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Abstract. Phenological events are integrative and sensitive indicators of ecosystem processes that respond to
climate, water and nutrient availability, disturbance, and environmental change. The seasonality of ecosystem
processes, including biogeochemical fluxes, can similarly be decomposed to identify key transition points and
phase durations, which can be determined with high accuracy, and are specific to the processes of interest.
As the seasonality of different processes differ, it can be argued that the interannual trends and responses to
environmental forcings can be better described through the fluxes’ own temporal characteristics than through
correlation to traditional phenological events like bud break or leaf coloration. Here we present a global dataset of
seasonality or phenological metrics calculated for gross primary productivity (GPP), ecosystem respiration (RE),
latent heat (LE), and sensible heat (H) calculated for the FLUXNET2015 Dataset of about 200 sites and 1500 site
years of data. The database includes metrics (i) on an absolute flux scale for comparisons with flux magnitudes
and (ii) on a normalized scale for comparisons of change rates across different fluxes. Flux seasonality was
characterized by fitting a single-pass double-logistic model to daily flux integrals, and the derivatives of the fitted
time series were used to extract the phenological metrics marking key turning points, season lengths, and rates
of change. Seasonal transition points could be determined with a 90 % confidence interval of 6-11d for GPP,
8-14d for RE, 10-15d for LE, and 15-23d for H. The phenology metrics derived from different partitioning
methods diverged, at times significantly.

This Flux Seasonality Metrics Database (FSMD) can be accessed at the US Department of En-
ergy’s (DOE) Environmental Systems Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE,
https://doi.org/10.15485/1602532; Yang and Noormets, 2020). We hope that it will facilitate new lines of re-
search, including (1) validating and benchmarking ecosystem process models, (2) parameterizing satellite remote
sensing phenology and PhenoCam products, (3) optimizing phenological models, and (4) generally expanding
the toolset for interpreting ecosystems responses to changing climate.

Phenology, the timing of life-cycle events and phases of
plants and animals, and their relationship with the environ-
ment, especially climate (Lieth, 1974; Piao et al., 2019), is
an important indicator of ecosystem dynamics. It is an in-
tegrating record of the effects of global warming and other
environmental changes on biological processes (Noormets et
al., 2009; Post and Stenseth, 1999; Weltzin et al., 2020). Cur-
rent phenology studies focus primarily on structural changes
such as bud break, flowering, leaf coloring, and leaf fall.
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However, the functional aspects of plant activities, although
invisible, also provide quantitative measures of plant re-
sponses to changes in environmental conditions and under-
lie the structural changes (Fitzjarrald et al., 2001; Schwartz,
2003; Schwartz and Crawford, 2013). Ecosystem processes
such as biogeochemical fluxes also show seasonal changes
and can be decomposed to key transition dates and phase du-
rations, which characterize the exchanges of mass and energy
between plants and the environment and may exert mutual
feedback (Baldocchi et al., 2001; Freedman et al., 2001).
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Currently, the phenology datasets mainly have three
sources: (i) ground-based observations of plant structural
changes, (ii) camera-based observations of canopy re-
flectance (or near-surface remote sensing observations), and
(iii) satellite-based observations of land surface reflectance.
The ground-based phenology is a traditional but very use-
ful method in phenology studies. For example, the USA
National Phenology Network (USA-NPN) has collated ob-
servations of first bloom and first leaf of lilac and honey-
suckle from the 1960s across the contiguous United States
(Schwartz et al., 2012; CONUS, United States territory, not
including Hawaii or Alaska; Betancourt et al., 2007; Glynn
and Owen, 2015). The USA-NPN was established in part to
assemble long-term phenology datasets for a broad array of
species across the United States, which can be used to deter-
mine the extent to which species, populations, and communi-
ties are vulnerable to ongoing and projected future changes
in climate (Glynn and Owen, 2015; Schwartz et al., 2012).
The camera-based phenology observations such as the Phe-
noCam network (https://phenocam.sr.unh.edu/webcam/, last
access: 21 March 2021; Richardson et al., 2018; Richard-
son, 2019) use high-resolution digital cameras to character-
ize canopy phenology through the color information from the
images (Brown et al., 2016; Richardson et al., 2018). The
remote sensing has been used to detect vegetation green-up
and canopy development (Ganguly et al., 2010; Julien and
Sobrino, 2009; Zhang et al., 2003, 2018). While the remote-
sensing-based phenology product estimates transition dates
from a continuous reflectance time series, it is compared
against ground-based event data. The seasonality of ecosys-
tem processes, including biogeochemical fluxes, can simi-
larly be decomposed to identify key transition points and
phase durations, which can be determined with high accu-
racy, and are specific to the processes of interest. As the sea-
sonalities of different processes differ, it can be argued that
the interannual trends and responses to environmental forc-
ings can be better described through the fluxes’ own temporal
characteristics than through correlation to traditional pheno-
logical events like bud break or leaf coloration.

