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Abstract. China has witnessed extensive development of the marine aquaculture industry over recent years.
However, such rapid and disordered expansion posed risks to coastal environment, economic development, and
biodiversity protection. This study aimed to produce an accurate national-scale marine aquaculture map at a spa-
tial resolution of 16 m, using a proposed model based on deep convolution neural networks (CNNs) and applied
it to satellite data from China’s GF-1 sensor in an end-to-end way. The analyses used homogeneous CNNs to
extract high-dimensional features from the input imagery and preserve information at full resolution. Then, a
hierarchical cascade architecture was followed to capture multi-scale features and contextual information. This
hierarchical cascade homogeneous neural network (HCHNet) was found to achieve better classification perfor-
mance than current state-of-the-art models (FCN-32s, Deeplab V2, U-Net, and HCNet). The resulting marine
aquaculture area map has an overall classification accuracy> 95 % (95.2 %–96.4, 95 % confidence interval). And
marine aquaculture was found to cover a total area of ∼ 1100 km2 (1096.8–1110.6 km2, 95 % confidence inter-
val) in China, of which more than 85 % is marine plant culture areas, with 87 % found in the Fujian, Shandong,
Liaoning, and Jiangsu provinces. The results confirm the applicability and effectiveness of HCHNet when ap-
plied to GF-1 data, identifying notable spatial distributions of different marine aquaculture areas and supporting
the sustainable management and ecological assessments of coastal resources at a national scale. The national-
scale marine aquaculture map at 16 m spatial resolution is published in the Google Maps kmz file format with
georeferencing information at https://doi.org/10.5281/zenodo.3881612 (Fu et al., 2020).

1 Introduction

Marine aquaculture, which refers to the breeding, rearing,
and harvesting of aquatic plants or animals in marine wa-
ters, has significant potential for food production, economic
development, and environmental protection in coastal areas
(Burbridge et al., 2001; Campbell and Pauly, 2013; Gentry et
al., 2017). It has become a fast-growing industry in China due
to the significant increase in the demand for seafood, support
from policies, and technology innovation (Liang et al., 2018).
The marine aquaculture production in China has increased
from 10.6 million metric tons in 2000 (Bureau of Fisheries

of the Ministry of Agriculture, 2001) to 20.7 million metric
tons in 2019 (Bureau of Fisheries of the Ministry of Agricul-
ture, 2020). However, such rapid and disordered growth may
cause severe economic losses and environmental problems,
such as water pollution (Tovar et al., 2000), biodiversity de-
crease (Galil, 2009; Rigos and Katharios, 2010), and marine
sediment pollution (Porrello et al., 2005; Rubio-Portillo et
al., 2019). Therefore, accurate mapping and monitoring of
marine aquaculture can provide evidence to support the sus-
tainable management of coastal marine resources.

Previous research in this domain can be grouped into vi-
sual interpretation, analyses enhanced by including ancillary
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data such as information about spatial structure, object-based
image analysis (OBIA), and deep-learning-based methods.
Visual interpretation is used less frequently as it requires
too much time and effort. Enhanced analyses that incorpo-
rate features such as texture or average filtering (Fan et al.,
2015; Lu et al., 2015; Xiao et al., 2013) are commonly em-
ployed for pixel-based approaches. However, these are sub-
ject to noise (the salt-and-pepper effect) and decreased accu-
racy (Zheng et al., 2017). OBIA has been widely used for
the detailed interpretation of marine aquaculture from re-
mote sensing images (Fu et al., 2019a; Wang et al., 2017;
Zheng et al., 2017). It first partitions the image into segments
and then classifies segments based on their internal proper-
ties (Blaschke et al., 2014). However, since almost all these
methods are proposed based on the handcrafted features, it is
inherently difficult for them to achieve balance between high
discriminability and good robustness (L. Zhang et al., 2016).
To solve such problems, the remote sensing community has
started to incorporate deep fully convolutional neural net-
works (FCN) within marine aquaculture detection tasks us-
ing high-spatial-resolution (HSR) images at local scales (Cui
et al., 2019; Fu et al., 2019b; Shi et al., 2018). However, the
opportunities associated with analyses of the high volumes of
publicly available and free remote sensing data at medium-
resolution, such as Landsat, Sentinel-2 A/B, and GaoFen-1
wide-field-of-view (GF-1 WFV) imagery, have not been ex-
ploited. Therefore, it is necessary to develop a detection sys-
tem applying deep FCNs to such data to provide more reli-
able and effective mapping and monitoring over wider areas,
supporting evaluations of marine aquaculture areas at a na-
tional scale.

