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Abstract. G2DC-PL+, a gridded 2 km daily climate dataset for the union of the Polish territory and the Vistula
and Odra basins, is an update and extension of the CHASE-PL Forcing Data – Gridded Daily Precipitation and
Temperature Dataset – 5 km (CPLFD-GDPT5). The latter was the first publicly available, high-resolution climate
forcing dataset in Poland, used for a range of purposes including hydrological modelling and bias correction of
climate projections. While the spatial coverage of the new dataset remained the same, it has undergone several
major changes: (1) the time coverage was increased from 1951–2013 to 1951–2019; (2) its spatial resolution
increased from 5 to 2 km; (3) the number of stations used for interpolation of temperature and precipitation
approximately doubled; and (4) in addition to precipitation and temperature, the dataset consists of relative hu-
midity and wind speed data. The main purpose for developing this product was the need for long-term areal
climate data for earth-system modelling, and particularly hydrological modelling. Geostatistical methods (krig-
ing) were used for interpolation of the studied climate variables. The kriging cross-validation revealed improved
performance for precipitation compared to the original dataset expressed by the median of the root mean squared
errors standardized by standard deviation of observations (0.59 vs. 0.79). Kriging errors were negatively cor-
related with station density only for the period 1951–1970. Values of the root mean squared error normalized
to the standard deviation (RMSEsd) were equal to 0.52 and 0.4 for minimum and maximum temperature, re-
spectively, suggesting a small to moderate improvement over the original dataset. Relative humidity and wind
speed exhibited lower performance, with median RMSEsd equal to 0.82 and 0.87, respectively. The dataset is
openly available from the 4TU Centre for Research Data at https://doi.org/10.4121/uuid:a3bed3b8-e22a-4b68-
8d75-7b87109c9feb (Piniewski et al., 2020).
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1 Introduction

Recent decades have witnessed a substantial improvement in
atmospheric numerical weather prediction and climate model
simulations. Precipitation and air temperature data at high
spatial and temporal resolution indeed serve as major in-
put in modelling the earth and environment. One of the ma-
jor applications of such data is in distributed hydrological
modelling at various spatio-temporal scales (Chattopadhyay
et al., 2017). Precipitation is a critical component in rainfall–
runoff models such as SWAT (Arnold et al., 1998), WetSpa
(Liu and De Smedt, 2004) or TOPMODEL (Beven et al.,
1995). Precipitation also plays a major role in flood–drought
assessment or provision of ecosystem services (Abbaspour
et al., 2015). Temperature influences evaporation, transpira-
tion and the overall water demand. It is therefore also crucial
to provide high-resolution temperature data in hydrological
models. Methods of estimation of actual evapotranspiration
such as Hargreaves or Penman–Monteith that require temper-
ature data are commonly used in several models (Hargreaves,
1975; Wang and Tedesco, 2007). Climate change across the
landscape has significant spatio-temporal variations which
are often not uniform or consistent (Hayhoe et al., 2008).
Spatial heterogeneity in the distribution of earth surface fea-
tures including physical variables such as land cover, soil
moisture and landscape properties such as slope and eleva-
tion interact with large-scale climate, which in turn deter-
mines microscale climate (Dobrowski et al., 2009). Herein
lies the significance of fine-scale gridded analysis to study
local climate and variability.

Spatial resolution of global datasets including gridded pre-
cipitation and temperature (Sheffield et al., 2006; Dee et al.,
2011; Schamm et al., 2014; Weedon et al., 2014) is vari-
able, with the highest resolution of 0.25× 0.25◦ translating
to 28km×28 km at the Equator and 28km×14 km at 60◦ N.
Some of the recent developments in terms of finer resolu-
tion at the global scale include Terra Climate (Abatzoglou
et al., 2018), providing monthly gridded data at 4 km reso-
lution. Large-scale hydrological modelling studies often em-
ploy these global datasets (Haddeland et al., 2011; Li et al.,
2013; Abbaspour et al., 2015). Previous research has shown
that when the study area is smaller than one grid cell of the
data, such coarser resolution is not adequate. Therefore, local
meteorological gridded datasets are receiving growing atten-
tion with country-wide applications recently reported for the
UK (Hollis et al., 2018), Iberia (Herrera et al., 2019), Nor-
way (Lussana et al., 2018), Spain (Serrano-Notivolli et al.,
2017) and China Peng et al. (2019). These products offer
a greater advantage for hydrological modelling at the local
scale compared to their global counterparts, as shown for a
large dataset of French catchments and the conceptual model
GR4J (in French, modèle du Génie Rural à 4 paramètres
Journalier) (Raimonet et al., 2017).

