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Abstract. Sea surface temperature (SST) is an important geophysical parameter that is essential for studying
global climate change. Although sea surface temperature can currently be obtained through a variety of sensors
(MODIS, AVHRR, AMSR-E, AMSR2, WindSat, in situ sensors), the temperature values obtained by different
sensors come from different ocean depths and different observation times, so different temperature products lack
consistency. In addition, different thermal infrared temperature products have many invalid values due to the in-
fluence of clouds, and passive microwave temperature products have very low resolutions. These factors greatly
limit the applications of ocean temperature products in practice. To overcome these shortcomings, this paper
first took MODIS SST products as a reference benchmark and constructed a temperature depth and observation
time correction model to correct the influences of the different sampling depths and observation times obtained
by different sensors. Then, we built a reconstructed spatial model to overcome the effects of clouds, rainfall,
and land interference that makes full use of the complementarities and advantages of SST data from different
sensors. We applied these two models to generate a unique global 0.041◦ gridded monthly SST product covering
the years 2002–2019. In this dataset, approximately 25 % of the invalid pixels in the original MODIS monthly
images were effectively removed, and the accuracies of these reconstructed pixels were improved by more than
0.65 ◦C compared to the accuracies of the original pixels. The accuracy assessments indicate that the recon-
structed dataset exhibits significant improvements and can be used for mesoscale ocean phenomenon analyses.
The product will be of great use in research related to global change, disaster prevention, and mitigation and is
available at https://doi.org/10.5281/zenodo.4419804 (Cao et al., 2021a).
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1 Introduction

The temperature at the interface between the atmosphere and
ocean, known as the sea surface temperature (SST), is an im-
portant indicator of Earth’s ecosystem (Hosoda and Sakaida,
2016). SSTs are widely used in atmospheric and oceano-
graphic studies, such as in atmospheric simulations, climate
change monitoring, and studies of marine dynamic environ-
ments (Kawai and Wada, 2007; Martin et al., 2007; Peres
et al., 2017; Reynolds and Smith, 1995). In addition, the
oceans cover 70 % of Earth’s surface. A small variation in
the ocean temperature exerts strong impacts on regional and
even global climate change, energy exchange, and the en-
vironment due to the unique physical characteristics of the
oceans, including their high heat capacity (Yan et al., 2020;
Varela et al., 2018). The rise of ocean temperatures will re-
lease huge amounts of heat, affect atmospheric movement,
and produce many chain reactions, causing reductions in the
CO2 content of seawater, the occurrence of extreme weather,
the melting of sea ice in the polar region, and the rise of sea
level, all of which will impact the survival of marine life, ma-
rine production, and human life (Sakalli and Basusta, 2018).
Thus, it is essential to accurately monitor changes in SST.

It is difficult for traditional SST measurements based on
buoys, platforms, and voluntary ships to obtain large-scale
and synchronous SST data due to the large gaps present in
the data over both space and time. Compared to the tradi-
tional in situ SST monitoring approach, remote sensing tech-
nology has advantages in terms of large-scale and dynamic
monitoring and has been used to acquire global ocean SST
observation data (Li and He, 2014). Satellite SST data in-
clude thermal infrared and microwave radiometer SST data.
Retrievals from satellite thermal infrared sensors can provide
global SSTs at high temporal frequencies and spatial reso-
lutions of typically 1–4 km with low uncertainty (Alerskans
et al., 2020). For example, series sensors such as the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) and
Advanced Very High Resolution Radiometer (AVHRR) can
measure global SSTs with high resolutions and high accura-
cies. These observations are unfortunately greatly influenced
by the atmospheric environment. In cases of aerosol contami-
nation and cloud cover, it is impossible to obtain effective ob-
servations, resulting in spatial discontinuities and low quality
in the collected data (Guan and Kawamura, 2003; Hosoda et
al., 2015; Y. Liu et al., 2017). In contrast to thermal infrared
measurements, microwave sensors are less affected by clouds
and aerosol concentrations (Alerskans et al., 2020; Mao et
al., 2019). Therefore, microwave sensors can observe SST
information at all times and in all weather conditions except
rain, and they also have high temporal resolutions and can
quickly cover the whole surface of Earth (Wentz et al., 2000).
As a result, microwave sensors play important roles in mon-
itoring the temporal and spatial changes in SSTs on global
and continental scales and have also been developed into ma-
ture remote sensing products, such as the TRMM Microwave

Imager (TMI), the WindSat onboard Coriolis, and the Ad-
vanced Microwave Scanning Radiometer for Earth Observa-
tion System (AMSR-E), which have been widely used to re-
trieve SSTs (Gentemann, 2014; Ng et al., 2009; Purdy et al.,
2006). However, the spatial resolutions of passive microwave
sensors are very coarse and are greatly affected by land and
sea surface wind and waves, which makes it impossible to
obtain detailed information about SSTs (Gentemann et al.,
2010; M. Liu et al., 2017). In addition, due to the influence
of imaging orbit gaps, microwave-based products produce
spatial gaps. Therefore, the SST information obtained by a
single satellite remote sensor is often incomplete and limited
and cannot fully meet the user’s demand for a dataset with a
high resolution, high precision, and full spatiotemporal cov-
erage. Fortunately, the simultaneous availability of multiple
satellite sensors provides highly complementary information,
enabling the production of high-quality unified SST datasets
with improved global coverage (Guan and Kawamura, 2004;
Shi et al., 2015; Thiebaux et al., 2003).

Many SST fusion algorithms use multiple satellites and
in situ data to take advantage of the strengths of each SST
observation and solve the above issues; these algorithms in-
clude objective analysis (OA), optimal interpolation (OI),
three-dimensional variational (3D-Var), and Kalman filtering
(KF) (Chao et al., 2009b; Li et al., 2013; Smith and Reynolds,
2003). Bretherton et al. (1976) first applied OA in a study
of ocean data. OI was developed on the basis of OA, and
in OI, background information is introduced in the analysis
process. Although there is no physical constraint, the OI has
a perfect mathematical form, which statistically takes into
account the influence of the relative position changes of dif-
ferent observation points on the error covariance. The OI al-
gorithm is simple and easy to use and has become one of the
main methods currently used for SST fusion. For example,
Reynolds and Smith (1994) used the OI method to fuse in
situ data from ships, buoys, and satellites to produce OISST
products that are widely used. The other SST analysis data
product, RTG-SST from the National Centers for Environ-
ment Prediction (NCEP), is also obtained by the OI method.
In addition, based on the Modular Ocean Model (MOM), the
National Science Foundation and the National Oceanic and
Atmospheric Administration established the Simple Ocean
Data Assimilation system (SODA) by the OI method (Car-
ton et al., 2018; Carton and Giese, 2008). Based on the Mod-
ular Ocean Model version 4p1 (MOM4), the Australian Bu-
reau of Meteorology established marine forecasting systems
covering Australia, nearby regions, and the globe through
the ensemble optimal interpolation (EnOI) method (Oke et
al., 2008). However, in practice, to reduce the computational
burden, the OI algorithm is usually only applied using data
near the analysis point, and there is often a certain degree
of subjectivity. Methods such as Var and KF have been pro-
posed to overcome these problems, and these methods have
been widely used. For example, Zhu et al. (2006) devel-
oped a new 3D-Var-based Ocean Variational Analysis Sys-

Earth Syst. Sci. Data, 13, 2111–2134, 2021 https://doi.org/10.5194/essd-13-2111-2021



M. Cao et al.: A new global gridded sea surface temperature data product based on multisource data 2113

tem (OVALS), which can effectively improve estimations of
temperature and salinity by assimilating various observed
data. Li et al. (2008) applied a new 3D-Var data assimila-
tion scheme to a retroactive real-time forecast experiment,
and favorable results were obtained. In terms of operational
applications, some institutions in Canada, the United King-
dom, the United States, and China have used this method to
establish ocean environmental forecast and analysis systems
based on different oceanic general circulation models (Bur-
nett et al., 2014; Chassignet et al., 2009; Han et al., 2011;
Storkey et al., 2010). Huang et al. (2008) filled in the miss-
ing parts of satellite SST data with the kriging interpolation
method based on the slowly changing characteristics of SSTs
and then used KF to coordinate the variation error and inter-
polation error of the obtained SSTs. Finally, the interpolation
and filtered SST data were fitted to realize SST filling. Wang
et al. (2010) used the KF method to fuse the AVHRR SST
and AMSR-E SST products to produce daily, spatially con-
tinuous SST data with a spatial resolution of approximately
2 km. However, a daily variation correction was not carried
out before the fusion, and the model processing error was not
taken into account, which brought great uncertainty to the fu-
sion results.