However, there are several critical limitations for accurate
mapping of marine aquaculture areas using deep FCN-based
methods when applied to medium-resolution data. The first
is the coexistence of multi-scale objects, such as the large
sea areas as well as small aquaculture areas, making it dif-
ficult to focus FCN on small marine aquaculture objects. A
common approach is to use inputs of different sizes from the
original images (Eigen and Fergus, 2015; Liu et al., 2016;
Zhao and Du, 2016) to ensure that different object sizes are
prominent in different parts of the FCN structure, but such
methods take more time due to the repetitive sampling of the
input imagery. Some researchers have generated multi-scale
features using atrous convolution (Chen et al., 2018) or pool-
ing operations at different scales (He et al., 2015; Zhao et al.,
2017). However, such approaches may be limited to a cer-
tain range of receptive fields, as operations may be applied
to invalid zones when pooling with a larger pooling size or
atrous convolution with a higher atrous rate. The second crit-
ical limitation is that the final features may have a smaller
size than the input imagery due to consecutive pooling oper-
ations in FCN, making it hard to identify land cover details.
To solve this problem, researchers have used deconvolution
operation (Noh et al., 2015) or fused features (Pinheiro et al.,
2016; Ronneberger et al., 2015), but FCN may fail to iden-

tify relatively small marine aquaculture areas. Finally, some
researchers have tried to refine the classification approach by
including known boundaries (Bertasius et al., 2016; Fu et al.,
2019c; Marmanis et al., 2018), but such methods require ad-
ditional classification steps to perform boundary extraction.

In conclusion, although present methods have been suc-
cessfully applied for dense classifications, the challenge of
using them to accurately extract the marine aquaculture ar-
eas from medium resolution images at a national scale re-
mains. To overcome these limitations, we proposed a novel
framework for the large-scale marine aquaculture mapping.
The main contributions of our study can be summarized as
follows.

– We present a unified framework based on convolution
neural networks (CNNs) for national-scale marine aqua-
culture extraction.

– A hierarchical cascade homogeneous neural network
(HCHNet) model is proposed to learn discriminative
and robust features.

– We provide the first detailed national-scale marine aqua-
culture map with a spatial resolution of 16 m.

The rest of the paper proceeds as follows. Section 2 briefly
presents a description of the study area and different types of
marine aquaculture. Section 3 introduces the input data and
method to develop the proposed deep learning architectures,
implementation details, and methodological choices. The re-
sults are presented in Sect. 4. Section 5 then discusses the
methods and the limitations of using deep learning methods
with medium-resolution data, and finally, Sect. 6 concludes
the paper.

2 Study area

The study area included all of the potential marine aquacul-
ture areas in China’s coastal regions (Fig. 1). Due to the large
amount of coastline and associated resources, many coastal
marine aquaculture areas have rapidly developed in coastal
regions. After a visual inspection on the HSR images from
Google Earth, we empirically set the width of the study area
along with the coastal line for detection as 30 km. According
to the types of cultivated aquatic products, the marine aqua-
culture areas in China can be classified into marine animal
culture (MAC) areas and marine plant culture (MPC) areas.

MAC areas are cultured with marine animals, such as
fish, crustaceans, shellfish, etc., in connected cages (Fig. 2k),
or wooden rafts (Fig. 2d). Most of the cages and rafts are
small (normally 3 m× 3 m or 5 m× 5 m in size) and sim-
ple in form (normally square). The materials used to con-
struct these cages are collected locally and include bamboo,
wooden boards, plastic foam floats, and polyvinyl chloride or
nylon nets. Because of the low investment costs and ease of
construction, farmers typically make the cages themselves.

Earth Syst. Sci. Data, 13, 1829–1842, 2021 https://doi.org/10.5194/essd-13-1829-2021



Y. Fu et al.: A new satellite-derived dataset for marine aquaculture areas 1831

Figure 1. Location of the study area, the spatial distribution of la-
beled samples, and acquired GF-1 wide-field-of-view (WFV) image
swaths in our study.

As they cannot withstand waves generated by typhoons or
sea currents, most cages must be installed in inshore waters
and sheltered sites (Fig. 2c, i).