Gridded datasets are constructed by interpolation from na-
tional meteorological networks. It is still unclear, however,

how to choose the optimal method for spatial interpolation of
these meteorological variables. The geostatistical (kriging)
and inverse distance weighted (IDW) methods are generally
quite popular. Some of the recent studies have used advanced
interpolation techniques such as regression kriging (Brinck-
mann et al., 2016), iterative optimal interpolation (Lussana
et al., 2018) and the area-averaged three-dimensional (AA-
3D) interpolation method (Herrera et al., 2019). Kriging
outperformed IDW and Thiessen polygons as evaluated by
Szcześniak and Piniewski (2015) in a hydrological modelling
study for several medium-sized catchments in Poland. Krig-
ing is indeed still being used as the interpolation method
for precipitation and air temperature with satisfactory results
quantified by correlation coefficients or root mean squared
errors (Carrera-Hernández and Gaskin, 2007; Hofstra et al.,
2008; Ly et al., 2011; Herrera et al., 2012; Brinckmann et al.,
2016; Herrera et al., 2019). A broad range of kriging types
exists, including ordinary kriging (assumes constant mean),
universal kriging (removal of trend based on spatial coordi-
nates), kriging with external drift (mean is dependent on ex-
ternal variable, e.g. elevation map), co-kriging (estimates a
variable based on its values and values of other variables) and
others. Selection of the most appropriate kriging method is
variable dependent (by studying phenomena responsible for
observations of the variable, e.g. relations with elevation) and
case-study dependent (by investigating whether any trend is
observed at a given spatial and temporal scale, e.g. seasonal
and geographical relations with climate).

Berezowski et al. (2016) described the CHASE-PL Forc-
ing Data – Gridded Daily Precipitation and Temperature
Dataset – 5 km (CPLFD-GDPT5) product, which provided
input data for environmental modelling in the area defined
as the union of the Polish territory and the Vistula and
Odra basins (hereafter denoted as “PL+”). It was the first
publicly available, high-resolution climate forcing dataset in
Poland. It has been widely used for a range of purposes, in-
cluding (1) bias correction of EURO-CORDEX projections
(Mezghani et al., 2017); (2) forcing data for hydrological
models (Piniewski et al., 2017; Terskii et al., 2019), a wa-
ter quality model (Marcinkowski et al., 2017) and a simple
phenology model (Marcinkowski and Piniewski, 2018); (3)
a streamflow trend detection study (Somorowska, 2017); (4)
a hydro-ecological classification (Piniewski, 2017); and (5)
ecological modelling (O’Keeffe et al., 2018). Furthermore,
the same methodological workflow as in Berezowski et al.
(2016) was used to prepare hydrological model forcing in
Berezowski et al. (2019). Besides a natural need to carry out
a periodic update of the dataset, a number of other poten-
tial product improvements have been identified over recent
years, such as increasing spatial resolution, adding new vari-
ables and increasing the number of stations used for inter-
polation. In this paper, we describe a new, updated product
called G2DC-PL+ (a gridded 2 km daily climate dataset for
the PL+ area), specifically pointing to differences between
itself and its predecessor, CPLFD-GDPT5.
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Figure 1. The spatial extent for the G2DC-PL+ dataset. Countries
are labelled with black national codes. The Odra and Vistula basins
are labelled in grey.

2 Key features of the update

While the spatial domain of the G2DC-PL+ dataset re-
mained the same as in the original CPLFD-GDPT5 dataset,
i.e. the PL+ area (Fig. 1), the dataset has undergone sev-
eral major changes: (1) the temporal range has been extended
from 1951–2013 to 1951–2019; (2) the spatial resolution has
increased from 5 to 2 km; (3) the number of stations used for
interpolation of temperature and precipitation approximately
doubled; and (4) in addition to precipitation and temperature,
the new dataset consists of relative humidity and wind speed.

2.1 Temporal range

The analysis covers the period 2014–2019; the 6-year exten-
sion (2014–2019) makes the dataset applicable for studying
recent earth-system phenomena. Poland and the neighbour-
ing countries in Central and Eastern Europe have encoun-
tered three major droughts in 2015, 2018 and 2019. Inclu-
sion of these years in the dataset will be useful for in-depth
drought assessments and will help to constrain hydrological
models (Pfannerstill et al., 2014).

2.2 Interpolated variables

While the previous dataset included only two climate vari-
ables, namely temperature and precipitation, the updated ver-
sion includes two new ones: relative humidity and wind
speed (average daily values). We originally planned to in-
clude solar radiation as well, but due to a low number of
stations available in Poland (below 30) and much shorter

Figure 2. Number of meteorological stations for precipitation ob-
servations per year from 1951 to 2019.