Although many studies have tried to improve the accuracy
and spatial coverage integrity of SST products, especially
the sea temperature fusion products in deep ocean areas with
high accuracy (Dash et al., 2011), some ocean surface (skin)
temperature products still contain some deficiencies. Differ-
ent methods can be used to obtain ocean surface temperature,
but they actually represent temperature information at differ-
ent ocean depths, and the observation time is also inconsis-
tent (Castro et al., 2004; Wick et al., 2004). The sea tem-
perature observed by traditional sites is deeper than the tem-
perature observed by remote sensing. Even if they are all the
temperatures retrieved from remote sensing, the temperatures
retrieved from thermal infrared and microwaves are from dif-
ferent ocean depths. The sea temperature observed by ther-
mal infrared is the skin temperature, and the sea temperature
observed by microwaves is a bit deeper than the depth ob-
served by thermal infrared. The sea surface temperature ob-
tained by the assimilation model should also be different. In
addition, some products have problems with missing pixels
and relatively low accuracies near coasts and the edges of sea
ice due to the characteristics of the remote sensing products
themselves and the insufficiencies of fusion methods (Xie et
al., 2008). Some assimilation products (e.g., ERA5, ECMWF
Re-Analysis) of multisource oceanic data can solve state esti-
mations of large-scale oceanic ocean phenomena well (Hers-
bach et al., 2020), but these products cannot meet the needs
of near-shore or small- and medium-scale phenomena.

In order to obtain a long-term series of major global me-
teorological disaster remote sensing datasets with high spa-
tiotemporal consistency based on the current global multi-
source remote sensing data and ground observation site data,
we constructed a temperature depth and observation time

correction model to eliminate the sampling depth and tem-
poral differences among different data, and we built a recon-
structed spatial model that filters out missing pixels and low-
quality pixels from the monthly MODIS SST dataset and re-
constructs them based on daily in situ SST data and daily
satellite SST retrieval data from two infrared (MODIS and
AVHRR) and three passive microwave (AMSR-E, AMSR2,
WindSat) radiometers to generate a high-quality unified
global SST product with long-term (2002–2019) spatiotem-
poral continuity. The validation and cross comparisons with
in situ observations and other SST products were made to
prove that the new reconstructed SST dataset is reliable and
is suitable for regional or global SST studies.

2 Data sources

2.1 Satellite data retrievals

Thermal infrared and microwave radiometers on sun-
synchronous satellites are the primary technical tools used
to obtain global SST, and collectively these sensors provide
highly complementary information with which a new SST
product can be generated. The AVHRR and MODIS sensors,
which cover the global ocean, were selected as sources of
thermal infrared radiometer data. To reduce the data gaps
present in thermal infrared data resulting from cloud and
water vapor contamination, the inclusion of microwave ra-
diometer data from polar-orbiting satellites is essential; in
this study, AMSR-E, WindSat, and AMSR2 are the main
sources of microwave data.

The MODIS sensor is on board the Terra and Aqua space-
craft: the sensor has an ascending local equatorial crossing
time of 13:30 in the case of the Aqua spacecraft and a 10:30
descending equatorial crossing time for the Terra spacecraft.
The daily and monthly L3m global SST products (Day and
Night) of the MODIS sensor from Terra and Aqua are avail-
able starting from February 2000 and July 2002, respectively,
with a 0.041◦ spatial resolution; these datasets were mainly
used to reconstruct high-quality SST data and are available
through the website https://oceandata.sci.gsfc.nasa.gov/ (last
access: 14 January 2020). The standard deviation obtained
in a data comparison was better than 0.43 ◦C, as determined
by comparison of the SST data with coincident ferry obser-
vations (Barton and Pearce, 2006). Each pixel of these SST
data is associated with a numerical quality level stored in
SST_flags whose value ranges, in order of descending qual-
ity, from 0 to 4. Clear data of the best quality are limited
to the satellite zenith angles, < 55◦. Clear pixels at satel-
lite angles > 55◦ have good quality, with quality levels of
1. Pixels with a quality level > 1 may have very large dif-
ferences between the retrieved SST and the reference SST
due to significant cloud contamination or various other prob-
lems (https://oceancolor.gsfc.nasa.gov/atbd/sst/, last access:
14 January 2020). Therefore, these pixels are not used for
scientific research.
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The AVHRR sensor is on board NOAA polar-orbiting
satellites, has six bands ranging in wavelength from visible to
infrared (one visible, two near-infrared, and three thermal in-
frared) and can cover the globe twice a day. The twice-daily
(day and night) AVHRR 4 km SST data product is produced
by the NOAA National Centers for Environmental Informa-
tion and is available through the website https://data.nodc.
noaa.gov/pathfinder/Version5.3/L3C/ (last access: 6 Febru-
ary 2020). The standard deviation obtained in a data compari-
son is approximately 0.68 ◦C, as determined by a comparison
of the AVHRR products with coincident ferry observations
(Barton and Pearce, 2006). The data also provided a qual-
ity index for each pixel based on the evaluation test results
stored in the pathfinder_quality_level metric, which allows
the identification of cloudy pixels and/or suspicious observa-
tions, with the quality level 0 representing the worst quality
and the quality level 7 being the best (Pisano et al., 2016). In
our data processing method, we only considered values with
quality flags 4–7.

The AMSR-E sensor is on board the Aqua satellite and is
a dual-polarization microwave scanning radiometer with six
frequency channels in the range of 6–89 GHz. The AMSR-E
instrument was in orbit for nearly 10 years but was discontin-
ued in October 2011, owing to an antenna rotation problem.
The AMSR2 sensor, on board the Global Change Observa-
tion Mission-Water 1 (GCOM-W1) satellite, was launched
in May 2012 to continue the Aqua/AMSR-E observations
and ensure the continuity of SST data (Zabolotskikh et al.,
2015). AMSR2 has the same channels as did AMSR-E, with
a 7.3 GHz channel added to help alleviate radio frequency
interference. However, SST information collected from the
AMSR2 sensor was not provided until mid-2012. To en-
sure that there is an uninterrupted consistent long-term mi-
crowave SST time series that can be used to reconstruct a
high-quality SST product, a WindSat polarimetric radiome-
ter was used to bridge the gap between the AMSR-E and
AMSR2 products. The daily L3 SST products (ascending and
descending passes) of AMSR-E and AMSR2, available from
June 2002 and July 2012, respectively, with 0.1◦-grid spatial
resolutions, were used to reconstruct high-quality SST data
and are available through the website https://gportal.jaxa.jp/
gpr/search/ (last access: 9 February 2020). The accuracies of
AMSR-E and AMSR2 are approximately 0.75 and 0.56 ◦C,
respectively, as determined by comparisons with buoy data
(Sun et al., 2018). Daily WindSat SST datasets on a global
25 km grid (ascending and descending passes) were down-
loaded online (http://www.remss.com/missions/windsat, last
access: 16 February 2020), and their accuracies are very
close to that of AMSR-E, as determined by comparisons with
buoy data (Banzon and Reynolds, 2013; Gentemann, 2011).

2.2 In situ observations

In situ observations of SST from 2002–2019 were used for
the reconstruction of the new SST product and the validation

of both the satellite-obtained SST data and the new prod-
uct. The SST data observed in situ used in this study con-
sist of SSTs from the Version 2.1 NOAA in situ Quality
Monitor (iQuam), which includes updated observations ev-
ery 12 h with a 2 h latency. The SST data from iQuam include
observations from drifters, ships, tropical (T-) and coastal
(C-) moorings, Argo floats, high-resolution (HR) drifters,
IMOS ships, and coral reef water (CRW) buoys, and the data
can be obtained from ftp://ftp.star.nesdis.noaa.gov/pub/sod/
sst/iquam/v2.10/ (last access: 21 January 2020). Quality con-
trol of the data, including basic screening, duplicate removal,
plausibility, platform tracks, referencing, and cross-platform
and SST spike checks, was performed by the NOAA Cen-
ter for Satellite Application and Research (Xu and Ignatov,
2014). Only SSTs assigned the best quality flag (i.e., level 5)
were used in this study. To ensure the independence of the
data reconstruction and the accuracy verification process, the
data obtained from all spatially coincident in situ observa-
tions of SST were randomly divided into two completely
independent subsets by the jackknife method (Benali et al.,
2012). Subset 1 accounts for 80 % of the total number of in
situ observations, which were used to reconstruct the MODIS
SST data. Subset 2 accounts for 20 % of the total number of
in situ observations, which were used to verify the accuracy
of the reconstruction results. The spatially coincident crite-
rion restricts the maximum distance between in situ measure-
ments and the center of the satellite image grid cells to within
2.3 km, which is approximately half the spatial resolution of
MODIS, so that the in situ observations always fall within
the MODIS SST pixels (Minnett, 1991; Pisano et al., 2016).

