentation
model to over 28 000 S1 EW images acquired in the Arctic
in 2019 to obtain sea ice cover data at a spatial resolution
of 400 m. Those S1-derived sea ice cover data are compared
with visual interpretation results, AMSR2 sea ice concentra-
tion data, and IMS sea ice cover data.

4.1 Comparison with visual interpretation results

We conducted a comparison between the S1-derived Arctic
sea ice cover data and the pixel-level visual interpretation re-
sults based on 96 cases. The selection of the cases for com-
parison considers the situations of sea ice in different sea-

sons and is as objective as possible. The 28 000 S1 images
are roughly divided into four groups based on sea ice propor-
tion (0 %–25 %, 25 %–50 %, 50 %–75 %, 75 %–100 %) ac-
cording to the derived sea ice cover; then we select one S1A
and one S1B image in each of the four groups with the ear-
liest acquisition time in each month in 2019. Thus, in to-
tal 4× 12× 2= 96 cases were selected and manually inter-
preted for segmentation of sea ice and open water.

Figure 10 shows an example of the S1-derived sea ice
cover, the visual interpretation, and a subsequent compari-
son. This image was acquired at the northeast of Severnaya
Zemlya, presenting large areas of both open water and float-
ing sea ice. Figure 10a shows the RGB false-color compos-
ite image. Figure 10b is the corresponding S1-derived sea
ice cover result. Figure 10c presents the visual interpretation
of sea ice and open water segmentation. Figure 10d shows
the differences between S1-derived and visual interpretation
results, suggesting a good agreement between them. Some
subtle differences exist around the boundary of the sea ice,
which is confusing even for human eyes.

For a quantitative comparison, the proportions of true pos-
itive (TP, correctly classified sea ice), true negative (TN, cor-
rectly classified open water), false positive (FP, incorrectly
classified sea ice), and false negative (FN, incorrectly clas-
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Figure 10. An example of S1-derived sea ice cover and its comparison with the visual interpretation result. (a) RGB false-color com-
posite image. Panels (b) and (c) are S1-derived and visual interpretation of sea ice cover, with yellow indicating sea ice, cyan indicating
open water, and gray indicating land. (d) Differences in sea ice cover between (b) and (c) (visual interpretation–S1 derive). (Image ID:
S1B_EW_GRDM_1SDH_20190801T022310_20190801T022410_017386_020B16_F790).

sified open water) of the 96 cases are listed in Table 1.
The overall performance is evaluated by the accuracy, i.e.,
Accuracy= (nTP+ nTN)× 100%/ntotal, where nTP and nTN
are the pixel numbers of TP and TN, and ntotal denotes the
total pixels of the derived result. For the cases with a sea
ice proportion of 25 %–75 %, the accuracy of 91.61 % is
relatively lower than the accuracy of other groups due to
highly complex situations of sea ice and open water mixing,
while for the cases with an overwhelming majority of sea ice
(group 4) or open water (group 2), the accuracy can be as
high as approximately 99 %. The overall accuracy is 96.10 %
for all the 96 cases.

As the pixel-level visual interpretation is time-consuming,
it is not possible to evaluate the S1-derived sea ice cover for
a large amount of data by comparing it with visual interpre-
tation. We then used the AMSR2 sea ice concentration data
and IMS sea ice cover data with relatively low spatial resolu-
tion for further comparison.

Table 1. Proportions of TP, FP, TN, FN, and accuracy of the S1-
derived sea ice cover data evaluated by visual interpretation results
of 96 cases.

Sea ice
proportion TP FP TN FN Accuracy

0–25 % 11.19 % 0.94 % 87.23 % 0.64 % 98.42 %
25 %–50 % 32.82 % 2.45 % 62.15 % 2.58 % 94.97 %
50 %–75 % 55.75 % 3.38 % 35.87 % 5.01 % 91.61 %
75 %–100 % 96.59 % 0.27 % 2.59 % 0.55 % 99.19 %

Overall 49.73 % 1.74 % 46.36 % 2.17 % 96.10 %

4.2 Comparison with the AMSR2 sea ice concentration
data

We conducted a comparison between the S1-derived Arctic
sea ice cover data and the AMSR2 sea ice concentration data.
The S1-derived sea ice cover data (with a spatial resolution
of 400 m) were converted into sea ice concentration on a reg-
ular grid of 6.25 km (the same as the spatial resolution of the
AMSR2 data), with the center of each grid corresponding to
each pixel of AMSR2. Then, the sea ice concentration data
were matched with the AMSR2 data on a pixel-by-pixel ba-
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Figure 11. Example of S1-derived sea ice cover data and the comparison with the AMSR2 data. (a) RGB false-color composite image.
(b) S1-derived sea ice cover result. Yellow indicates sea ice, cyan indicates open water, and gray indicates land. (c) Sea ice concentration
based on the S1-derived result. (d) AMSR2 sea ice concentration. (e) Differences in the sea ice concentration between the AMSR2 data and
S1-derived results (AMSR2–S1). (Image ID: S1A_EW_GRDM_1SDH_20190601T072854_20190601T072958_027483_0319D7_E0F1).