Therefore, the objective of this paper is to generate an
objective and standardized flux seasonality metrics dataset,
which can act as the companion dataset for the FLUXNET
product. This study aims to develop a comprehensive frame-
work for studying the seasonality of ecosystem processes
systematically with eddy covariance flux measurements in-
cluding gross primary productivity (GPP), ecosystem res-
piration (RE), latent heat (LE), and sensible heat (H). As
ecosystem and Earth system models are increasingly tested
and developed using the very high temporal and increasing
spatial coverage of eddy covariance sites, the added informa-
tion of explicit and standardized flux-specific transition times
offers unprecedented opportunity to refine the process rep-
resentations in models even further (Baldocchi et al., 2001;
Falge et al., 2002; Noormets, 2009; Wofsy et al., 1993). The
remainder of this paper is organized to the dataset descrip-
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tion, the summary of estimating the seasonality metrics from
idealized seasonal curves of different fluxes, description of
the model performance, uncertainties of the flux seasonality
metrics, and conclusions.

2 Data

FLUXNET is a global network of regional networks of eddy
covariance sites that measure the exchange of CO,, water
vapor, and energy between vegetation and the atmosphere
(Baldocchi et al., 2001; Baldocchi, 2008). Recently, harmo-
nized data processing protocols have been developed (Pa-
storello et al., 2020), and the growing global coverage of
these observations has become the de-facto ground-truthing
tool for both mechanistic ecosystem models as well as global
planetary circulation models (Baldocchi, 2003, 2020). The
data include continuous (i.e., gap-filled) measurements of
net ecosystem exchange of CO, (NEE), latent and sensible
heat fluxes (LE and H), and microclimate data (air temper-
ature, humidity, wind speed and direction, solar radiation,
soil temperature, and soil water content), all at a 30 min time
step. Estimates of canopy photosynthesis and ecosystem res-
piration, derived from the data using an empirical model,
are also typically available. The data undergo quality assur-
ance, and missing half-hourly averages are filled using stan-
dardized methods to provide continuous data records (Foken
and Wichura, 1996; Mauder et al., 2008; Pastorello et al.,
2019). The current study uses the FLUXNET2015 Dataset
(https://fluxnet.fluxdata.org/, last access: 21 March 2021),
which includes over 200 sites and around 1500 site years of
data (Fig. 1). The gap-filled 30 min data series of fluxes and
micrometeorological conditions were aggregated to daily to-
tals. The example sites for each biome were selected based
on the following boundary conditions: (1) distinct season-
ality of all fluxes; (2) data coverage of observed and high-
quality gap-filled data > 75 % (defined by variable-specific
data quality flags in the FLUXNET database; Reichstein et
al., 2005). Therefore, the coverage of different fluxes is dif-
ferent, in which GPP has the highest coverage and H has
the lowest coverage. The final dataset included 170 sites and
1035 site years for GPP, 173 sites and 1013 site years for
RE, 130 sites and 773 site years for LE, and 110 sites and
446 site years for H. Even though the FLUXNET sites are
mainly distributed in the Northern Hemisphere and temper-
ate ecosystems, they still have high spatial and temporal rep-
resentativeness (Yu et al., 2019).