2.3 Ancillary data

ERA-Interim, a climate reanalysis product produced by
the European Centre for Medium-Range Weather Forecasts
(ECMWF), was discontinued on 31 August 2019 and has
been superseded by the ERA5 reanalysis product produced
by the ECMWF. The ERA5 dataset is the latest climate re-
analysis product, providing hourly data on atmospheric, land,
and oceanic climate parameters together with estimates of
uncertainty. The 10 m wind component U , 10 m wind com-
ponent V , 2 m temperature, 2 m dew point temperature, sea
surface temperature, relative humidity, cloud cover, and other
data from the two datasets with 0.25◦ spatial resolutions
were used to calculate the heat, momentum, and fluxes be-
tween the ocean and the atmosphere as well as the incom-
ing solar radiation. These data can be obtained from https:
//apps.ecmwf.int/datasets/ (last access: 15 January 2020).

3 Methodology

Since MODIS SST data have a high accuracy and spatiotem-
poral resolution which can be used to capture mesoscale phe-
nomena in the oceans, a combination of MODIS SSTs from
Aqua and Terra is a good way to improve the spatial cover-
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age of SST data. However, SSTs are retrieved using the ther-
mal infrared bands which are influenced much by clouds, so
SST data cannot be provided when they have clouds in the
sky, and SST retrievals are also influenced by atmospheric
aerosols. Some other factors related to radiometers can also
contaminate SST observations, such as the viewing geome-
try, spectral response, and noise level of each sensor (Kil-
patrick et al., 2015). Due to these effects, MODIS SST data
often have problems involving low-quality or missing pix-
els. Statistical analysis performed during the study period in-
dicated that the missing pixels present in the monthly SST
records of Terra and Aqua during both daytime and nighttime
generally cover 23.46 % and 28.06 % of the global ocean,
respectively. In order to overcome these defects, we built
a reconstructed spatial model that combines in situ station-
based data and daily SST data from AVHRR, AMSR-E,
AMSR2, and WindSat to generate a high-quality MODIS
SST monthly dataset. Although the temperatures retrieved by
different sensors are all ocean surface temperatures, they ac-
tually represent temperature information at different ocean
depths which are caused by different frequencies of different
sensor settings and inconsistent algorithms. The sea tempera-
ture observed by thermal infrared is the skin temperature, and
the sea temperature observed by microwaves is a bit deeper
than the depth observed by thermal infrared. In addition,
the observation time of different observation methods may
be inconsistent. Therefore, we proposed a temperature depth
and observation time correction model to address the influ-
ence of time phase and sampling depth of different sensors.
More details are given in the following sections. The overall
methodology is illustrated in Fig. 1. This processing effec-
tively retains the high-precision pixels in the original MODIS
daily and monthly data, combines the calibrated ocean multi-
source data with spatiotemporal information to reconstruct
the low-quality and missing daily pixels, and finally replaces
the low-quality and missing pixels in the monthly data.

3.1 Bias adjustment by constructing temperature depth
and observation time correction model

3.1.1 Bias adjustment scheme for multisource remote
sensing data

To combine oceanic multisource remote sensing data into the
MODIS SST product, it is necessary to assume that the mea-
sured values represent the same quantities or to use some
method to eliminate the differences among products. The
ocean temperature data obtained by different sensors are dif-
ferent from those obtained by MODIS, and there are com-
plex spatiotemporal differences. Figures 2 and 3 represent
the difference distributions of the original MODIS and mul-
tisource daily SSTs in the daytime. Obviously, these multi-
source data cannot be directly used to reconstruct the valid
pixels of MODIS SST data before the differences are cor-
rected.

The main source of the difference is the inconsistent wave-
length or frequency range used by different sensors, which
leads to the temperature information measured by the sen-
sors from different ocean depths. The thermal infrared re-
mote sensor measures the sea surface skin temperature at
a depth of 10–20 µm, while the microwave remote sensor
can retrieve the sea subcutaneous temperature at a depth
of 1–1.5 mm (Minnett, 2003; Minnett et al., 2011). There-
fore, the SSTs retrieved from various microwave radiome-
ters (AMSR-E, WindSat, and AMSR2) are different from the
SSTs measured by the MODIS radiometer. In addition, due
to the difference of the inversion algorithm parameters, the
sea temperature retrieved from the same type of sensor may
also be different. For example, although the AVHRR sen-
sor is an infrared remote sensor and its brightness temper-
atures represent the sea surface skin temperature, AVHRR
SSTs correspond to subsurface SSTs because they are sta-
tistically regressed to coincident in situ buoy SSTs (Chao
et al., 2009a; Kilpatrick et al., 2001; Pisano et al., 2016).
Starting with the AVHRR Pathfinder Version 5.3, an aver-
age skin–subsurface temperature difference of 0.17 K, deter-
mined from Marine Atmospheric Emitted Radiance Interfer-
ometer (M-AERI) matchups, was used to eliminate the sub-
surface bias so that the SSTs were more closely tuned to
the sea surface skin temperatures (Sea Surface Temperature-
Pathfinder C-ATBD). MODIS SSTs are skin SSTs. MODIS
retrievals are based on empirical coefficients derived by re-
gressing MODIS brightness temperatures against in situ ob-
servations from drifting and moored buoys, but the regressed
SSTs are converted to skin SSTs based on at-sea measure-
ments. Thus, the SSTs retrieved from the AVHRR radiome-
ter are different from the SSTs measured by the MODIS
radiometer. In addition, MODIS and several other sensors
used in this paper have different observation times and can
obtain measurements at several different times throughout
the diurnal cycle. The relationships among these observa-
tions are, however, not constant because there are signifi-
cant diurnal variations in sea surface temperature resulting
from constant changes in the atmosphere, solar heating, wind
speeds, etc. (Kilpatrick et al., 2015; Luo et al., 2019; Minnett
et al., 2019; Wick et al., 2004). This also results in differ-
ences between MODIS observations and those of other sen-
sors. Therefore, compensating for measurement depths and
times is conducive to reducing the uncertainty present in the
reconstruction results before the multisource remote sensing
data are combined into the MODIS SST product.

1. Compensating to ensure uniform effective sampling
depths.

To solve the differences among MODIS and multi-
source daily SST products caused by the sampling
depths, it is necessary to consider the differences as re-
sults of the cool skin effect and diurnal heating (Luo
et al., 2020). The General Ocean Turbulence Model
(GOTM) can model the SST signal at different depths
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Figure 1. A summary flow chart for reconstructing MODIS monthly SST data.

Figure 2. Box chart with scatters of the differences in the original
MODIS and multisource daily SSTs (AVHRR, WindSat, AMSR-
E, AMSR2). The boxes are determined by the 25th and 75th per-
centiles. The whiskers are determined by the 5th and 95th per-
centiles. The data are plotted as scatters on the left of each box.
A curve corresponding to a normal distribution is also displayed on
top of each scatter plot.

by simulating the hydrodynamic and thermodynamic
processes of vertical mixing in one-dimensional water
columns in natural waters which has been successfully
used to model the near-surface variability of ocean tem-

perature (Karagali et al., 2017; Pimentel et al., 2018).
General ocean models typically simulate the surface
layer of 5–10 m as a uniform layer, and simulating such
thin sea surface skin layers and subskin layers takes a
long time. The GOTM can use a non-uniform grid and
specifically encrypt the surface layer to quickly simu-
late the temperature of the sea surface skin layer and the
subskin layer. For example, the top 50 m of the water
column is resolved by using 50 vertical layers, which
have higher resolution near the surface and gradually
decrease with depth. The thickness of the first layer at
the top of the water column is about 20 µm, and the
thickness of each layer can be calculated according to
Eq. (1).

hk =D
tanh

(
(dl + du) k

M
− dl

)
+ tanh(dl)

tanh(dl)+ tanh(du)
− 1, (1)

where hk represents the thickness of layer K . D repre-
sents the depth. M is the number of layers, and dl and
du show the zooming factors of the surface and bottom,
respectively.

From this formula, the following grids are constructed:

– dl = du = 0 results in equidistant discretization.

– dl > 0, du = 0 results in zooming near the bottom.

– dl = 0, du > 0 results in zooming near the surface.
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Figure 3. Difference maps of the original MODIS and multisource daily SST products. Areas of missing data are blank.

– dl > 0, du > 0 results in double zooming near both
the surface and the bottom.

Furthermore, considering the cool skin effect that usu-
ally occurs in a molecular sublayer of the air–sea inter-
face, a physical model for the skin (as shown in Eqs. 2
and 3) widely used to estimate the cold skin effect was
integrated into the air–sea interaction module of the
GOTM (Fairall et al., 1996; Saunders, 1967). The heat
and momentum flux changes of each layer in the water
column were integrated to more accurately simulate the
skin effects of the SSTs.