Figure 12. Comparison between the S1-derived Arctic sea ice concentration data and AMSR2 data for the whole year of 2019. The red
dots reflect the absolute daily difference, and the red line is the 7 d average absolute difference. The blue line is the 7 d average sea ice
concentration in the S1-covered area calculated based on the AMSR2 data, and the orange line is the 7 d average sea ice concentration
calculated based on S1-derived results.

sis. Figure 11 shows an example of the S1-derived sea ice
cover, the corresponding sea ice concentration, and a subse-
quent comparison with the AMSR2 data. This image was ac-
quired from the Fram Strait and included large areas of both
open water and floating sea ice. Figure 11a shows the RGB
false-color composite image, and Fig. 11b is the correspond-
ing sea ice cover result. Figure 11c presents the calculated sea
ice concentration based on the S1-derived sea ice cover data,
while the spatially collocated AMSR2 sea ice concentration
data are shown in Fig. 11d. Figure 11e shows the differences

in the sea ice concentration between AMSR2 and S1: red in-
dicates the area where the S1-derived sea ice concentration
is lower than the AMSR2 result, while blue indicates the op-
posite. Within the ice water mixing area in the northwest, the
AMSR2 sea ice concentrations are overestimated, while in
the ice water junction area, the concentrations are underesti-
mated; this is the main reason for the absolute difference of
11.03 % in this example.

For a more quantitative analysis, the daily absolute differ-
ences between the S1-derived and AMSR2 sea ice concentra-
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Figure 13. Example of S1-derived sea ice cover and its comparison with the IMS data. (a) RGB false-color compos-
ite image. Panels (b) and (c) are S1-derived sea ice cover and IMS sea ice cover, with yellow indicating sea ice and
cyan indicating open water. (d) Differences in sea ice cover between the IMS and S1-derived results (IMS–S1). (Image ID:
S1B_EW_GRDM_1SDH_20190822T232250_20190822T232354_017705_0214F8_D76F).

tion data are plotted in Fig. 12, with solid lines showing the
7 d moving average results. The sea ice concentration calcu-
lated by AMSR2 (in the region covered by S1 data) and S1-
derived results are plotted in blue and orange, respectively,
in the form of 7 d moving average. During the summer sea-
son (June, July, and August), the sea ice concentration drops
from 80 % to approximately 40 %, and the absolute differ-
ence shows a noticeable increase to approximately 10 %; dur-
ing the other seasons, the absolute difference is almost ubiq-
uitously less than 6 %. For the whole year of 2019, the av-
erage absolute difference between the Arctic sea ice product
derived from over 28 000 S1 images and the AMSR2 data is
5.55 %. Research has demonstrated that sea ice concentration
estimates from passive microwave observations are typically
inaccurate in Arctic summer. This is due to the similar mi-
crowave radiation characteristics of sea ice and open water,
which is mainly attributed to atmospheric effects (Han et al.,
2018). Accordingly, the error of the AMSR2 sea ice concen-
tration data was estimated based on comparisons with (1) in
situ ice observations, (2) ice concentration retrievals using
other microwave algorithms, and (3) ice concentration data
derived from higher-resolution optical sensors. The AMSR2

data show low errors at moderate and high ice concentrations
(above 65 %), for which the error should not exceed 10 %.
However, at low ice concentrations, the accuracy is low: the
absolute error is 25 % at 0 % ice concentration and decreases
for higher ice concentrations (Spreen et al., 2008). These er-
rors are a plausible reason for the relatively large difference
between the S1-derived sea ice concentration and AMSR2
data in the summer season, particularly in the period from
middle July to the beginning of August.