Figure 3. Number of meteorological stations for temperature ob-
servations per year from 1951 to 2019.

temporal availability of data, we concluded there would be
little benefit in doing so. A viable alternative for solar ra-
diation data is offered in the E-OBS gridded dataset dis-
tributed by ECA & D. One of the major benefits of using
relative humidity, wind speed and solar radiation data in ad-
dition to air temperature data is that it allows for using the
energy-based Penman–Monteith method for potential evap-
otranspiration (PET) calculation instead of a temperature-
based method, such as Hargreaves. PET is a key input in
hydrological models, and its role is of particular importance
in the ever-growing climate change impact studies. Some au-
thors advocate the use of a fully physically based formulation
of PET rather than temperature-based PET methods. The un-
certainty of using more simple methods in climate change
impact studies is huge and similar in its magnitude to the un-
certainty of general circulation models (Hosseinzadehtalaei
et al., 2016) or emission scenarios (Williamson et al., 2016).
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Figure 4. Number of meteorological stations for relative humidity
observations per year from 1951 to 2019.

2.3 Number of stations

At the time of the development of the CPLFD-GDPT5 prod-
uct (2015/2016), the data sharing policy of the key institution
owning climate data in Poland, the Institute of Meteorology
and Water Management (IMGW-PIB), required concluding
individual agreements between the data holder and the user.
For this reason, only a subset of all available historical station
data could be obtained at that time. Since 2018, IMGW-PIB
has changed its policy and made the climate data freely avail-
able for research purposes at the https://dane.imgw.pl/ (last
access: 22 March 2021) website. It has allowed us to down-
load and use all available data for the entire period of inter-
est, namely 1951–2019. The number of IMGW-PIB precip-
itation stations with available data (approaching 1500) was
the highest in the early 1990s. The number is more than dou-
ble the maximum number of respective stations in the former
dataset. The number of IMGW-PIB stations at the beginning
and end of the analysed period, however, was significantly
lower (600–700) (Fig. 2). With regard to other variables, the
temporal trend of data availability was the same as for precip-
itation, but the total numbers were significantly lower, reach-
ing approximately 250 in early 1990s (cf. Figs. 3–5). The
spatial distribution of used stations is shown in Figs. 6–9.

The major source of data from outside Poland was the Eu-
ropean Climate Assessment and Dataset (ECA & D). Also in
this case, a large, almost 10-fold, increase in data availabil-
ity was observed for the area of interest. Among countries
neighbouring Poland, station density was the highest in Ger-
many. The third, least abundant data source was the National
Oceanic and Atmospheric Administration National Climatic
Data Center (NOAA-NCDC), but in this case the number of
stations did not change much.

2.4 Spatial resolution

Considering increasing computing power and storage ca-
pacity, an increase in dataset spatial resolution is a natu-

Figure 5. Number of meteorological stations for wind speed obser-
vations per year from 1951 to 2019.

Figure 6. Spatial distribution of precipitation stations used for in-
terpolation of the G2DC-PL+ product.

ral choice. The original 5 km resolution was not sufficiently
high, in particular in mountainous areas in the south of study
area. The output resolution of 2 km is of particular impor-
tance for precipitation because it is characterized by higher
spatial variability. A number of gridded precipitation datasets
at comparably high resolution, developed predominantly for
hydrological applications, were issued recently (Duan et al.,
2016; Laiti et al., 2018; Lewis et al., 2018). Another rea-
son was that temperature, humidity and wind speed were in-
terpolated using kriging with the external drift method, in
which elevation was used as a co-variable. Elevation at 2 km
is much more accurate than at 5 km resolution, especially in
high-altitude areas, so this should be a clear, although indi-
rect, benefit of this approach.
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Table 1. Descriptive statistics for the kriging cross-validation results for precipitation, minimum temperature, maximum temperature, relative
humidity and wind speed. “RMSEsd> 1” denotes the percentage of RMSEsd values higher than 1.