Although there is a broad agreement between different
flux partitioning approaches (Moffat et al., 2007), and many
approaches have converged recently, the current FLUXNET
data product still includes a couple of alternative estimates
of derived fluxes (RE, GPP). The latest interpretation of res-
piration fluxes, in particular, is that the night- and daytime
estimates may represent different facets of the same phe-
nomenon (Keenan et al., 2019). Different researchers may
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Figure 1. Global distribution of eddy covariance flux sites included in this study, color coded by their International Geosphere-Biosphere

Programme (IGBP) biome classes.

choose different partitioning approaches for different pur-
poses. Hence, the phenological metrics dataset includes met-
rics for all biogeochemical fluxes reported in the FLUXNET
dataset. Debating the strengths of different partitioning ap-
proaches, and indeed the quality of the underlying dataset, is
beyond the scope of this study. We assume that the data re-
ported has passed certain thresholds, even though some addi-
tional screening has been necessary, and not all site years are
of sufficient coverage and quality to estimate the flux season-
ality metrics. The metrics are reported both in absolute flux
scale (to allow comparisons against commonly reported val-
ues) and in relative, normalized scale (to allow comparisons
of development rates among different fluxes).

3 Method

3.1 Phenology metrics and uncertainties from flux
observation

The seasonal dynamics of the ecosystem fluxes generally
have five distinctive phases, which results from the interac-
tion between the inherent biological and ecological processes
and the changes in environmental conditions, and reflects the
unique functioning of plant community at different stages of
the growing season (Gu et al., 2009). The five phases are (1)
pre-phase, baseline dormant season flux, before leaf devel-
opment; (2) flux development period, a rapid increase in flux
rate, concurrent or immediately following leaf emergence
and expansion; (3) peak flux period, a relatively steady stage
in the middle of the growing season; (4) flux recession pe-
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riod, a rapidly declining stage to the baseline; and (5) termi-
nation phase, the onset of a new dormant season, following
leaf senescence and abscission. Sites with non-standard flux
seasonality, where the R? of model fit was below 0.75, were
filtered out during general model fit assessment. Most filter-
ing related to poor quality gap filling with obviously distorted
seasonality, but seven sites with multiple peaks during the
same year were also excluded from the current study. South-
ern Hemisphere sites were analyzed by shifting the calendar
year cutoffs by 180d.

Here, we fit the single-pass double-logistic model as first
described by Gu et al. (2009) to fit the flux time series. This
function exhibits broad structural flexibility and robust con-
vergence, both of which are important for automated process-
ing. The temporal variation in eddy-flux data for an entire
growing cycle can be modeled using the function

ai az

Fn() = fo+ (1 T e—bl(t—fl))cl - (1 4 e—bz(t—tz))cz ’

ey

where Fy, is the flux value in a given day of year (DOY) ¢,
fo is the dormant season base flux, and a; and a; are param-
eters about the flux magnitude. Parameters b1, by, c1, and >
are related with the transitions or curvature parameters. The
model was fit to daily integrated fluxes, following iterative
procedures:

a. Fit Eq. (1) to the flux time series and calculate a pre-
dicted value for each DOY.

b. For each point in the time series, compute the ratio of
the observed to predicted flux.
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c. Conduct the Grubbs test (Grubbs, 1969) to identify out-
liers in the obtained ratios.

d. If an outlier is detected, remove this outlier and go to
step c.

e. If no outliers are found, remove the data points whose
ratios are more than 1 standard deviation (1 s) below the
mean ratio.

f. Fit Eq. (1) to the time series of the daily flux measure-
ments.

The DOYs at which the fitted logistic curve showed char-
acteristic curvature changes were identified with the formula
shown in Table 1 derived analytically from the seven param-
eters of Eq. (1) corresponding to the minimum and maximum
values of the first and second derivatives. The first derivative
of Eq. (1) is given by

ajciebrt=1)
= b(1 + e—br=m)yer+1 a by(1 + e~b2t=n)yer+1°
@

aycpe~(b2(1—12)

Fp ()

The first derivative can be considered as the rate of change of
the flux. The maximum of the first derivative occurs early and
the minimum late in the growing season (Fig. 2). The day on
which the maximal growth rate of each flux occurs is termed
the “midpoint of flux development period” (DOYmrp; point
B), the day on which the minimal growth rate occurs is
termed the “midpoint of flux recession period” (DOYMER;
point E), and the interval between these two transition dates
is termed the “length of flux midpoint” (Lpy = E — B).
The second derivative of Eq. (1) is given by

aycpe—(b2(1—12)
b%(l + e—(bz(t—tz))cz+1
alcle*(bl(t*fl))
p2(1+ e*(bl(’*ll))CrH
ajcie~@bit=t(c1+1)

b% (1 4+ e~ (t—l‘l))Cl 12
apcpe—(2h2t—12)x(c2+1))

Fl(t)= 3)

b%(l + e~ (bai—1))c2+2 )