1T =Qδ/K, (2)

δ =
λV

µ∗w
, (3)

where 1T is the temperature variation (positive, rep-
resenting that the surface is cooler than the bulk). Q
is the net heat flux. K is the thermal conductivity of
water. δ is the thickness of the change in tempera-
ture. λ is the empirical coefficient. V is the kinematic
viscosity, and µ∗w is the friction velocity in the wa-
ter. It is difficult to obtain λ in Eq. (2). Based on
the observed data of the Tropical Ocean-Global Atmo-
sphere Coupled Ocean–Atmosphere Response Exper-
iment (COARE) program, Fairall et al. (1996) deter-
mined λ to be dependent on wind speed.In this section,
the conversion of SSTs between different depths can be

conducted using the model by entering the SST mea-
surement depth and the corresponding meteorological
parameter values present during the measurement, in-
cluding the wind speed at a 10 m height, the air tem-
perature at a 2 m height above the sea surface, air hu-
midity data, and cloud cover data from the ECMWF.
Figure 4a and b show the variations in ocean tempera-
tures at different depths and the differences between the
sea surface skin temperatures and sea surface subskin
temperatures simulated by the GOTM every half hour
for a pixel with a longitude of 32.65◦ N and a latitude
of 43.25◦ E from 1 July 2002 to 31 July 2002. When
the wind speed is low, the infrared-measured SST is
0.1–0.2◦ lower than that obtained by microwave remote
sensing. When the wind speed is high, the SSTs mea-
sured by the two sensor types are basically the same.
By deducting this difference, the SSTs obtained by mi-
crowave remote sensing can be normalized to the SSTs
obtained by infrared remote sensing.

2. Compensating to ensure uniform measurement times.

To solve the differences among the MODIS and multi-
source daily SST products caused by the varying mea-
surement times, it is necessary to consider the diurnal
variations in SST. The GOTM is based on the hydrody-
namic and thermodynamic processes of water and com-
prehensively considers the effects of solar shortwave ra-
diation, longwave radiation, latent heat, sensible heat,
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and cloudiness on diurnal variations in SST. The diurnal
variations caused by differences in the absorption and
attenuation of solar radiation of different water types
are also considered. Therefore, the GOTM can accu-
rately simulate diurnal variations in SST. The input data
also come from the ECMWF reanalysis product and in-
clude the wind speed at a 10 m height, the air tempera-
ture at a 2 m height above the sea surface, air humidity
data, and cloud cover data. Cloudiness is used to cal-
culate oceanic radiant heating. Wind speed, air temper-
ature, and relative humidity are used as inputs in the
turbulence model to estimate sensible heat, latent heat,
and wind stress. The exchange coefficient of the turbu-
lence equation is obtained based on the Fairall param-
eter method. Figure 4a shows the variations in ocean
temperature at different half-hour increments for a pixel
with a longitude of 32.65◦ and a latitude of 43.25◦ from
1 July 2002 to 31 July 2002. For the SSTs obtained at
different times, after deducting the diurnal variations in
temperature simulated by the GOTM, the observations
can be referenced to common time. The formula is as
follows.

SSTs =

N∑
i=1

(SSTs (i)+ (SSTg (j )−SSTg(i)))

N
, (4)

where SSTs is the SST observed by the satellite. j is the
referenced common time. i is the effective observation
of other moments by the sensor on the same day other
than moment j , of which there are a total of N , and
SSTg is the SST simulated by the GOTM, which also
corresponds to moments i and j .

3. Bias adjustments of different sensor products.

In order to ensure that the corrections of depth and
time are effective for each pixel, we calculated the dif-
ference range of high-quality pixels for different SST
data. Then, we manually checked the correction results
of each invalid pixel, and we determined the outliers
according to the statistical difference range and other
satellite SST data. Finally, these outliers were adjusted
based on mathematical statistics. For example, to deter-
mine the temperature difference (1t) between the skin
surface temperature and sub-skin surface temperature of
the pixel i of the MODIS data, we first calculated the
high-quality value of a pixel of MODIS data and the
microwave data at the corresponding time during the
study period. Then we extracted the data of wind speed,
cloud cover, humidity, and other environmental factors
corresponding to these values. Further, based on these
environmental factors, we determined the SSTs corre-
sponding to the environmental conditions at the moment
when the outlier of pixel i appeared. Lastly, the aver-
age value of the differences between these high-quality
SSTs was 1t . After completion of the above depth and

diurnal change corrections, the different measurement
times and effective sampling depths were corrected.
However, the performances of different sensors are dif-
ferent, and there may be systematic and regional devia-
tions, which need to be eliminated before fusion (Aler-
skans et al., 2020; Huang et al., 2015). Therefore, to cor-
rect the large-scale deviations among different sensors,
we used the daily MODIS SST data to correct the other
remotely sensed data compensating for different mea-
surement times and effective sample depths. Figure 5
shows that the correlation coefficient of the MODIS
SST data and the other remotely sensed data reaches
above 0.97, indicating that these data have a strong cor-
relation with the MODIS data. Therefore, we adopt a
linear regression to modify the other remotely sensed
SST data. The correction method uses linear regression
of two corresponding images, and the regression coeffi-
cient is determined by matching the data of the MODIS
sensor and the other remotely sensed data. To avoid the
influence of individual outliers, points with standard de-
viations over 1 ◦C or with a difference greater than 2 ◦C
from the corresponding MODIS datum in the matching
window did not participate in the regression.

3.1.2 Bias adjustment scheme for in situ observations

SSTs retrieved from MODIS sensors are skin SSTs. How-
ever, in situ SSTs from Version 2.1 NOAA iQuam are subsur-
face SSTs. For Argo floats, only the shallowest high-quality
measurement is extracted and saved from each profile into
the iQuam dataset (the same algorithms are used for other
in situ platforms, such as those on ships, drifters, and moor-
ings), along with its measurement depth. The closest mea-
surement to the surface of the Argo float is at a depth of 3–
8 dbar (0.15–0.2 m for drifters and ∼ 1 m for moorings). The
differences between skin and subsurface SSTs, as described
by Donlon et al. (2002), can be as large as 1.0–2.0 ◦C when
the solar insolation is strong and the wind speed is weak. Fig-
ure 6 shows that the differences between the MODIS data and
the eight types of in situ SSTs from iQuam can be significant
under different weather conditions. When combining in situ
SSTs into the MODIS SST product, such differences need
to be accounted for. Therefore, in situ SSTs were first col-
located and made coincident with MODIS data (within ±1 h
and ±0.02◦ of latitude and longitude). Then, the coincident
in situ SSTs were adjusted using the temperature depth and
observation time correction model by entering the SST mea-
surement depth and corresponding meteorological parameter
values present during the measurement, including the wind
speed at a 10 m height, the air temperature at a 2 m height
above the sea surface, air humidity data, and cloud cover data
from the ECMWF.
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Figure 4. SST depth changes simulated by the GOTM every half hour for a pixel with a longitude of 32.65◦ and a latitude of 43.25◦ in
July 2002 (panel a is the variation in ocean temperature at different depths; panel b is the difference between the sea surface skin temperature
and sea surface subskin temperature).

Figure 5. Scatter diagrams of the MODIS SST data and ocean multisource data compensated for different measurement times and effective
sampling depths.

3.2 Filtering of MODIS SST

The monthly MODIS SST data cover the whole sea area of
the world, but they contain many missing and low-quality
pixels caused by factors such as clouds and aerosols. Fig-
ure 7 shows the frequency of non-null pixels, including valid
pixels and low-quality pixels, in the monthly MODIS SST
data from July 2002 to December 2019. The missing pixels

are mainly distributed in high-latitude sea areas beyond±60◦

of latitude. In the middle- and low-latitude sea areas within
±60◦ of latitude, the coverage rate of pixels is more than
95 %. There are many missing pixels distributed off the Peru
coast, in the El Niño–Southern Oscillation (ENSO) signal re-
gion, due to the widespread low clouds over the eastern South
Pacific off the coasts of Chile and Peru (Satyamurty and
Rosa, 2020). In addition, there is a lower frequency of non-
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Figure 6. Box chart with scatters representing the differences be-
tween the original MODIS data and eight types of in situ SST ob-
servations.

null pixels in the Inter-Tropical Convergence Zone (ITCZ)
region and other tropical oceanic areas west of the continents
due to the cloud cover in these areas (Ackerman et al., 2008;
McCoy et al., 2017). In most areas of low and middle lati-
tudes, the non-null pixel coverage is as high as 100 %, but
it is difficult to detect the cold top surface of thin clouds or
subpixel clouds, and the SSTs retrieved under such condi-
tions are usually underestimated because the temperatures of
clouds are almost always colder than the temperature of the
sea surface (Reynolds et al., 2007). Moreover, other factors
can also contaminate the observed signals and affect the data
quality, such as factors related to the radiometer, including
its viewing geometry, spectral response, and noise level (Kil-
patrick et al., 2015). Therefore, there are many low-quality
pixels among non-null pixels in the low and middle latitudes
during the study period. In this study, the spatial process of
the SST reconstruction includes the removal of low-quality
pixels in low-latitude and midlatitude regions and the recon-
struction of low-quality and missing pixels in the low-latitude
and midlatitude regions and the high-latitude regions.