4.3 Comparison with the IMS sea ice cover data

We also conducted a similar comparison between the S1-
derived Arctic sea ice cover data and the IMS sea ice cover
data. The 400 m pixel size of the S1-derived sea ice cover
data is comparable to that of the IMS data on a grid size of
1 km. We directly compared the IMS data and S1-derived
results by matching the nearest pixels of the two sets of
data. Figure 13 shows an example of the S1-derived sea ice
cover and its comparison with the IMS data in a vital area of
the Northeast Passage in the Laptev Sea. Figure 13a shows
the RGB false-color composite image of this example, and
Fig. 13b and c show the S1-derived sea ice cover and IMS
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Figure 14. Comparison between the S1-derived Arctic sea ice cover product and the IMS data for the whole year of 2019. The red dots
represent the daily average accuracy, and the red line is the 7 d average accuracy. The blue line is the 7 d average sea ice proportion in the
S1-covered area calculated based on the AMSR2 data, and the orange line is the 7 d average sea ice proportion calculated based on S1-derived
results.

data, respectively. Figure 13d shows the differences between
the IMS and S1 results. As Fig. 13 shows, the S1-derived sea
ice cover result is more detailed as the S1-derived outcome
is acquired on a pixel-by-pixel basis, while the IMS data are
smoothed, leading to the relatively low accuracy of 81.78 %
for this example.

The daily accuracy of the S1-derived sea ice cover com-
pared with the IMS data is plotted in Fig. 14. For the whole
year of 2019, the overall accuracy of the S1-derived Arctic
sea ice data based on more than 28 000 images is 93.98 %
compared with the IMS data. From January to April, the
accuracy is approximately 95 % with only minor fluctua-
tions. From May onwards, the accuracy starts to decrease and
reaches the lowest accuracy of 88 % (according to the 7 d av-
erage result) at the end of July before quickly increasing to
95 % again through August. From September until the end of
the year, the accuracy is approximately 95 % with relatively
large fluctuations. The sea ice proportion is also plotted in
Fig. 14, representing the percentage of the sea ice area in
the S1-covered region calculated based on the IMS data (in
blue) and S1-derived results (in orange). Before July, the ac-
curacy varies with a similar trend to the variation in the sea
ice proportion. At the end of July, the sea ice proportion in-
creases dramatically from approximately 60 % to 70 %, and
the corresponding comparison shows a minimum accuracy.
Up to the end of September, although the sea ice proportion
continues to decrease, the comparison suggests that the accu-
racy significantly increases. The variation in the accuracy is
similar to the variation in the absolute difference achieved in
comparison with the AMSR2 data. The discrepancy between
the IMS data and the S1-derived results may be attributed
to three aspects. (1) The IMS data are produced using data
from various satellites with different spatial resolutions, and
this may lead to smoother results in the data fusion process,
whereas the S1-derived sea ice cover is pixel-based. This is
especially obvious in areas with highly mixed sea ice and
open water (e.g., the example shown in Fig. 13). (2) The

Table 2. List of variables and their descriptions in the NetCDF
product.

No. Variables Descriptions

1 Longitude Longitude of each sea ice and land mask record
2 Latitude Latitude of each sea ice and land mask record
3 SeaIce 0 denotes open water, and 1 denotes sea ice
4 Mask 0 indicates no land, and 1 indicates land

daily IMS data are compiled based on various satellite ob-
servations within a day, whereas the S1-derived results are
snapshots of the sea ice conditions at the time of SAR data
acquisition. The temporal variation of sea ice can also lead to
some differences. (3) Some error is caused by the limitations
of the algorithm when deriving sea ice cover based on S1 and
IMS data.

5 Discussion

In late July and early August, the S1-derived sea ice informa-
tion shows a higher discrepancy between the AMSR2 sea ice
concentration data and IMS data compared to the rest of the
year. To further investigate this phenomenon, the discrepan-
cies of the sea ice information derived from each scene of S1
data compared with the corresponding IMS and AMSR data
are plotted in Fig. 16. The dots represent the center coordi-
nates of the S1 EW images, and their colors represent the val-
ues of the absolute difference between the S1-derived sea ice
concentration and the AMSR2 data (Fig. 16a) and the accu-
racy between the S1-derived results and IMS data (Fig. 16b).
The time period of the comparison ranges from 25 July to
5 August 2019. Large discrepancies between the S1-derived
results and the AMSR2 or IMS data are concentrated mainly
in the East Siberian Sea and surrounding Greenland. Dur-
ing July and August, these two areas are mainly composed
of extensive melting ice and large areas of brash ice. These
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Figure 15. Example of the Arctic sea ice cover product in the Bar-
ents Sea and Kara Sea of the Northeast Passage. Yellow represents
sea ice, cyan represents open water, and gray represents land.

complex ice conditions increase the difficulties of sea ice es-
timation by all methods. In the following, we will present
two examples in the East Siberian Sea and on the Greenland
coast for further demonstration.