MPC areas are generally cultivated with seaweed, such
as kelp, Undaria, Gracilaria, etc. Most of the seaweed is
twisted around ropes about 2 m in length. The ropes are
linked or tied to one (Fig. 2f) or two floating lines (Fig. 2j),
which are about 60 m long and kept at the sea surface by
buoys made from foam or plastic and anchored by lines tied
to wooden pegs driven into the sea bottom. As most of the
MPCs are submerged in the sea water, the features of MPC
in remotely sensed images are usually influenced by differ-
ent environments (Fig. 2b, e, g, h, j), making it difficult for
classification.

3 Materials and methods

Due to the large number of factors that could potentially af-
fect classification performance, implementation of the FCN-
based method at the national scale is a challenge. To reduce

the influence of various land covers, we used the coastal line
vector (Chuang et al., 2019) to exclude mainland areas af-
ter preprocessing all the input images (Fig. 3); then, we pro-
duced the marine aquaculture map by utilizing the HCHNet
method, which was trained and tested on a dataset validated
by field survey or HSR images.

3.1 Data and preprocessing

In this study, images from the WFV sensors of GF-1 were se-
lected as the primary data source. The GF-1 satellite, which is
the first satellite of the China high-resolution earth observa-
tion satellite program, was launched by the China Aerospace
Science and Technology Corporation in April 2013. This
satellite carries four integrated WFV sensors, providing
multi-spectrum data with a 2 d revisit cycle and a swath
width of 800 km when the four sensors are combined. Each
WFV sensor has four multi-spectral bands at 16 m spatial
resolution: B1 (450–520 nm, blue), B2 (520–590 nm, green),
B3 (630–690 nm, red), and B4 (770–890 nm, near infrared).
Compared with other frequently used medium-resolution
satellite imagery (e.g., Landsat, Sentinel), the wide cover-
age ability, high-frequency revisit time, and 16 m spatial res-
olution of the data significantly improve the capabilities for
large-scale marine aquaculture area observation and monitor-
ing. A total of 35 quantified GF-1 WFV images spanning the
2016–2019 period were finally selected from the China Cen-
tre for Resources Satellite Data and Application to cover the
whole coastal region in China and to filter for cloud coverage
(Fig. 1). The product filenames are listed in Table S1 of the
Supplement.

The images were projected into the UTM map pro-
jection, and atmospheric correction was undertaken using
the FLAASH atmospheric correction model embedded in
the ENVI software (v5.3.1). The “Maritime” model was
set as Aerosol Model. And all the other parameters can
be automatically set by using the extension tools (https://
github.com/yyong-fu/ENVI_FLAASH_EasyToUse, last ac-
cess: 27 April 2021). A 30 km buffer was used to extract the
images of the coastal areas, and the final set of clipped im-
ages consisted of four image bands at a spatial resolution of
16 m, used as inputs in the following parts.

3.2 Hierarchical cascade homogeneous neural network

As shown in Fig. 4, the proposed HCHNet is an FCN-based
neural network, which can be trained and applied to a large
area in an end-to-end way. Specifically, a homogeneous CNN
was designed to extract high-dimensional features from the
input images. A hierarchical cascade structure was followed
to extract multi-scale contextual information gradually based
on high-dimensional features. The following subsections in-
troduce three important components of the proposed HCH-
Net method, including (1) an encoder based on a homoge-
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Figure 2. Location of the sampling points (a). Image examples of typical marine aquaculture areas on ground or from high-spatial-resolution
(HSR) images. (b, e, g, h, i) Marine plant culture (MPC) areas from HSR images. (c, i) Marine animal culture (MAC) areas from HSR images.
(d, k) Photos of MAC areas on ground. (f, j) Photos of MPC areas on ground.

neous CNN, (2) hierarchical cascade structure, and (3) a loss
function.

3.2.1 Encoder based on a homogeneous CNN

Traditional CNN uses down-sampling process to improve the
local invariance, and the prediction results are usually only
labels at the patch level. For semantic segmentation, FCN can
enlarge the down-sampling feature maps to full-sized outputs
by using interpolation (Badrinarayanan et al., 2017) or de-
convolution (Noh et al., 2015). However, foreground objects,
such as the marine aquaculture areas in our study, occupy a
smaller portion of the GF-1 WFV images than in the natu-

ral images, making it hard for the FCN to recover the details
missing from consecutive pooling operations via learning.

As representations with high resolution are important for
the preservation of detailed information, the homogeneous
CNN (Shi et al., 2018) was used as the encoder. One of the
advantages of the homogeneous CNN is that it retains the
full resolution of features by removing all of the pooling op-
erations. As shown in Fig. 4, we built the encoder based on
the widely used VGG16 model. The VGG16 is constructed
of 13 convolutional layers and followed by three fully con-
nected layers. To preserve the spatial information and con-
trol the model size, the fully connected layer was removed
and convolutional kernels in the corresponding layers were
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Figure 3. Schematic flow chart of the marine aquaculture mapping (ROI: region of interest; HCHNet: hierarchical cascade homogeneous
neural network).