The quality control information stored in the qual_sst layer
is provided along with the MODIS L3m SST data, with the
quality level 0 being the best quality and the quality level 4
being the worst. These values can be found in the original
MODIS SST netCDF files (see Sect. 2.1 for a detailed de-
scription). The missing pixels present in these data are rep-
resented by the filling value −32767. Therefore, the quality
control labels and the filling value were used to identify low-
quality and missing pixels in the MODIS SST product. For
monthly and daily SST data, to ensure the data quality and
the number of effective pixels, pixels with a quality level ≤ 1
were considered to be high-quality data.

3.3 SST data reconstruction

In the data processing, we first filtered all input monthly
MODIS SST images and determined the locations of the
low-quality and missing pixels. Then, for each invalid pixel

(i.e., the low-quality and missing pixels) in the monthly im-
ages, we filtered the daily MODIS SST data of the respective
month at the corresponding location. The high-quality pix-
els in the daily SST data were retained, and the invalid pix-
els in the daily data were reconstructed by combining multi-
source data. Finally, the invalid pixels present in the monthly
data were replaced by the mean SST values derived from the
gap-filled daily SST time series of the corresponding month.
Combining the characteristics of multisource data and the
availability of the data, we adopted different methods to re-
construct the invalid pixels present in the daily MODIS SST
data for different regions.

3.3.1 Reconstruction of invalid SST pixels in low-latitude
and midlatitude marginal regions of the ocean

Due to the influence of the mixed pixels in adjacent coastal
areas, sea surface temperature products obtained from pas-
sive microwave remote sensing have very large uncertainties
in these areas (Xie et al., 2008), which result in more invalid
or low-quality pixel values in adjacent coastal areas. There-
fore, invalid pixels in these regions were first filled with in
situ or AVHRR SST data, and these pixels filled with in situ
observations were marked. Then, in cases where these obser-
vations were missing, we filled these invalid pixels based on
the geographically weighted regression (GWR) and Kalman
filtering (KF) methods, fitted the SSTs obtained by the two
methods, and finally reconstructed the invalid pixels. A sum-
mary flow chart of the process is schematically illustrated in
Fig. 8.

1. Interpolating invalid pixels with GWR.

GWR is an effective method for estimating missing pix-
els, which can quantitatively determine the contribution
of adjacent pixels to contaminated pixels (Zhao et al.,
2020). This method assumes that the spatially adjacent
pixels with similar meteorological conditions have sim-
ilar temperature values. Therefore, after determining the
pixels, the GWR method was used to reconstruct invalid
pixels. To determine the sliding window with the min-
imum noise and the best complement value, we simu-
lated the size of the experimental pixel window many
times and selected a sliding window of 15 by 15 pix-
els centered on the target pixel. This window size also
avoids the reduction in execution efficiency caused by
the redundancy of pixel involved in the calculation and
ensures the number of pixel values involved in the cal-
culation. During the reconstruction of invalid pixels,
the regression weight coefficient of each adjacent pixel
was determined by the Euclidean distance between that
pixel and the target pixel. Simultaneously, considering
that the available pixels obtained from in situ observa-
tions are more representative of the real SST under the
cloud cover, we assigned a relative multiple weight to
the marked in situ data according to GWR. By select-
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Figure 7. Frequency of non-null pixels, including valid pixels and low-quality pixels, in the monthly MODIS SST data during the study
period from (a) nighttime Aqua overpasses, (b) daytime Aqua overpasses, (c) nighttime Terra overpasses, and (d) daytime Terra overpasses.

Figure 8. A summary flow chart for reconstructing invalid SST pix-
els in low-latitude and midlatitude marginal regions of the ocean.

ing some marked pixels as experimental values, it was
found that the target pixels can be estimated accurately
when Mg (Mg is the weighting coefficient of the in situ
assigned pixels) was set to 3. The weighting coefficients
of adjacent pixels can be determined by Eqs. (5) and
(6). Then a local linear regression calculation was per-
formed for each point in the window according to the
sample weights. This regression calculation can be ex-
pressed as Eq. (7).

D =

√
(x− xt)2

+ (y− yt)2 (5)

Wi =

Mc
Di∑m

i=1
Mc
Di
+
∑n
j=1

Mg
Dj

Wj =

Mg
Dj∑m

i=1
Mc
Di
+
∑n
j=1

Mg
Dj

(6)

Tt =
∑m

i=1
Wi · Ti +

∑n

j=m+1
Wj · Tj (7)

HereD is the distance from the adjacent pixel to the tar-
get pixel. (x, y) and (xt, yt) are the locations of the adja-
cent pixel and target pixel, respectively. i and j are the
adjacent pixels used to estimate the SST of the invalid
pixel. i is an adjacent pixel of high quality. j is a pixel
assigned by in situ measurement.Wi andWj are weight
multipliers. m is the number of i. n is the number of j ,
and Mc and Mg represent the weighting coefficients of
the high-quality pixels and in situ assignment pixels, re-
spectively. Mc and Mg are set at 1 and 3, respectively.
Tt is the filled SST value of the target pixel.

2. Using KF to coordinate the error.

For this region, on the basis of interpolation, KF can
be used to coordinate the error characteristics of the
SST variation and the error characteristics of the in-
terpolation. Since the SST variation is relatively flat,
SST is treated as a stationary random process. Due to
the slowly changing characteristics of SST and the lack
of effective temperature values representing these pix-
els, we took into account the SST data representing the
adjacent time at the location of the invalid pixel. Con-
sidering the operational requirements of SST real-time
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retrievals and the necessary computing speed and stor-
age capacity of the computer, the correlation of the error
changes with each observation time was not considered
in the actual operation process, and only the simple ran-
dom error was used to simulate the changes in the pro-
cess error and measurement error. By modeling the data,
the equation of the state of the system can be written as
follows.

Xt =∅Xt−1+W t−1, (8)

where Xt is state to be estimated at time instant t . Xt−1
is the state vector of the process at time t . ∅ is the state
transition matrix of the process from the state at t−1 to
the state at t , which is assumed stationary over time, and
W t−1 represents the process noise, which is considered
to be Gaussian, and its covariance is represented by Q.
We take the KF of 124 MODIS SST images in July 2002
as an example. All data were arranged in chronological
order, and the change of the SST in each pixel relative
to the SST of the previous time was counted. Based on
the statistical results of these images, the covariance was
3.115·I (I is the identity matrix). Consider the following
measurement equation.

Zt =HXt +V t , (9)

where Zt is the measurement of X at time instant t .
H is the noiseless connection between the state vector
and the measurement vector, which is assumed station-
ary over time. V t represents the measurement noise,
which is also considered to be Gaussian, and its covari-
ance is represented by R. R can be obtained by compar-
ing the measurement data with the verification data (Xu
and Cheng, 2021). Then, the following KF formula was
used to combine the input data to achieve the optimal
output of the system, which operates in a prediction up-
date. The prediction equations are responsible for pro-
jecting forward (in time) the current state and error co-
variance estimates to obtain the a priori estimates for the
next time step. The update equations are responsible for
the feedback, i.e., for incorporating a new measurement
into the a priori estimate to obtain an improved a poste-
riori estimate. Prediction equations are as Eqs. (10) and
(11).

X−t =∅Xt−1 (10)

P−t =∅Pt−1∅T +Q (11)

Update equations are as Eqs. (12), (13), and (14).

Kt = P−t HT
[HP−t HT

+R]−1 (12)
Xt =X−t +Kt [Zt −HXt

−
] (13)

Pt = [I−KtH]P−t (14)

Here X, ∅, H, Q, and R can be obtained according to
the explanation of Eqs. (8) and (9). K is the Kalman
gain. P is the error covariance matrix.

3. Fitting interpolated and filtered data.

To more accurately reconstruct the pixels that lack valid
observations, a data fitting shown in Eq. (15) was per-
formed for the interpolated and filtered data, which are
the SSTs obtained based on the GWR and the KF meth-
ods, respectively. Finally, the reconstruction of invalid
pixels without in situ or AVHRR SST filling could be
realized by using the data fitting.

T ′ = αTg+βTk, (15)

where T ′ is the reconstructed SST. Tg and Tk are the
SSTs obtained based on the GWR and the KF methods,
respectively.

To determine the best fitting parameters of α and β, we
selected some valid pixels from each image and then
interpolated and filtered these pixels. The Eq. (15) was
used to fit the interpolated and filtered results, and the
fitting coefficients of each SST image were obtained us-
ing the least-squares method.