Figure 17 shows an example of an image acquired on
29 July at 74◦ N, 163◦ E in the East Siberian Sea to illus-
trate the large discrepancies among the different data sources.
Figure 17a presents the RGB false-color composite image,
and panel (b) depicts the corresponding S1-derived sea ice
cover result. The southeastern area of the S1-derived results
shows that brash ice is overestimated. Figure 17c shows the
IMS sea ice cover, which fails to detect the mixture of sea
ice and open water and instead reveals continuous sea ice
cover. Figure 17d shows the differences in the sea ice cover
between the IMS and S1-derived results; the overall accu-
racy is 25.22 % for this example. Figure 17e and f show the
S1-derived sea ice concentration and the AMSR2 data, while
panel (g) shows the differences between them. Overestima-
tion in the southeastern area of the S1-derived results leads to
a high sea ice concentration, while the AMSR2 data show a
much lower sea ice concentration than the S1-derived result,
which causes a high average absolute difference of 28.06 %.

Figure 18 is the same as Fig. 17 but for the image ac-
quired at 77◦ N, 11◦W near northeastern Greenland. In this
example, the S1-derived result preserves the details of sea

ice cover in the MIZ. The IMS data still present the mix-
ture of sea ice and open water as continuous ice, lead-
ing to an obvious overestimation and low overall accuracy
of 61.56 % (Fig. 18d). The relatively large absolute differ-
ence of 13.97 % (Fig. 18g) between the S1-derived sea ice
concentration and the AMSR2 data is due mainly to the
AMSR2 data underestimating the pack ice in the northwest
and slightly overestimating the brash ice in the northeast.

We found that the IMS data tend to overestimate sea ice
cover by recording brash ice as a whole ice surface, which
forfeits detailed features. This is likely because these data
are obtained by implementing a daily average and smoothing
the results based on various observations acquired at different
times (as well as at different spatial resolutions) within a day.
Furthermore, melted sea ice drifts significantly in the open
sea during the summer season and leads to misclassification.
We also found that the AMSR2 sea ice concentration data
tend to underestimate pack sea ice near the coast in the sum-
mer season. We inferred that the changed radiometric char-
acteristics of melted sea ice, particularly spatially extensive
pack sea ice close to land, interfere with the radiometer-based
retrieval of sea ice concentration. Thus, during July and Au-
gust, the aggregation of brash ice and melted sea ice drifting
along the coast of Greenland and within the East Siberian Sea
causes high discrepancies among the S1-derived results and
the AMSR2 and IMS data. In addition, because land occu-
pies part of the S1 data, there are fewer valid areas involved
in calculating the average discrepancy, which enlarges the
proportion of local errors. This can also explain why the dis-
crepancy increases with the increasing proportion of land in
the S1 images.

In the process of deriving sea ice cover from the S1 data,
we also found some examples of distinct misclassification,
specifically for 208 cases in June, July, and August. The first
typical type of such misclassification is caused mainly by a
mismatch between the S1-imaged land and the GSHHG land
masking data. Figure 19 shows such an example acquired in
northern Greenland. Figure 19a and b show the S1 images
in HV polarization without and with the land mask, respec-
tively, clearly showing that part of the land imaged by S1
is not fully masked by the GSHHG data. As described in
Sect. 3.3, we stretched the HV-polarized image by discarding
2 % of the maximum and minimum values each. However,
the extremely high values of the unmasked lands disturb the
stretching process and cause information loss at low values,
resulting in the misclassification results shown in Fig. 19c;
thus, to reduce the influence of the high radar backscatter
caused by unmasked land, we changed the threshold from
2 % to 5 %. Figure 19e displays the corresponding correct
classification result. After this modification for all 208 cases,
156 scenes of data present the correct sea ice segmentation
results. These scenes were added to the comparisons with
the IMS and AMSR2 data presented above.

Most of the remaining 52 cases (concentrated in the north-
ern part of Greenland and Queen Elizabeth Islands; the S1B
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Figure 16. Plots of comparisons between the S1-derived sea ice cover and other data in the period from 25 July to 5 August 2019. (a) Absolute
difference between the S1-derived sea ice concentration and the AMSR2 data. (b) Accuracy between the S1-derived sea ice cover results and
the IMS data.