Figure 4. Overview of the proposed HCHNet approach.

reduced. As a result, the encoder can preserve full-resolution
features as the input image.

3.2.2 Hierarchical cascade structure

Although removing pooling operations can preserve more
detailed information, it can also decrease the receptive field
of the underlying neural network (Liu et al., 2018). In this
case, with fixed and limited receptive fields, it may cause
more misclassifications because of the loss of multi-scale
contextual information. To solve this problem, the hierarchi-
cal cascade structure proposed in a previous study (Fu et al.,
2019b) was used. This structure generally enlarges the recep-
tive field and increases the sampling rate by creating a hierar-

chical cascade structure using the atrous convolution layers
(as shown in the central part of Fig. 4). To reduce memory us-
age, batch normalization operations were used to replace the
attention modules, allowing feature maps from different lev-
els to be concatenated and easing the training process (Ioffe
and Szegedy, 2015). Each atrous convolution layer in the pro-
posed structure is formulated as follows:

F1 = Ck,D1 [Fo], (1)
Fl = Ck,Dl [L(Fo(C)F1(C)F2(C)F3(C). . .(C)Fl−1)], l > 1,

(2)

D1 <D2 <D3 < .. . < Dl, (3)
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where Fo denotes the feature maps from the output of our
encoder network. Ck,Dl [·] denotes an atrous convolution op-
eration with the kernel size ofK×K and dilation rate of d at
the l level. Fl (l = 1, . . .,n) denotes the features at the l level
in the structure. “(C)” denotes the concatenation operation.
“L(·)” denotes the batch normalization. Dl denotes the dila-
tion rate value at the l level.

3.2.3 Loss function

A significant problem during the training of FCN is the im-
balance of classes. Such imbalances can make training inef-
ficient, with relatively small marine aquaculture areas con-
tributing little to the model training process. In contrast,
much of the coastal area contains negative samples, such as
the sea area, which may dominate the training process and
decrease marine aquaculture identification accuracy. To ad-
dress this class imbalance problem, Eigen and Fergus (2015)
proposed reweighting each class based on a loss calculation.
Following this idea, the weighted loss was used to deal with
the class imbalance problem and to allow effective training
of all examples. The loss was defined as

WL(p,q)=−
n∑
i=1

αip(xi) log(q (xi)) , (4)

where p ∈ {0,1} represents the ground truth class, q ∈ [0,1]
is the predictive probability from the model for the classes,
and αi represents the weight for each class.

3.3 Implementation details

As shown in Fig. 4, the encoder was first applied, which is a
homogenous CNN with 13 layers (Table 1), to produce high-
dimensional and abstract features with full resolution from
the input imagery. And then, multi-scale contextual informa-
tion was captured by using the hierarchical cascade structure
with atrous rates of 3, 6, and 9. To regulate the model’s mem-
ory consumption and to prevent it from growing too wide,
1×1 kernels were employed in the hierarchical cascade struc-
ture to keep all the channels of concatenated features fixed to
128, which have the same output feature maps of other atrous
convolution layers.

As for the training and testing of HCHNet, we selected a
total of 705 patches. Each one of them has non-overlapping
256×256 pixels from raw images (Fig. 1). The ground truth
maps for each patch were obtained by visual interpretation.
From them, we randomly selected 80 % to construct the train-
ing dataset. Considering the relatively small training dataset,
data augmentation was applied to make the training process
more effective and reduce overfitting: each patch was flipped
in the horizontal and vertical directions and was rotated coun-
terclockwise by 90◦. As a result, there were 4656 patches that
can be used for the training of HCHNet.

In the experiment, we trained the HCHNet for 30 epochs
using a batch size of 4 and the Adam optimizer. The Adam

Table 1. Detailed configuration of the encoder in the proposed
HCHNet method. (l, k×k×n, s) of configurations means there are l
convolution layers with n convolution kernels, and their size is k×k
and stride is s. (h,w,c) of the output size means the output image
or feature maps have a height of h, a width of w, and a channel of
c.