1T (α,β)=
n∑
i=1
[Ti− T

′

i ]
2, (16)

where Ti is the valid pixel value in the image and n is the
number of these pixels. When 1T reaches a minimum
value, the fitting coefficient can be obtained by using
Eqs. (17) and (18).

∂1T (α,β)
∂α

=−2
n∑
i=1

(
Ti−αTg−βTk

)
Tg = 0 (17)

∂1T (α,β)
∂β

=−2
n∑
i=1

(
Ti−αTg−βTk

)
Tk = 0 (18)

3.3.2 Reconstruction of invalid SST pixels in low-latitude
and midlatitude inner ocean areas

Similar to the method used to reconstruct invalid SST pix-
els in the marginal regions of the oceans at low and middle
latitudes, pixels with invalid SST values were reconstructed
through collocating with in situ and AVHRR data in inner
ocean areas. The invalid pixels were filled using values from
valid in situ SST or AVHRR data collected at the same lo-
cation at the same time. In cases of missing in situ SST or
AVHRR data, the SST was retrieved from passive microwave
data to reconstruct the invalid SST data. A summary flow
chart of the process is schematically illustrated in Fig. 9.

The temperature variation trends present in the MODIS
daily data and microwave daily data on corresponding date
in the same region are the same, so the two groups of data
have the same proportional relation. Taking a grid of n pixels
by n pixels as an example, a and b are considered the same
regions clipped from the MODIS and microwave-based data,
respectively. The gray and white rasters represent the effec-
tive and invalid pixels, respectively. Mkl and Rkl represent
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Figure 9. The summary flow chart for reconstructing invalid SST
pixels in low-latitude and midlatitude inner ocean areas.

the pixel values of the MODIS and microwave-based data,
respectively. K and L represent the pixel positions. Mij rep-
resents the value after the interpolation of invalid pixels.

Mij

k=i−1,l=j−1∑
k=1,l=1

Mk,l +

k=n,j=n∑
k=i+1,l=j+1

Mk,l

=
Rij

k=i−1,l=j−1∑
k=1,l=1

Rk,l +
k=n,j=n∑

k=i+1,l=j+1
Rk,l

(19)

The reconstruction of invalid pixels can be achieved by using
the above formula. The reconstructed pixels meet the accu-
racy of the interpolated images to a certain extent and do
not damage the original SST variation trend. After several
simulations of different experimental pixel window sizes, the
noise was found to be minimized when a sliding window of
6 by 6 pixels was used, and this window size was considered
to have the best complement value.

3.3.3 Reconstruction of invalid SST pixels in
high-latitude regions of the ocean

At high latitudes, sea ice covers a significant fraction of
the global oceans (approximately 5 %–8 %). The presence of
large areas of mixed sea ice and open water makes it difficult
to retrieve SSTs (Høyer et al., 2012; Vincent et al., 2008). In
addition, there is persistent cloud cover in polar regions, with
cloud cover occurring up to 90 % of the time in summer and
50 %–60 % of the time in winter in the Arctic (Høyer et al.,
2012). The continuous cloud cover and extended twilight pe-
riod complicate the detection of cloud, which thus presents
problems for identifying clouds correctly with cloud detec-
tion algorithms. Therefore, it is challenging to use satellite
sensors to accurately retrieve SST at high latitudes, includ-
ing the Arctic Ocean. Moreover, because of the existence of
sea ice and the difficulty of navigating in ice-filled water, the

number of field observations at the area is generally scarce
compared to other regions (Reynolds et al., 2002). The Mi-
crowave and AVHRR SST data used in this study have lim-
ited available pixels in high-latitude regions, so it is impossi-
ble to reconstruct MODIS SST data in high-latitude regions
only by relying on these data and in situ data.

High-latitude SSTs can be estimated based on satellite sea
ice concentrations (SICs). In areas with sea ice, the SST
is the temperature of the open water or of the water under
the ice (Banzon et al., 2020). Multiple analysis (L4) prod-
ucts from GHRSST enable SST estimation near the polar re-
gion by converting SIC into SST. Due to differences in satel-
lite source data, integration methods and methods for con-
verting SIC to SST, the accuracy of level-4 SST products
of GHRSST-PP varies in many aspects. After understanding
the differences among current GHRSST level-4 products and
their qualities and availabilities in different areas, the OISST
V2.1 product was selected to restore invalid pixels in the
MODIS SST data in the high-latitude area with sea ice cov-
erage. In the product, SICs were revised to SSTs to remove
warm biases in the Arctic region.

In areas of high latitudes, since the microwave-based SST
data (used in this paper) exclude sea ice pixels, that is, SSTs
are missing when the number of pixels with sea ice contam-
ination exceeds a specified value, we used a combination of
two strategies to reconstruct the missing SST data to improve
the accuracy of the results. A summary flow chart of the pro-
cess is schematically illustrated in Fig. 11.

First, the variables l2p_ flags and the sea ice fraction in
the AVHRR SST data were used to identify the sea ice ex-
tent. The sea ice fraction variable quantified the fraction of
sea ice contamination in a given pixel (ranging from 0 to 1),
and bit 2 of the l2p_ flags variable was recorded if an in-
put pixel recorded ice contamination. These variables can be
used to identify sea ice pixels. Then, we used the first strat-
egy to reconstruct invalid pixels in high latitudes without sea
ice coverage. Pixels with invalid SST values in the MODIS
data were collocated with in situ and AVHRR observations.
Invalid pixels were filled using the values from the valid in
situ or AVHRR data at the same location and the same time
(priority was given to the use of in situ data). Then, for the
invalid pixels without available observations, we used the
method described in Sect. 3.3.2 above to fill the pixels us-
ing microwave data. Finally, considering the characteristics
of the slow changes in SST and the fact that SST changes
in the same area are interannual and its changes in the short
term are usually small, the invalid pixels without any filling
data were reconstructed by using the GWR method combined
with spatiotemporal information. That is, we replace invalid
pixels with the average value of valid pixels from the adjacent
dates. If the number of effective pixels was too small, then the
GWR method was used to reconstruct the invalid pixel. In
another strategy, pixels with invalid SST values due to sea-
ice-covered areas were collocated with in situ and AVHRR
SSTs, which were filled using values from valid in situ SST
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Figure 10. MODIS and microwave SST data corresponding to a n× n grid.

Figure 11. The summary flow chart for reconstructing invalid SST pixels in high-latitude regions of the ocean.

or AVHRR data observed at the same location and at the
same time. Finally, the adjusted OISST V2.1 products were
used to reconstruct the invalid pixels when there are not suf-
ficient replacement pixels in sea-ice-covered areas. The ad-
justment algorithm is a linear regression algorithm that relies
on coefficients derived from co-temporal OISST and MODIS
SST observations.

TM = α× TO+β, (20)

where TM is the adjusted SST. TO is the pixel value of the
OISST product. α is the regression coefficient, which is de-
termined by matching the data of the MODIS SST data and
the OISST data, and β is the estimated intercept.

4 Result

MODIS has superior coverage and performance in sampling
global SST and has been verified by various studies (Bar-
ton and Pearce, 2006). Moreover, to better assess the accu-
racy of the new SST product, we performed verification of
the original MODIS data, oceanic multisource data compen-
sated for different measurement times and effective sampling
depths, and the new SST data in different regions. The accu-
racy of the data was assessed using five statistical indexes:
coefficient of determination (R2), root-mean-squared error
(RMSE), bias, absolute bias (Abs_Bias), and scatter index
(SI). The bias was calculated as the SST obtained from the
MODIS product minus the in situ SST. The scatter index,
usually denoted as SI, was used to measure the magnitude
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of the bias between the SST product and the in situ observa-
tions versus the in situ observations. A smaller SI means a
more accurate measurement.

R2
=

(
n∑
i=1

(SSTi −SST)(SST′i −SST′))2∑
i=

n

· (SSTi −SST)2
n∑
i=1

(SST′i −SST′)2 (21)

RMSE=

√
1
n

∑n

i=1
(SSTi −SST′i)

2 (22)

bias=
1
n

n∑
i=1

(SSTi −SST′i) (23)

abs_bias=
1
n

∑n

i=1
|SSTi −SST′i | (24)

SI=

√
1
n

∑n
i=1[

(
SSTi −SST

)
− (SST′i −SST′)]2

SST′
(25)

Here SSTi is the MODIS SST value of matching point i.
SST′i is in situ observation value of matching point i. n is
the number of matching points. SST and SST′ are the aver-
age value of SST obtained from MODIS products and the
average value of SST obtained from in situ observations, re-
spectively.