Figure 17. Example of the S1-derived sea ice cover acquired on 29 July and its comparison with the AMSR2 and IMS data. (a) RGB
false-color composite image. Panels (b) and (c) are S1-derived sea ice cover and IMS sea ice cover, respectively. (d) Differences in the
sea ice cover between the IMS and S1-derived results (IMS–S1). Panels (e) and (f) are S1-derived sea ice concentration and the AMSR2
data, respectively. (g) Differences in the sea ice concentration between the AMSR2 data and S1-derived results (AMSR2–S1). (Image ID:
S1B_EW_GRDM_1SDH_20190729T200651_20190729T200751_017353_020A1F_94EB).
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Figure 18. Same as Fig. 17 but for the photo acquired near Greenland. (Image ID: S1B_EW_GRDM_1SDH_20190802T080158_
20190802T080258_017404_020BAA_48A5).

Figure 19. Example of a misclassification due to a mismatch between the S1-imaged land and GSHHG mask. (a) HV-polarized S1 image
with no land mask. Panels (b) and (c) are HV-polarized S1 images with the land mask, stretched with a threshold of 2 %, and the corresponding
misclassification result. Panels (d) and (e) are HV-polarized S1 images with the land mask, stretched with a threshold of 5 %, and the
corresponding correct result. (Image ID: S1B_EW_GRDM_1SDH_20190701T185525_20190701T185629_016944_01FE25_A1F0).

data account for 42 of these cases) with distinct misclassifi-
cations show full sea ice cover except for land in the S1 im-
ages. Figure 20 shows two examples. The general impression
of these two examples is that the sea ice radar backscatter ex-
hibits significant spatial variation, even resembling a “jump”
in the HV-polarized data (e.g., the first example). The accu-

mulated water on the surface of melting sea ice can be in-
ferred to trigger the dominant scattering mechanisms from
volume scattering to surface scattering and therefore reduces
the radar backscatter in HV polarization. Consequently, these
areas are misclassified as open water. Notably, these 58 ex-
amples with distinct misclassifications were not included in
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Figure 20. Examples of misclassifications that require further investigation. From left to right are S1 images in HH and HV polarization,
RGB false-color composites and the S1-derived sea ice cover.

the comparisons with the IMS and AMSR2 data presented
above.

6 Data availability

To facilitate related studies in the research community, the
S1-derived sea ice data based on more than 28 000 images
are organized into an Arctic sea ice cover product in a stan-
dard format. The S1-derived Arctic sea ice cover product is
stored in NetCDF-3 and follows the Climate and Forecast
Metadata CF-1.7 convention (Eaton et al., 2014) to allow
easy access from a range of standard tools across the leading
computing platforms. Each record corresponds to the S1 im-
ages from which the Arctic sea ice cover product is derived.
The product is named following the form SIC_ID_V1.0.nc,
where SIC denotes sea ice cover, ID is the product ID of the
S1 data, and V1.0 is the product version. Each record con-
sists of four variables, namely, Longitude, Latitude, SeaIce,
and Mask. The descriptions of the variables are listed in Ta-
ble 2. Figure 15 shows an example of the Arctic sea ice cover
product over a critical area, namely, the Northeast Passage,
approximately located between 70 and 82◦ N, 40 and 80◦ E.
Taking full advantage of SAR data, this sea ice cover product
has high spatial and temporal resolutions and offers satisfac-
tory coverage.

The S1 SAR data are downloaded from the Copernicus
data hub (https://scihub.copernicus.eu/dhus/#/home, last ac-

cess: 10 June 2021, European Space Agency, 2021.). The
authors would like to thank the European Space Agency
(ESA) for providing the S1 images to users worldwide. The
use of the reference AMSR2 data (https://seaice.uni-bremen.
de/start/, last access: 10 June 2021, University of Bremen,
2021), IMS data (https://nsidc.org/data/G02156/versions/1,
last access: 10 June 2021, U.S. National Ice Center, 2021),
and GSHHG data (https://www.soest.hawaii.edu/pwessel/
gshhg/, last access: 10 June 2021, Wessel and Smith, 2021)
is also acknowledged.

The developed Arctic sea ice cover data
by S1 SAR data in 2019 are available at:
https://doi.org/10.11922/sciencedb.00273 (Wang and
Li, 2020). More S1 SAR data are continuing to be processed
since its launch, and the corresponding sea ice cover data in
the Arctic will be also added to the repository.