The second derivative can be considered as the rate of the
growth rate of the flux. The spring and fall maxima of the
second derivative mark the start of flux development period
(DOYsrp; point A) and end of the flux recession period
(DOYgpR; point F), whereas the minima mark the transition
from the flux development to peak flux period (point C =
DOYgrp = DOYspr) and the transitions from the peak flux
to flux recession period (point D =DOYEgpr = DOYSFR).
Periods between AC, CD, and DF mark the length of flux
development, peak flux, and flux recession periods (Lgp,

Earth Syst. Sci. Data, 13, 1461-1475, 2021

L. Yang and A. Noormets: Standardized flux seasonality metrics

Lpr, and LR, respectively). We also calculated the peak flux
(Fmax), date of peak flux (DOYpmax), the rate of the flux
development period (Rpp;!/1), the rate of peak flux period
(RpE; [2), and the rate of the flux recession period (RpR; [3).
Period AF is the length of active season (Las).

The fitted daily fluxes observations were normalized to
0-1, and then the rates of change were calculated (namely
NRpp, NRpp, and NRgr), which can be used for comparison
of development rates among different fluxes.

All the seasonality metrics were summarized in Table 1.

3.2 Evaluation of parameter quality
3.2.1 Model fit statistics

The fit of Eq. (1) to flux time series was characterized
through the coefficient of determination (R?), root mean
square error (RMSE), empirical BIAS, and agreement index
(AI).

The R? value of a regression is a measure of the portion of
the variance of the dependent variable accounted for by the
explanatory variables and characterizes the goodness of fit of
the fitted model,

_ X (Fo(t) = Fo)? = 31 (Fo(t) — Fn(1))?

R? -
Yo (Fo(t) — Fo)?

. “)
where Fy, and F, are the predicted and observed values, re-
spectively, F, is the mean value of the observations, and 7 is
the sample size or the number of days in the year.

The RMSE was estimated as the square root of the mean
value of the squared residuals:

n _ 2
RMSE — D=1 (Fo(®) Fm(t)).
n

®)

The BIAS was calculated as the mean value of the model’s
residuals:

Y= (Fo(t) = Fn(1))

n

BIAS =

(6)

The agreement index (AI; Willmott, 2013) provides a mea-
sure of the relative error in model estimates, combining the
information contained in the correlation coefficient (R) and
RMSE, and is popular in model assessments and calibration
(Gu et al., 2002; Zhou et al., 2016). It is calculated as

11 (Fo(t) = Fu(1))?

Al =100-100 — -
S (|(Fm(®) = Fo| + | Fo(t) — Fo|)

Al is dimensionless and ranges from 0 (complete disagree-
ment) to 100 (perfect fit). The Al is also sensitive to dif-
ferences between observed and modeled means (Willmott,
2013). Thus, the Al is well suited for comparing model fits
across different biomes and climates.
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Figure 2. An example of the seasonal dynamics of gross primary productivity (GPP), and metrics of transition points of different phases
derived from the extremes of the first (F, (r)) and second (F/ (1)) derivatives of the fitted logistic function (Eq. 1). For visual clarity, the
scales of the first and second derivatives are enhanced 20-fold and 200-fold, respectively (orange and purple lines). The blue line indicates
the double-logistic model (Eq. 1) fitted to the observed flux time series (black dots). The slope of the green dash lines indicates the rate of
change during the flux development, peak flux, and flux recession period. The phenological transition points are marked with the vertical
dashed lines, and the bootstrap estimates of 90 % confidence intervals of these metrics are indicated with the horizontal red error bars about
the seven key transition points.

Table 1. Seasonality metrics estimated for biogeochemical fluxes including gross primary production, ecosystem respiration, latent heat, and

sensible heat.