Layer
name Layer type Configurations Output size

Input Image data – 256× 256× 4

B1 Convolution, ReLU 2,3× 3× 32,1 256× 256× 32
B2 Convolution, ReLU 2,3× 3× 64,1 256× 256× 64
B3 Convolution, ReLU 3,3× 3× 128,1 256× 256× 128
B4 Convolution, ReLU 3,3× 3× 256,1 256× 256× 256
B5 Convolution, ReLU 3,3× 3× 256,1 256× 256× 256

parameters were set as β1 = 0.9, β2 = 0.999, and a learning
rate of 0.0001 was used. The HCHNet was built and im-
plemented using the Keras (v2.2.4) on top of TensorFlow
(v1.8.0). All of the experiments were undertaken on a com-
puter with a graphics processing unit (GPU) of NVIDIA
GeForce GTX 1070.

3.4 Comparing methods and accuracy assessment

3.4.1 Comparing methods

To assess the effectiveness and advantage of our proposed
method, we provided a comparison with four state-of-the-art
FCN-based methods. We summarized the main information
as follows.

FCN-32s is the first FCN-based method proposed by Long
et al. (2015) for semantic segmentation. It was constructed
based on the VGG16, in which the original fully connected
layers are convolutionized. The model predicts classification
results by upsampling the final feature maps 32 times di-
rectly. It does not use any structure to extract multi-scale fea-
ture maps or get more detailed information from the shallow
layers. Thus, it can be used as a baseline model for our pro-
posed HCHNet methods.

U-Net is a typical FCN-based model with encoder–
decoder structure,which was proposed by Ronneberger et
al. (2015) for semantic segmentation of medical images. The
encoder has a similar structure to VGG16. Different from the
FCN 32s, U-Net combined the feature maps in the decoder
and mirrored feature maps in the encoder by using long-span
connections to provide precise localization and high classifi-
cation accuracy.

Deeplab V2 (VGG16 as the backbone) was proposed by
Chen et al. (2018) for semantic segmentation, which used the
atrous spatial pyramid pooling (ASPP) structure to capture
multi-scale contextual information, and they then used the
fully connected conditional random fields (CRFs) as a post-
processing tool to refine the prediction results.
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Figure 5. Spatial distribution of China’s marine aquaculture and zoom views of imagery and prediction results for typical areas of (a), (b),
(c), and (d).

HCNet was proposed by Fu et al. (2019b) to map the de-
tailed spatial distribution of marine aquaculture from HSR
images. This model has a variant of VGG16 as an encoder,
in which the stride and padding of the last two pooling layers
are set as one for high-resolution feature maps. It combines
the long-span connections, while also combining a hierarchi-
cal cascade structure.

The above models are suitable for classification and com-
parison purposes, because nearly all of these methods are
VGG16-based neural networks and employed typical struc-
tures for multi-scale information extraction. In the training
phase, all of the above models, including the proposed HCH-
Net, were trained from scratch using the same patches and
experimental settings as in the HCHNet method.

3.4.2 Accuracy assessment and comparison

To ensure representativeness of each class in the whole sam-
ple population for accuracy assessment, we followed the
widely used random stratified sampling method (Padilla et
al., 2014; Ramezan et al., 2019) to generate 4000 randomly
selected points in the coastal zone. Based on the visual inter-

pretation results from HSR images, several commonly used
accuracy statistics were calculated from the error matrix,
such as producer accuracy (PA), user accuracy (UA), over-
all accuracy (OA), and the kappa coefficient. Meanwhile, we
also conducted the area accuracy assessment (the percentage
of overlapping areas in the ground truth) based on more than
120 randomly selected 256×256 patches, which accounts for
nearly 20 % of the total samples.

After that, we compared the performances of our proposed
method with four state-of-the-art FCN-based models. The
accuracy comparison was undertaken using the test dataset.
To provide a quantitative assessment between our proposed
method and other methods, we calculated the widely used
F1 score (F1), precision, and recall (POWERS, 2011) as fol-
lows:

precision=
TP

TP+FP
, (5)

recall=
TP

TP+FN
, (6)

F1=
2× precision× recall

precision+ recall
, (7)
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Figure 6. The amount (area) and percentage of different types of marine aquaculture distribution in the coastal provinces of China. LN, SD,
JS, ZJ, FJ, GX, and GD indicate Liaoning, Shandong, Jiangsu, Zhejiang, Fujian, Guangxi, and Guangdong provinces, respectively.

where TP is the number of true positives, FP is the number
of false positives, and FN is the number of false negatives.

To compare different models’ discriminate ability for the
marine aquaculture areas, these accuracy values were calcu-
lated for each class, and the mean F1 values of the MAC and
MPC areas were used to assess the performance of the dif-
ferent methods.