Precipitation Minimum temperature Maximum temperature Relative humidity Wind speed

ρ RMSEsd RMSE ρ RMSEsd RMSE ρ RMSEsd RMSE ρ RMSEsd RMSE ρ RMSEsd RMSE

Minimum 0 0.11 0 0.02 0.16 0.53 0.05 0.15 0.6 0 0.24 0.02 0 0.48 0.66
First quartile 0.53 0.48 0.92 0.62 0.44 1.11 0.77 0.35 0.99 0.18 0.71 0.05 0.17 0.82 1.24
Median 0.66 0.59 1.64 0.72 0.52 1.33 0.84 0.40 1.11 0.36 0.82 0.06 0.24 0.87 1.56
Third quartile 0.77 0.69 2.48 0.8 0.62 1.6 0.88 0.47 1.25 0.52 0.92 0.07 0.33 0.91 1.98
Maximum 0.99 1.24 11.9 0.98 1 3.62 0.98 0.99 2.97 0.94 1.29 0.16 0.77 1.1 4.35
RMSEsd> 1 – 0.16 % – – 0 % – – 0 % – – 4.4 % – – 1.2 – %

Figure 7. Spatial distribution of temperature stations used for inter-
polation of the G2DC-PL+ product.

Even though station density for variables other than pre-
cipitation was not very high (see Figs. 7–9), for practical rea-
sons we have decided to set a uniform resolution of 2 km
throughout the entire product.

2.5 Unchanged properties of the updated dataset

Other methodological features that remained unchanged be-
tween the current and previous versions are as follows.

1. The projected coordinate system for all gridded data
was PUWG-92.

2. All organizations from which we have compiled the
data conduct a quality control check for raw data before
making them publicly available.

3. The time frequency for all variables was daily.

4. Correction for precipitation undercatch was carried out
by means of the Richter method (Richter, 1995) rec-
ognized by the World Meteorological Organization. A

Figure 8. Spatial distribution of relative humidity stations used for
interpolation of the G2DC-PL+ product.

map showing values of coefficient b representing the ef-
fect of wind exposition of the measurement site is pre-
sented in Fig. 10. We followed the same simplified crite-
ria for dividing stations into those with low and medium
shielding as Berezowski et al. (2016). Stations located
above 400 ma.s.l. and those lying within a 40 km buffer
from the coast were assigned to a medium shielding cat-
egory.

The values of b were set as for medium shielding for
all stations apart from those in the mountains or close to
the coast, where b values were set as for low shielding
(Fig. 5). The rationale behind assigning different values
of b for different location lies in the fact that wind speed
is generally higher in mountains and at the seaside than
in the lowlands.

5. The applied procedure for filling in “0” values to pre-
cipitation time series for a subset of IMGW-PIB stations
was similar to that in (Berezowski et al., 2016). Due to
improved metadata reporting by IMGW-PIB, however,
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Figure 9. Spatial distribution of wind speed stations used for inter-
polation of the G2DC-PL+ product.

Figure 10. The Richter (1995) parameter b value groups for differ-
ent precipitation stations.

it has been applied much less frequently than in the orig-
inal dataset. Removal of suspicious values from the time
series was also carried out in a way similar to before.

6. Minimum and maximum temperatures were interpo-
lated with kriging with external drift and precipitation
with a combination of universal and indicator kriging.
The exponential variogram model was used in each case
with the variogram parameters estimated automatically
for each daily kriging with the weighted least squares

Figure 11. Annual RMSEsd median (blue) and number of available
stations per year (red) for precipitation in the period 1951–2013.
The daily results, also summarized in Table 1, were used for calcu-
lating the annual medians.

fit (Pebesma, 2004). The block kriging approach was
applied with block size equal to the output square grid
size, i.e. 2 km. The two new variables, namely relative
humidity and wind speed, were interpolated using the
same method as for temperature.

7. A leave-one-out cross-validation was performed daily
for all stations; i.e. each station was removed from
the sample one at a time, and the remaining stations
were used to predict the value of the missing station.
There is one small deviation from the previous ver-
sion of cross-validation affecting only the precipita-
tion variable, based on the study of Berndt and Haber-
landt (2018). Because a 6.25-fold increase in spatial
resolution and more than 2-fold increase in the num-
ber of stations caused a significant increase in cross-
validation calculation time, we have decided to apply
cross-validation only for days with precipitation above
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Figure 12. Precipitation ρ (top) and RMSEsd (bottom) values
calculated for stations in the period 1951–2019. National borders
(black lines) are labelled with country codes.

a 1 mm threshold, which allowed us to speed up the cal-
culation process in a satisfactory way.

8. The interpolation errors were quantified using (1) Pear-
son’s correlation coefficient (ρ) and (2) root mean
squared error normalized to the standard deviation of
the observed data:

RMSEsd=

√
1
N

∑N
i=1

(
Yi − Ŷi

)2

σY
,

where Y and Ŷ are respectively the observed and inter-
polated values of a given variable, N is the number of
observations (number of stations in the spatial approach
or number of days in the temporal approach) and σY is
the standard deviation of observations.