Metric type Abbreviation Name of metric Fig. 2 label  unit
Transition dates  DOYMpD Midpoint of flux development B DOY
DOYMER Midpoint of flux recession E DOY
DOYsrp Start of flux development A DOY
DOYgrp = DOYspr  End of flux development/start of peak flux period C DOY
DOYsrr =DOYEgpr  End of peak flux period/start of flux recession period D DOY
DOYEfrrR End of flux recession period F DOY
DOYFmax Date of peak flux G DOY
Phase durations Ly Length of flux midpoint BE days
Lrp Length of flux development period AC days
Lpp Length of peak flux period CD days
LFR Length of flux recession period DF days
Las Length of active season AF days
Peak value Fmax Peak flux value Fn(G) -
Rates of change  Rpp (NRpp) (Normalized) rate of flux development period I -
Rpr (NRpF) (Normalized) rate of peak flux period 15 -
Rpr (NRER) (Normalized) rate of flux recession period I3 -
Note that “~” means units vary for phenology metrics of different fluxes.
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3.2.2 Uncertainties estimation

The uncertainties in the flux seasonality metrics estimates
arise from two sources: (i) the day-to-day variability of
fluxes, particularly during the transition periods, that affect
the overall goodness of fit of Eq. (1) (see Sect. 3.2.1) and
(i1) the consistency of change in climatological drivers dur-
ing the transition periods that can manifest as early or late
cold or warm spells providing conflicting signals to plant de-
velopment and can affect specific metrics without affecting
others. The overall model fit statistics can be used to identify
the suitability of different data sources for flux seasonality
assessment, but they are not good indicators of the confi-
dence in specific seasonality metrics. Assessing the quality
of the underlying flux data is beyond the scope of the current
study, and all reported flux values are assumed “true” and the
best possible estimates. The uncertainties in the seasonality
metrics were estimated similar to Elmore et al. (2012), using
Monte Carlo bootstrapping (Efron, 1979). Bootstrapping is
a statistical procedure that resamples a single dataset to cre-
ate many simulated samples. The advantage of the bootstrap-
ping is that parameters can be estimated without assumptions
about the normal distribution and using also a small sample
size. The distribution of parameter estimates for these boot-
strap models provides valuable information about parameter
uncertainty and correlation that is free of assumptions about
the underlying data distributions. In this study, random uni-
form sampling with replacement was conducted 500 times
for each site year, and the seasonality metrics were estimated
for each iteration of the bootstrapped dataset (Elmore et al.,
2012; Klosterman et al., 2014). The 5th and 95th percentiles
of the 500 bootstrapped phenology metrics estimates were
taken as the confidence interval of the mean estimated from
the original dataset. The uncertainties of the seven key transi-
tion dates are shown in Fig. 2, with red horizontal error bars
to indicate the uncertainty intervals.

4 Results

4.1 Model fit statistics

The double-logistic model (Eq. 1) captured the temporal dy-
namics of widely divergent flux time series (Fig. 3). Al-
though the model fit statistics do not directly translate to the
quality of the seasonality metrics estimates (see Sect. 3.2.2),
the general fit statistics deserve a brief review. Table 2 shows
the overall performance of the fitted model for the differ-
ent fluxes. The primary explanatory variable behind the fit
statistics, as well as the differences between different fluxes,
was the range of day-to-day variability in the flux time se-
ries. For example, H was generally more variable than LE,
both of which are much more variable than RE and GPP,
which resulted in lower fit statistics for H and LE than
for GPP and RE (Table 2, Fig. 3). The model fit statistics
reported in Table 2 were largely consistent in ranking the
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goodness of fit among biomes. Biomes with well expressed
seasonal flux magnitude differences (mixed forest, decidu-
ous broadleaf forest, evergreen needleleaf forest, croplands)
exhibited consistently higher fit statistics than biomes with
weak seasonality of fluxes (CSH and EBF). The latter also
exhibited relatively greater day-to-day variability of fluxes,
resulting in lower fit statistics. For GPP, the fit statistics were
practically indistinguishable for time series partitioned based
on daytime and nighttime partitioning methods (GPP-DT:
Al =98.81, R* =0.96; GPP-NT: Al =98.73; R?=0.95),
whereas for RE the nighttime partitioning method showed
a marginally better fit than the daytime method (Al = 98.66
and R? = 0.95 versus Al = 97.82 and R? = 0.92).

4.2 Uncertainties of seasonality metrics

The uncertainties of individual flux seasonality metrics (Ta-
ble 1) were estimated as the 5th and 95th percentiles of 500
Monte Carlo bootstrapping samples ranging from about a
week to several weeks, and the uncertainties of phase dura-
tions tended to generally be greater than those of individual
transition dates. Generally, the uncertainties were the lowest
for the phenology metrics of GPP and highest for H (shown
as horizontal red lines on Fig. 3). The average uncertainties
of transition dates ranged from 6—11 d for GPP, 8 to 14 d for
RE, 10 to 15d for LE, and 15 to 23 d for H. The average un-
certainties of duration length ranged from 12-20d for GPP,
14 to 23 d for RE, 16 to 25d for LE, and 23 to 32d for H.