4 Results

4.1 Spatial distribution of marine aquaculture areas in
China

The final classification results are shown in Fig. 5, with
the corresponding Google Maps kmz file published at
https://doi.org/10.5281/zenodo.3881612 (Fu et al., 2020).
The prediction results of typical areas (Fig. 5a–d) demon-
strate the applicability and robustness of the HCHNet method
to different marine aquaculture areas (i.e., MPC and MAC)
over different study sites (i.e., from Liaoning to Guangxi
provinces).

According to the classification results, the total area of
marine aquaculture in China is approximately 1103.67 km2.
As can be seen from Fig. 6a, marine aquaculture is mainly
distributed in the coastal areas of Fujian, Shandong, Liaon-
ing, and Jiangsu provinces. Fujian and Shandong provinces

have the largest areas of over 300 and 450 km2, respec-
tively. Furthermore, nearly 100 km2 of marine aquaculture
areas is found in Liaoning and Jiangsu provinces. Figure 6b
shows that over 85 % of the marine aquaculture areas in these
four coastal areas are MPC. Figure 6b also shows that the
provinces in north China, such as Liaoning and Shandong,
tend to have more MPC areas, with the provinces in south
China having more MAC areas.

Figure 6c shows that most of the marine aquaculture ar-
eas in China are MPC areas, with an area of over 950 km2,
6 times larger than the MAC area. Guangxi and Fujian
provinces have the largest areas of MAC, which account for
more than 70 % of the total MAC areas in China (Fig. 6d).
The largest areas of MPC are found in Fujian and Shandong
provinces, accounting for more than 70 % of the total MPC
areas in China.

4.2 Accuracy assessment of the marine aquaculture
area map in China

To quantitatively evaluate the classification performance of
our proposed HCHNet method, we used the random stratified
sampling method to perform the evaluation. A total of 4000
reference pixels were randomly selected, with 1000 pixels
from the classification results for each class. We then ob-
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Table 2. Accuracy assessment of the classification results in China based on visual interpretation (pixels). (PA: producer accuracy; UA: user
accuracy).

Predicted class
Ground truth

Sea Land MPC MAC Sum UA

Sea 981 12 5 2 1000 98.10 %
Land 5 987 3 5 1000 98.70 %
MPC 20 3 974 3 1000 97.40 %
MAC 31 76 2 891 1000 89.10 %
Sum 1037 1078 984 901
PA 94.60 % 91.56 % 98.98 % 98.89 %
Overall accuracy 95.83 %
Kappa coefficient 0.94

tained the ground truth of each point by visual interpretation
based on HSR images from Google Earth point by point.

As shown in Table 2, the error matrix shows that the over-
all accuracy was 95.83 %, and the kappa coefficient was 0.94.
The land and sea areas get the highest classification accu-
racy with both of the PA and UA values greater than 91 %.
The MPC areas have relatively high PA and UA values of
approximately 95 %. Most of the misclassifications of MPC
areas are related to the sea area. This is because the MPC ar-
eas are submerged in a complex sea environment, which can
easily be affected by waves, seafloor topography, shadows of
clouds, etc. The MAC areas have a relatively lower UA value
of 89.1 %, which may be caused by the relatively high com-
plexity and small numbers of training patches of MAC areas.

After that, we employed the bootstrapping (Efron and Tib-
shirani, 1997), which is suitable for estimating classification
accuracy (Duan et al., 2020; Lyons et al., 2018), to estimate
the uncertainty level. We bootstrapped the overall accuracy
from 4000 independent reference points. The bootstrapping
was performed for 1000 iterations, and the mean of the dis-
tribution used for the evaluation and the confidence intervals
was set as the 95 % quantile. Eventually, we obtained the
overall accuracy of 95.8 % (95.2 %–96.4, 95 % confidence
interval). Meanwhile, we derived that the marine aquacul-
ture area in China is 1103.67 km2 (1096.8 km2–1110.6 km2,
95 % confidence interval).

To further assess the validity of our proposed HCHNet
method, we also evaluated the area accuracy (percentage of
the overlapping area) based on the test dataset, including 120
randomly selected patches with a size of 256×256, which ac-
counts for 20 % of the labeled samples. As shown in Table 3,
the land and sea areas have the best classification accuracy
with area accuracy values greater than 93 %. Meanwhile, the
MPC and MAC also have relatively high area accuracy val-
ues of 81.8 % and 72.5 %, respectively.

Table 3. Area accuracy assessment of different classes based on
randomly selected patches.