In addition, to convey information more easily and con-
cisely, Taylor diagrams (Taylor, 2001) were also used to com-
pare the accuracies of different SST products, as they provide
a way to graphically summarize the relative accuracies of
several products. Taylor diagrams are two-dimensional scat-
ter plots in which discrete points give an indication of how
well patterns match each other in terms of their correlation
coefficient (R), centered RMSE (E), and normalized stan-
dard deviation (SDV), all at once (Castro et al., 2016). These
statistics are defined as follows, where m and o are the simu-
lated and observed patterns, respectively.

R =
1

N − 1

N∑
i=1

(
mi −m

σm

)(
oi − o

σo

)
(26)

SDV=
σm

σo
(27)

E2
=

(RMSE2
− bias2)
σo

(28)

E2
= SDV2

+ 1− 2SDV×R (29)

In the Taylor diagram, SDV is shown as the radial distance,
and R is shown as the cosine of an azimuthal angle in the
polar plot. The observed patterns are represented by points on
the x axis at R = 1 and SDV= 1. E is the distance from the
simulated patterns to the observed patterns, and this distance
can quantify how closely the simulated patterns resemble the
observed patterns.

4.1 Evaluation of the original product

We conducted a comparative analysis based on the distribu-
tion of invalid pixels in different regions, and the validations
of the original monthly MODIS SST values against in situ
SST measurements (including the uncorrected in situ data
and corrected in situ data) were shown in Table 1. Valida-
tion using in situ SST measurements shows that the RMSE
ranges from 0.768 to 1.727 ◦C (SI: 0.034–0.066), and vali-
dation using corrected in situ SST measurements indicates
that the RMSE ranges from 0.719 to 1.167 ◦C (SI: 0.032 to
0.544).

4.2 Evaluation of the bias adjustment

4.2.1 Evaluation of satellite data bias adjustment

Different sensors and satellites can obtain measurements at
several different times throughout the diurnal cycle. In addi-
tion, microwave and thermal infrared sensors have different
effective measurement depths. Since both the AMSR-E and
MODIS instruments are aboard the Aqua satellite, they both
pass through the Equator at approximately 01:30 and 13:30.
Therefore, in order to verify the depth correction model, we
used the depth correction model to perform depth correc-
tion on the daily AMSR-E data. That is, the sampling depth
of AMSR-E daily data was corrected to the sampling depth
of MODIS data, and then the corrected values were com-
pared with the corresponding MODIS daily data. Figure 12a
shows the validation results of the AMSR-E SST data, which
show that the overall result between the corrected data and
the MODIS data presents a good linear relationship. The
RMSE is reduced from 1.137 to 0.508◦, and the absolute
bias is reduced from 0.718 to 0.302◦, which indicates that the
model can simulate the SST at different depths well. Further-
more, we compared and analyzed the nighttime products of
the same sensor with the corresponding daytime products af-
ter a time correction to verify the time correction performed
by the model. Taking AMSR-E daytime SST products as an
example, we corrected these SST values to the correspond-
ing nighttime SST values (Fig. 12b). Shown from Fig. 12b,
there was an obvious diurnal warming before the correction,
and the data after the correction had lower absolute bias and
RMSE values. Thus, the model can also simulate the diurnal
variation in the SST well and can be used to normalize the
SSTs observed at different times.

4.2.2 Evaluation of in situ data bias adjustment

To validate the correction results of the temperature depth
and observation time correction model on in situ SSTs, we
selected the matchups corresponding to the effective pix-
els of daily MODIS SSTs from in situ SSTs and compared
and analyzed the daily MODIS SSTs with these matchups.
Figures 13 and 14 both show the verification results of the
MODIS SSTs against in situ data before and after the cal-
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Table 1. Statistics of the validation results of original monthly MODIS SSTs against in situ SST measurements (non-corrected/corrected).

In situ data R2 Abs_bias RMSE SI

Pacific Ocean
Non-c 0.9793 0.6364 1.0753 0.0507
Corrected 0.9854 0.5638 0.8958 0.0423

Atlantic Ocean
Non-c 0.9663 0.8634 1.7271 0.0657
Corrected 0.9662 0.7272 1.1670 0.0544

Indian Ocean
Non-c 0.9915 0.5271 0.7677 0.0339
Corrected 0.9925 0.4875 0.7185 0.0320

Global ocean
Non-c 0.9735 0.7478 1.2461 0.0581
Corrected 0.9835 0.6293 0.9671 0.0454

Figure 12. The scatter diagrams of the daily original SST data and corrected results versus their corresponding actual SST data from 2002
to 2019. The blue points indicate original SST pixel values. The green points represent the values in corrected SST data, and the statistical
accuracy measures (R2, bias, Abs_Bias, and RMSE) are also indicated.

ibration. Figure 13 reflects the change in the difference be-
tween all types of in situ data before and after the correction
and the corresponding MODIS SST data. It can be shown
from Fig. 13 that the range of temperature difference between
uncorrected in situ data and MODIS data is about −2–2.5◦,
while the difference range between corrected in situ data and
MODIS data is reduced to the range of −0.5–0.75◦. Fig-
ure 14 is based on the MODIS SST data as a reference and
shows the distribution of SSTs before and after the correction
from the eight platforms described in the normalized Tay-
lor diagram. In Fig. 14, the degrees of agreement are com-
pared among in situ data from different platforms before and
after the correction with the MODIS data. The points rep-
resenting in situ SSTs lying near the MODIS observations
(the MODIS observations are represented by points on the
x axis at R = 1 and SDV= 1) have relatively high R and
low E values. After the correction, the points representing
in situ SSTs are closer to the MODIS observations, which
means that compared with in situ data before correction, the
agreement between the two is better. Therefore, the corrected
result of the model is stable and reliable and can be used for

the conversion of SSTs from in situ observations taken at dif-
ferent depths.

4.3 Evaluation of the new product

4.3.1 Accuracy verification of low-quality pixels

In this study, we only restored invalid pixels, including low-
quality pixels and missing pixels, in the MODIS data and first
evaluated the improvement effect of these pixels. Figure 15
shows the validation results of the low-quality MODIS SST
data and the reconstruction results versus the corresponding
in situ observations, including the corrected in situ data and
uncorrected in situ data. The validation results indicate that
the reconstructed MODIS SST data are always more consis-
tent with in situ data, including the corrected data and un-
corrected data, than the values before reconstruction, with
RMSE values lower than 0.675 ◦C and R2 values higher than
0.991. Compared with the original values, the accuracies of
the corrected values are improved by more than 0.65 ◦C.
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Figure 13. Marginal histogram of the difference between in situ
data before and after correction and the corresponding MODIS SST
data. (The margins of the scatterplot are a histogram of the vari-
ables, indicating the distribution of data in either direction.)

Figure 14. Normalized Taylor diagrams showing differences be-
tween matched SST from in situ data before and after correction
and the corresponding MODIS SST data.

4.3.2 Overall accuracy verification

To fully verify the overall accuracy of the reconstructed
SST products, we compared the performances of the origi-
nal MODIS SST and the reconstructed SST products relative
to in situ data via Taylor diagrams. The normalized Taylor
diagrams showing the performances of the two products rel-
ative to in situ data before and after the correction are pre-
sented in Fig. 16. Compared with the original MODIS prod-
uct, the reconstructed product can better represent the in situ
observations, with the highest R value, lowest E value, and

SDV closest to 1. Among them, the original MODIS product
with the lowest consistency with both the uncorrected ob-
servations and the corrected observations by far consists of
the Atlantic SSTs, with E = 0.090 and 0.057, SDV= 0.967
and 0.982, and R = 0.954 and 0.9711, respectively. After re-
construction, the Atlantic SSTs show very good correlation,
with a lower E value and SDV closer to 1 with both the cor-
rected and uncorrected observations, and its accuracy is sig-
nificantly improved.

To further understand the credibility of the reconstructed
product and clarify the limitations of this method, we further
assessed the performance in terms of the output biases in dif-
ferent regions. The associated validation statistics of the new
SST dataset against the corrected in situ observations and un-
corrected in situ observations are summarized in Table 2. The
new dataset is in agreement with the uncorrected in situ ob-
servations with abs_bias= 0.3358 ◦C, RMSE= 0.5767 ◦C,
and SI= 0.0352 on the global ocean. Among these statis-
tics, the RMSE, SI, and abs_bias of the Atlantic region are
slightly larger than the values in the global ocean, but they
are all better than those of the original MODIS SST data (see
Table 1 for details), the correlation coefficients of this prod-
uct in different regions are all greater than 0.984, and these SI
values are less than 0.04. For the whole ocean, the abs_bias
of the new SST product relative to the corrected in situ ob-
servations is 0.3349 ◦C, and the RMSE and SI are 0.4742 ◦C
and 0.0242, respectively. The RMSE, SI, and abs_bias of the
values of the Atlantic Ocean region are also slightly larger
than those of the global values. However, they are still bet-
ter than those of the original MODIS SST data (see Table 1
for details), the correlation coefficients of the product in the
different areas are greater than 0.995, and these SI values
less than 0.032. In addition, the RMSE and SI values of the
edge areas and high-latitude areas are slightly lower than the
global values, which indicates that the accuracy of the data
in these areas is higher. These results indicate that the recon-
structed MODIS SST dataset is robust and accurate due to
its high consistency with in situ observations, including cor-
rected and uncorrected observations. Therefore, we believe
that the accuracy of SST data can be improved by the method
adopted in this paper.