7 Summary and conclusion

Due to the dramatic change in sea ice in polar regions,
the most basic sea ice information, e.g., high-resolution sea
ice cover data, is drawing increasing attention for scientific
research, polar navigation, and offshore operations. While
commonly used sea ice concentration data from spaceborne
platforms are generally provided at spatial resolutions rang-
ing from dozens of kilometers to several kilometers, space-
borne SAR can provide such information at a spatial res-
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olution of a few hundred meters or even higher. Since the
launch of S1A in 2014 and S1B in 2016, these two satellites
have routinely acquired SAR data in polar regions, and they
are expected to continue operating for more than 10 years,
similar to ERS/SAR and ENVISAT/ASAR. Therefore, S1-
derived sea ice data with a high spatial resolution and high
accuracy can offer great support for better understanding the
ongoing changes in polar regions. Thus, in this study, we
aimed to develop a robust method of deriving sea ice cover
data in the Arctic by S1A and S1B and also attempted to gen-
erate an easily accessed and handled product for other usage.

The proposed sea ice segmentation model is built upon the
CNN architecture of U-Net, which can provide pixel-level
segmentation. When applying deep learning in the field of
remote sensing, the lack of labeled data constitutes a major
obstacle. Thus, U-Net, which was designed for small train-
ing samples, is particularly suitable for the sea ice segmenta-
tion task. In addition, the augmentation process dramatically
increases both the quantity and the diversity of the training
samples and further guarantees robust performance against
overfitting even when only limited labeled data are available.
Although HV-polarized SAR data are particularly suitable
for sea ice detection, previous studies have suggested that
combined information from both HH and HV channels can
benefit this task. Therefore, we synthesized S1 HV-polarized
data with polarization difference and polarization ratio data
between HH and HV polarization into an RGB false-color
composite as the input for the U-Net model. Sea ice fea-
tures in SAR images vary significantly. For instance, differ-
ent types of sea ice can present variable radar backscatter
characteristics, as can the same type of sea ice in different
seasons. On the other hand, open water in the MIZ can also
alert radar backscatter due to changes in the sea surface wind
field. Therefore, it is difficult to train a single U-Net model
to address various sea ice and open water states. Our solution
is to train different U-Net models to obtain five classifiers
with diverse specializations. These five U-Net classifiers are
combined by an integrated stacking model to generate an ag-
gregate sea ice classifier. The combination enables every sin-
gle model to fully utilize its strengths and mitigate its weak-
nesses, resulting in higher accuracy and sensitivity. Eventu-
ally, we applied the proposed model to more than 28 000 S1
images acquired in 2019. Consequently, we generated a sea
ice cover product with a spatial resolution of 400 m.

We conducted a comparison between the S1-derived sea
ice cover and the pixel-level visual interpretation results over
96 cases. For the cases with sea ice proportion less than 25 %
or larger than 50 %, the accuracy reaches ∼ 99 %. The over-
all accuracy of the 96 cases is 96.10 %. Case-by-case com-
petition for all the Arctic sea ice cover data derived from
more than 28 000 S1 images have also been conducted. We
compared the S1-derived sea ice cover data with AMSR2 sea
ice concentration data and IMS sea ice cover data. The aver-
age absolute difference between the S1-derived and AMSR2-
derived sea ice concentrations is 5.55 %, and the overall ac-

curacy of the S1-derived sea ice cover data is 93.98 % com-
pared with the IMS data. Although this overall accuracy is
promising, both comparisons reveal obvious seasonal fluctu-
ations, particularly in the summer months of July and Au-
gust. The melting of sea ice in summer is a major contrib-
utor to the large discrepancy between the S1 results and the
AMSR2 data (noting that the IMS data also include infor-
mation from radiometer data). Melting sea ice not only has
great impacts on microwave radiation, which consequently
induces retrieval errors by radiometer data, but also alert
radar backscatter; as a result, the trained model may mis-
classify sea ice and open water. On the other hand, in the
summer season, along with melting, thin sea ice tends to
mix highly with open water, and this mixture may present
radar backscatter characteristics similar to those of open wa-
ter; thus, the model will overestimate the sea ice area. Never-
theless, the complex situation of sea ice in summer presents a
challenge for deriving sea ice cover, and more efforts should
be paid to this effect in the future.

In this study, we conducted research constituting an impor-
tant step in routinely generating SAR-derived sea ice cover
products. More historical S1 images are being processed, and
more comparisons with other datasets will be conducted. We
hope that the developed high-resolution SAR-derived Arctic
sea ice cover product can be utilized for different purposes
by different communities and can further enhance scientific
research, environmental protection, and resource utilization
in the Arctic.
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