For all fluxes, deciduous broadleaf forest always showed
the lowest uncertainties among all biomes. Uncertainties of
flux development midpoints were always lower than those of
start and end points. Meanwhile, the uncertainties of duration
dates are larger than those of transition dates, indicating the
compounding effect of the uncertainties of the start and end
dates of the active season. The length of the dormant season
also affects the uncertainties: the longer the dormant season,
the lower the uncertainties.

4.3 Alternative data sources
4.3.1 Daily peak versus daily total fluxes

Even with standardized data sources like FLUXNET2015
Dataset, some user discretion of data aggregation remains,
which may affect the reproducibility of different analyses.
We mentioned earlier that the FLUXNET2015 Dataset con-
tains GPP and RE estimates from different gap-filling algo-
rithms. In addition, the daily time series can be assembled
as either daily integrated fluxes (more common) or as daily
peak fluxes, as proposed by Gu et al. (2009), reasoning that
daily peaks may be less sensitive to cloudiness and thus bet-
ter capture the seasonal dynamics of flux capacity. To test
this line of argumentation, and identify the best representa-
tion of flux seasonality, we started the current study by com-
paring the model fit statistics for either of these data types.

https://doi.org/10.5194/essd-13-1461-2021
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the double-
flux time series (black dots). The phenological transition points are marked with the vertical dashed lines, and the bootstrap estimates of

90 % confidence intervals of these metrics are indicated with the horizontal red error bar for corresponding transition points. Note that the

Fitted Curve
confidence intervals are not always symmetrical to the best estimate.

Flux Observations
Figure 3. Examples of the seasonal dynamics of different fluxes for 10 sites representative of different biomes. One biome, open shrubland,

was left off because of space limitations on a single page. The blue line indicates
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Except for H, all other fluxes had higher model fit statis-
tics with daily integrated than daily peak fluxes (Fig. 4). Al-
though only R? values are shown, all other fit statistics con-
firmed the same pattern (Table 2). Therefore, we adopted the
daily integrated fluxes for the following phenology metrics
dataset generation. Although the day- and nighttime parti-
tioning methods yielded different flux estimates, and differ-
ent model fits, choosing the best between them is not ap-
propriate at this point. Both partitioning methods have their
uses, and their respective merits have not been conclusively
proven. The differences between the seasonality metrics of
each dataset will be discussed in Sect. 4.2.3.

Although daily flux totals were identified as the preferred
scalar for deriving seasonality metrics from, we will report
here the differences between the metrics estimated from the
daily peak ecosystem respiration and daily integrated ecosys-
tem respiration data (Fig. 5). This can be viewed as the min-
imum methodological uncertainty in a best-case scenario in
the sense that the correlation between the two sets of metrics
was much higher (average R? = 0.81; Fig. 5) than between
other sources of variability (e.g., the daytime and nighttime
partitioning models resulted in seasonality metrics with an
average R*> = 0.27; Fig. 7). The differences between the met-
ric derived from daily integrated and peak flux values are
generally smaller than the confidence intervals of individ-
ual estimates, except in WSA and SAV. Annual peak flux
from daily peak ecosystem respiration exhibited consistently
greater values than daily integrals (Fig. 50), as would be ex-
pected.

4.3.2 Comparison of different flux partitioning methods

The significance of the assumptions made by partitioning
methods to fill flux time series has been emphasized from
the perspective of flux integrals (Kruijt et al., 2004). Here we
show that the choice of the partitioning model can also affect
the seasonality of daily integrated fluxes and thus the season-
ality metrics (Fig. 6). We report here the differences between
the daytime and nighttime models of flux partitioning as ex-
emplified by the RE and GPP time series, but the lessons
apply for all partitioning approaches. Most importantly, mix-
ing of time series filled with different models should not be
done.

Ecosystem respiration (RE)

The nighttime and daytime flux partitioning methods can
yield similar or dissimilar daily RE, and sometimes even the
seasonality can diverge significantly between them (e.g., US-
PFa 2014 in Fig. 6).