To investigate the performance of the reconstructed prod-
uct relative to the other products, a comparison between the
OISST product and the reconstructed data was conducted
during 2002–2019. OISST Version 2.1 is an analysis product
constructed by combining observations from different plat-
forms on a regular global grid, such as AVHRR data from
NOAA satellites, ships, Argo floats, and drift floats, with a
spatial grid size of 0.25◦. For the OISST images, we aver-
aged the daily SST data corresponding to each month and
obtained monthly SST images. Then, the dataset was vali-
dated against the corresponding in situ observations, includ-
ing the uncorrected and corrected in situ SSTs, as shown
in Fig. 17a. The RMSE values of OISST against the uncor-
rected and corrected in situ observations in the global ocean
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Figure 15. The scatter diagrams of the low-quality MODIS SST data and the reconstruction results versus their corresponding in situ
SST data from 2002 to 2019. The blue points indicate low-quality MODIS SST pixel values. The orange points represent the values in
reconstructed SST data, and the statistical accuracy measures (R2, bias, Abs_Bias, and RMSE) are also indicated.

Figure 16. Normalized Taylor diagrams showing differences between matched SST from in situ data before (a) and after (b) correction and
the corresponding SST products.

were 0.602 and 0.495 ◦C, respectively. Those of the recon-
structed SSTs against the uncorrected and corrected in situ
observations in the global ocean were 0.577 and 0.474 ◦C,
respectively. Compared to these, the overall accuracy of the
reconstructed data is better. In addition, we also performed
an intercomparison with the 2◦ Extended Reconstructed Sea
Surface Temperature (ERSST) product, which is a global
monthly SST dataset derived from the International Compre-
hensive Ocean–Atmosphere Dataset (ICOADS) that uses sta-
tistical methods to enhance spatial completeness. Figure 17b
reflects the monthly average SST changes in different oceans
from the ERSST product and the reconstructed products over

the 2002–2019 period, indicating a reasonable consistency
between the two. Based on the accuracy assessment and data
intercomparison results, it can be seen that the reconstructed
MODIS products of 2002–2019 are reliable with high ac-
curacies and that the reconstructed models we designed are
effective.

5 Code availability

Bias adjustment was conducted with GOTM ver-
sion 5.2.1 and is available at https://github.com/
gotm-model/code/tree/v5.2 (last access: 24 August 2019).
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Table 2. Statistics of the validation results of new SSTs against in situ SST measurements (non- corrected/corrected).

In situ data R2 Abs_bias RMSE SI

Pacific Ocean
Non-c 0.9888 0.2977 0.5219 0.0306
Corrected 0.9960 0.3226 0.4618 0.0219

Atlantic Ocean
Non-c 0.9846 0.4343 0.7657 0.0391
Corrected 0.9952 0.3666 0.4864 0.0320

Indian Ocean
Non-c 0.9963 0.3095 0.5010 0.0238
Corrected 0.9977 0.2529 0.4080 0.0186

Global ocean
Non-c 0.9906 0.3358 0.5767 0.0352
Corrected 0.9961 0.3349 0.4742 0.0242

Arctic Ocean
Non-c 0.9933 0.3660 0.5161 0.0298
Corrected 0.9971 0.3122 0.4738 0.0243

Marginal regions
Non-c 0.9941 0.3360 0.5049 0.0269
Corrected 0.9983 0.3342 0.467 0.0219

Figure 17. Validation statistics of the reconstructed product and other SST products during 2002–2019. (a) Intercomparison with OISST,
where A and C represent the results of OISST and new SSTs against uncorrected in situ SST measurements, respectively. B and D represent
the results of OISST and new SSTs against corrected in situ SST measurements, respectively. (b) Intercomparison with ERSST, where black
and blue are monthly mean SST changes of ERSST and new SSTs in different ocean from 2002 to 2019.

The code for data processing can be downloaded at
https://doi.org/10.5281/zenodo.4762067 (Cao et al., 2021b).

6 Data availability

The reconstructed MODIS SST products at 0.041◦ resolution
from 2002 to 2019 are freely available to the public in the
img format at https://doi.org/10.5281/zenodo.4419804 (Cao
et al., 2021a), which are distributed under a Creative Com-
mons Attribution 4.0 License.

7 Discussion and conclusions

The purpose of this study is to build a long-term series of
global major meteorological disaster remote sensing datasets
with high spatiotemporal and consistency based on the cur-
rent global multi-source remote sensing data and ground ob-
servation site data and to provide key ocean temperature pa-
rameters (such as sea surface temperature) for marine mete-
orological disaster forecasting models, especially rapid fore-
casts of marine disasters such as typhoons, and provide early
warning services for global fishing vessels and merchant
ships.
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In order to ensure the temporal and spatial consistency of
different data, we built a GOTM based on temperature depth
and observation time correction for modeling of the diurnal
signal at different depths, thus bridging the gap of multi-
source data. The GOTM model simulates the hydrodynamic
and thermodynamic processes of vertical mixing of one-
dimensional water columns in natural waters, and compre-
hensively considers the effects of solar shortwave radiation,
longwave radiation, latent heat, sensible heat and cloudiness
on the diurnal variations in SST, which can more accurately
simulate the diurnal variations in SST than traditional empir-
ical regression models that only consider the main factors of
diurnal variations (such as wind speed, solar radiation, etc.).
In addition, it has a high vertical resolution and can be en-
crypted on the surface layer to simulate the difference be-
tween the skin layer and the sub-skin layer, so as to achieve
the uniformity of temperature at different observation depths.
Therefore, the method-based GOTM simulation was used to
unify the temporal and spatial reference of SST at different
depths and different times for each pixel of the image, and
the accuracies of each sensor and in situ observations are im-
proved about 0.3–0.8◦. However, there are still certain errors,
which are related not only to the characteristics of different
sensors, retrieval algorithms, etc., but also to the accuracy
of the GOTM model simulation. The simulation accuracy
of GOTM largely depends on the input meteorological pa-
rameters. The wind speed, sea temperature, relative humid-
ity, cloud cover, and other data used in this paper come from
ECMWF reanalysis and forecast data. The spatial resolutions
of these data are relatively low, which has some influence on
accuracy. If the meteorological parameters with higher ac-
curacy and resolution are available, the simulation accuracy
can be improved further. In addition, when correcting tem-
perature obtained from in situ observations, not every in situ
observation from iQuam records the depth at the same time.
For example, the actual temperature measured by the drift-
ing buoys is not fixed at 0.2 m beneath the surface, which
will fluctuate due to the influence of waves and other factors.
Therefore, there will be a certain deviation in the correction
of the skin layer, and these factors will ultimately affect the
accuracy of the reconstructed product.

In addition, the SST data in the grid form represent the av-
erage temperature in the grid area, while in situ observations
represent just the temperature near the locations of the sta-
tions. Although the study used the average value of the high-
quality observation data that fall in the grid area with tempo-
ral sampling less than or equal to 1 h as the matched data of
the grid, it was still limited by the number of measured data
within the grid. Especially in the high-latitude areas where
the measured points are sparse, the uncertainties associated
with such matches could potentially bias the reconstruction
and validation results. Therefore, more meteorological ob-
servation stations are needed to help improve the accuracy
of the product. The acquisition and integration of rasterized
SST are a complex problem, and the reconstruction models

proposed in this research are just the beginning, which needs
to be improved and developed continuously. Better solving
the time phase and sampling depth problems of satellite re-
mote sensing data and to introducing multiple types of data
sources into the model are ways to improve the product ac-
curacy.

Finally, a new SST product was obtained with high spa-
tiotemporal coverage based on multisource data after cali-
bration by using the above model. The product, generated by
inputting infrared-based, microwave-based, and in situ SST
data into the reconstruction spatial model, has a monthly tem-
poral interval and a 0.041◦ spatial interval, which has higher
accuracy and better consistency with statistics than the origi-
nal datasets, and it combines the advantages of multi-source
data. Detailed comparisons and analyses with OISST and
ERSST products also illustrate the reliability and accuracy
of the reconstructed product. Thus, this product can be used
for mesoscale ocean phenomenon analyses. It will be use-
ful in research related to global change and local area disas-
ter prevention and mitigation. In addition, the reconstruction
strategy used in this study can be extended to other multi-
source and multi-temporal satellite data space-time gapless
field reconstruction.
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