Class Sea area Land area RCA CCA

Area accuracy 93.6 % 98.4 % 81.8 % 72.5 %

4.3 Comparison with the state-of-the-art methods

To assess the quality of the proposed HCHNet method, the
performance was compared with the results from other state-
of-the-art FCN-based methods, using the same test dataset.
As can be seen from the prediction results in Fig. 7, FCN-32s
and Deeplab V2 are unable to reliably identify marine aqua-
culture, especially the small and isolated marine aquaculture
areas (Fig. 7b, d, e), with much coarser predicted results than
other approaches. HCHNet identified more MPC and MAC
areas than U-Net and HCNet (Fig. 7a, d, e) and also identified
detailed information, even with the narrow channels among
neighboring MPC areas (Fig. 7b, e).

To provide a quantitative comparison, several commonly
used accuracy metrics were calculated from the test dataset
for MAC and MPC areas. Table 4 shows that the FCN-32s
and Deeplab V2 achieved similar accuracy values, with mean
F1 values less than 40 %. The U-Net and HCNet achieved
a similar classification performance, with mean F1 values
of approximately 70 %. Compared with these state-of-the-art
methods, our proposed HCHNet approach obtained the best
classification performance, with a mean F1 value of 76.3 %.
In addition, the HCHNet also achieved a good balance be-
tween precision and recall values of MAC, identifying more
accurate and existing MAC areas. The difference between
them is less than 4 % for the HCHNet, while the difference
values of other methods are more than 28 %.
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Table 4. Quantitative comparison of MPC and MAC areas between our method and other methods, where the best accuracy values are in
bold (%), and the second best are underlined.

Methods MPC MAC Avg.

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%) Mean F1 (%)

FCN-32s 66.1 54.2 59.6 63.9 8.60 15.2 37.4
DeeplabV2 70.4 40.9 51.7 53.7 5.71 10.3 31.0
U-Net 83.8 77.6 80.6 81.8 53.1 64.4 72.5
HCNet 77.3 79.0 78.1 74.0 40.0 51.9 65.0
Ours-HCHNet 82.2 81.8 82.0 68.7 72.5 70.6 76.3

Figure 7. The classification results of MPC and MAC areas comparing the proposed HCHNet method with other approaches. The black
solid outlined areas indicate where HCHNet obtains better results. The dotted line shows same locations in other images. The purple, yellow,
blue, and green areas in the classification maps represent the MPC, MAC, sea, and land areas, respectively.
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5 Discussion

5.1 Date and algorithms for the mapping of marine
aquaculture areas in China

This study developed a new algorithm to separate two typical
marine aquaculture types based on the most advanced FCN-
based models. The HCHNet was applied to medium-spatial-
resolution images from China’s GF-1 WFV sensors to map
the marine aquaculture areas in China. The input data and
the algorithm used in our study were different from current
state-of-the-art methods in many ways.

First, China’s GF-1 WFV sensors provide a larger num-
ber of valid image scenes that are suitable for a wide range
of analyses of marine aquaculture areas with high tempo-
ral resolution. MPC areas are only visible in several specific
months due to phenological development stages. However,
it is difficult to capture appropriate images that clearly rep-
resent the marine culture areas in these months from other
similar satellites, such as Landsat, which are frequently in-
fluenced by clouds or waves. The high temporal resolution of
the GF-1 WFV data (repeats each 2 d) means that it is pos-
sible to observe marine aquaculture areas with much greater
frequencies than data from other sources. Additionally, the
relatively wide swath of the data makes them highly suitable
for such large-scale mapping in China. In addition, it is pos-
sible to directly obtain images with 16 m spatial resolution
without any additional computations, such as pan-sharpening
operations, making the GF-1 WFV data a reliable data source
for large-scale marine aquaculture area observation and mon-
itoring.

Second, the proposed FCN-based HCHNet method im-
proves the classification accuracy and efficiency. Much pre-
vious research has used OBIA approaches (Fu et al., 2019a;
Wang et al., 2017) and other FCN-based methods (Fu et
al., 2019b; Shi et al., 2018). The accuracy of the OBIA
method depends on segmentation, which does not have uni-
versal methods for evaluating the selection of appropriate
segmentation parameters (Blaschke, 2010). It also takes a
large amount of time to undertake the segmentation process
and to design effective features or rules for hard classifica-
tions (Zheng et al., 2017), making such approaches more
difficult to be implemented operationally for national-scale
studies. The proposed HCHNet achieved the best classifi-
cation performance for three reasons: (1) all of the pooling
operations were removed to avoid the shrinking of features,
which helps improve the identification of smaller foreground
objects; (2) the hierarchical structure was used to enlarge the
receptive field to capture more contextual information, which
is helpful for reducing the influence of local variance; and
(3) the weighted loss function was employed to solve the
classes’ imbalance problem.