The differences in flux seasonality metrics based on the
partitioning method (Fig. 7) are sizable, non-systematic, and
generally greater for season length metrics than transition
date metrics (because the season length is determined by two
transition dates, each of which is subject to deviation among

https://doi.org/10.5194/essd-13-1461-2021
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Figure 7. The scatter plots of seasonality metrics from RE data using daytime and nighttime partitioning methods.

methods). Interestingly, the seasonality metrics of flux devel-
opment period (Fig. 7a, d, e, ) are more consistent than those
of the peak flux period (Fig. 7g, h, 1) and flux recession period
(Fig. 7b, j, k, 1). A more detailed analysis of the performance
of the consistency of the different partitioning methods is the
subject of future studies, and we may find answers more from
information pertaining more to the accuracy of the flux esti-
mates than the seasonality estimates.

Earth Syst. Sci. Data, 13, 14611475, 2021

Gross primary production (GPP)

The seasonality of GPP time series differed less between the
two flux partitioning methods than did RE (Fig. 8). It is also
obvious that the seasonalities of RE and GPP for the same
sites differed significantly in terms of the seasonal timing,
symmetry, peak duration, and other aspects. A more detailed

https://doi.org/10.5194/essd-13-1461-2021
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Figure 9. The scatter plots of different phenology metrics from GPP data using daytime and nighttime partitioning methods.

assessment of these differences is the subject of a forthcom-
ing analysis (Yang and Noormets, 2021).

As suggested by the extent of overlap in the flux estimates
on Fig. 8, the seasonality metrics of GPP from the two parti-
tioning methods were also more consistent compared to RE
(Fig. 9). The scatter was distributed around the 1 : 1 line and
with little bias. However, similar to RE, the metrics of the

https://doi.org/10.5194/essd-13-1461-2021

flux development period of GPP were also more consistent
among the partitioning methods than those of peak flux pe-
riod and flux recession period. Yet, the rate of flux develop-
ment was more variable between the methods than the rate of
flux recession (Fig. 9p, r, s, u). And like for ER, the phase du-
ration metrics of GPP were more variable than the transition

dates.
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5 Data availability

This database can be obtained at the US Department
of Energy’s (DOE) Environmental Systems Science
Data Infrastructure for a Virtual Ecosystem (ESS-DIVE,
https://doi.org/10.15485/1602532; Yang and Noormets,
2020).

6 Significance

The Flux Seasonality Metrics Database (FSMD) presented
here summarizes important latent features contained in the
land surface biogeochemical fluxes and is likely to allow
novel insights into the functioning of the biosphere and as-
sist in the development and validation of novel functional-
ity in Earth system models. Improving the predictive capa-
bilities of ecosystem biogeochemistry models on interannual
and decadal scales remains a challenge, and variability in the
seasonality of different fluxes has been recognized as a key
uncertainty. Importantly, the seasonality of GPP in models
is often forced to match observations with arbitrary coeffi-
cients (Straube et al., 2018), as the divergence of LE and GPP
seasonality is not captured in common LAI-driven models
(Wu et al., 2017; Restrepo-Coupe et al., 2017). By develop-
ing process-specific seasonality references, explicit valida-
tion of these fluxes becomes possible. In addition, the ability
to discern shifts in seasonality from those in flux capacity or
vegetation structure can also be important in correcting the
attributions of observed changes.

A standardized flux seasonality metrics dataset can also
support other seasonality assessment tools, like near-surface
(e.g., PhenoCam network; Richardson et al., 2012) and re-
mote optical sensors (Broich et al., 2015; White and Nemani,
2006; Ganguly et al., 2010; Gamon et al., 2016). However,
as these methods purport to infer GPP from the greenness in-
formation, they are vulnerable to the same lags between leaf
development, LE, and GPP that have undermined the model
development mentioned above. In addition, pixel heterogene-
ity and clouds can reduce the potential of remote sensing ap-
proaches.

The FSMD was designed to capture and depict the sea-
sonality of different ecosystem processes. FSMD will be
updated within 6 months of each major release of the
FLUXNET database, making it possible to quantify the dif-
ferences and similarities between different ecosystem pro-
cesses in their responses to changes in climatic conditions.
Some potential applications of this dataset have been men-
tioned before, and there are likely many others. We antic-
ipate that the FSMD will stimulate new research in global
change and Earth science disciplines where land—atmosphere
exchange dynamics play a central role.

Earth Syst. Sci. Data, 13, 14611475, 2021
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