Third, masking out coastal land areas that do not intersect
with marine aquaculture areas was undertaken using publicly
available data and provided a simple and straightforward

methodological refinement to constrain the marine aquacul-
ture mapping. This was important because of the scale of the
classification over large coastal areas in China, which contain
various land covers outside of the aims of this study. Previ-
ous studies have used a threshold value (Zheng et al., 2017)
to mask out these land areas, but in this study, this was done
directly.

5.2 Uncertainty and limitations of the marine
aquaculture map in China

Accurate mapping of marine aquaculture areas at a regional
scale is challenging. There are several potential uncertain-
ties in our methods for mapping marine aquaculture areas.
First, because of the medium-spatial-resolution imagery and
the relatively small size of MAC area (Fig. 8a), it is difficult
to accurately identify the boundaries of small and isolated
MAC areas (generally less than 10 pixels). Overestimation of
MAC may occur, where the sea waters among several MAC
areas are misclassified as MAC. The HCHNet failed to de-
tect the small MPC areas (Fig. 8b) and harvested MPC areas
(Fig. 8c), causing an issue of underestimation. As shown in
Fig. 8d, some vegetation that is submerged or close to the sea
waters may be misclassified as MPC areas, since these pixels
share similar spectrum and shape features.

There are also some limitations of the proposed HCHNet
approach. First, the training process requires a large num-
ber of high-quality ground truth labels, which may require
much manual work and professional interpretation experi-
ence. Therefore, further research on accelerating the training
or inference process through weak supervision (Lin et al.,
2016; Pathak et al., 2015) or a series of model compression
methods (Li et al., 2017; Yim et al., 2017; X. Zhang et al.,
2016) will be undertaken to enhance the applicability of the
approach. Second, our proposed method can only be used for
the monitoring of marine aquaculture areas in surface water;
it is unable to detect the submerged cages in some places
(such as the coastal area of Shandong province in northeast-
ern China).

6 Data availability

The map of marine aquaculture in China’s coastal zone at
16 m spatial resolution has been published in the Google
Maps kmz file format with georeferencing information at
https://doi.org/10.5281/zenodo.3881612 (Fu et al., 2020).

7 Conclusions

Marine aquaculture areas and the coastal environment they
rely on are of significant ecological and socioeconomic
value. Accurate and effective mapping approaches are imper-
ative for the monitoring, planning, and sustainable develop-
ment of marine and coastal resources across local, regional,
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Figure 8. Illustration of potential sources of error in the HCHNet algorithm: the boundaries of relatively small and separate MAC (a)
or MPA (b) areas are difficult to accurately identify. (c) Harvested MPC areas are also difficult to detect due to shallow waters and the
disappearing dark tone. (d) Vegetation located close to the water bodies may be misclassified as MPC areas. The first row highlights typical
misclassified areas from GF-1 WFV data. The second row shows high-spatial-resolution images from Google Earth (© Google Maps). The
third row is a zoom view of the Google Earth images in the second row (© Google Maps). The red and yellow areas indicate the classification
results of MPC and MAC areas, respectively.

and global scales. The increasing public availability of re-
mote sensing data, ancillary data, and advanced computer vi-
sion algorithms together provided an effective route for iden-
tifying marine aquaculture areas at a national scale. By using
the powerful and inherent self-learning mechanism of deep
learning, a new algorithm was carefully designed based on
the FCN structure and applied to the GF-1 WFV data. The
application of this algorithm produced a marine aquaculture
area map of China with an overall classification accuracy
> 95 % (95.2 %–96.4, 95 % confidence interval). The total
area of China’s marine aquaculture areas was estimated to
be approximately 1100 km2 (1096.8–1110.6 km2, 95 % con-
fidence interval), of which more than 85 % is MPC areas.
Most of the marine aquaculture areas are distributed along
the coastal areas of Fujian, Shandong, Liaoning, and Jiangsu
provinces. Guangxi and Fujian provinces have the largest ar-
eas of MAC, and Fujian and Shandong have the largest ar-
eas of MPC. The algorithm could be implemented at other
regional and global scales with the collection of sufficient
samples and the careful investigation of marine aquaculture
phenology in these areas.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-13-1829-2021-supplement.
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