The cross-validation was conducted on both temporal and
spatial scales. On the temporal scale the errors were calcu-

Figure 13. Annual RMSEsd median (blue) and number of available
stations per year (red) for minimum temperature in the period 1951–
2019. The daily results, also summarized in Table 1, were used for
calculating the annual medians.

lated for each day from all stations having data on this day.
For all variables the standard deviation used in calculation of
RMSEsd performance metrics was calculated for each Julian
day separately. We will hereafter refer to the temporal scale
indices as ρt and RMSEsdt. On the spatial scale the errors
were calculated for each station from all of a station’s avail-
able daily values. We will hereafter refer to the spatial scale
indices as ρs and RMSEsds.

The reader is referred to the study of Berezowski et al.
(2016) for additional information related to the above-
mentioned aspects.
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Figure 14. Annual RMSEsd median (blue) and number of avail-
able stations per year (red) for maximum temperature in the period
1951–2019. The daily results, also summarized in Table 1, were
used for calculating the annual medians.

3 Cross-validation

3.1 Precipitation

According to daily ρt statistics for precipitation show that
75 % of ρt values are higher than 0.53 (0.471) and RMSEsdt
values are lower than 0.69 (0.93), respectively (Table 1). Me-
dian ρt is 0.66 (0.65) and median RMSEsdt is 0.59 (0.79).
The fraction of RMSEsd values larger than 1 dropped from
14.2 % to 0.16 %.

We also quantified the effect of modifying the method
of calculation of RMSEsdt (see Sect. 2.5). For a subset of
approximately 10 % of years RMSEsdt values were calcu-
lated using both the new, faster approach, involving removal
of dates with low precipitation, and the original approach.
We concluded that removal of low-precipitation data led to

1Respective values referring to the cross-validation errors re-
ported in Berezowski et al. (2016) will be herein shown in paren-
theses.

Figure 15. Minimum temperature ρ (top) and RMSEsd (bottom)
values calculated for stations in the period 1951–2019. National
borders (black lines) are labelled with country codes.

a slight improvement (average difference between RMSEsdt
values equal to 0.04). The scale of this improvement, how-
ever, is much lower than the overall improvement discussed
in the previous paragraph.

A strong negative correlation exists between the median
of daily RMSEsdt values and the number or available pre-
cipitation stations for the first approximately 20 years of the
dataset (Fig. 11). While the number of stations steadily in-
creased over the period 1971–1990, the cross-validation er-
ror in the same period oscillated without any clear trend. In-
terestingly, the decline in the number of stations after 1991
was associated with the decrease in RMSEsdt value. The me-
dian of daily RMSEsdt values aggregated in years is nega-
tively correlated (−0.72) with the number of available sta-
tions (Fig. 11), sharply decreasing as the number of station
increases and reaching an equilibrium in 1980s. This sug-
gests that the kriging errors for precipitation are dependent
on the density of the observation network. We also found
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Figure 16. Maximum temperature ρ (top) and RMSEsd (bottom)
values calculated for stations in the period 1951–2019. National
borders (black lines) are labelled with country codes.

that the interpolation results before 1960 are associated with
higher uncertainty (Fig. 11). We do not have any reliable data
on how measurement quality changed over time and thus are
unable to confirm a potentially relevant hypothesis that it was
an important factor affecting the evolution of the interpola-
tion error.

Like in the original dataset, when considering the
RMSEsds (calculated spatially) for all stations, the results
show a clear pattern of higher errors at the edge of the in-
terpolation area, particularly in all neighbouring countries
except for Germany (Fig. 12). Note that Germany features
much higher density of stations than other countries neigh-
bouring with Poland, which explains the spatial pattern.

The interpolation error for precipitation expressed in abso-
lute, not-standardized values, i.e. RMSE, equals 1.6 mm (see
Table 1 for other statistics).

Figure 17. Annual RMSEsd median (blue) and number of avail-
able stations per year (red) for relative humidity in the period 1951–
2019. The daily results, also summarized in Table 1, were used for
calculating the annual medians.

3.2 Temperature

The statistics of daily RMSEsdt show the median equal to
0.52 (0.54) for minimum temperature and 0.4 (0.47) for max-
imum temperature (Table 1). None of the RMSEsdt values
in any of the cases exceeds the value of 1 (meaning that the
root mean squared errors are always below the standard devi-
ation of observations), and all the ρt values are positive. The
median of ρt is 0.72 (0.84) for minimum temperature and
0.84 (0.88) for maximum temperature. This suggests that the
value of ρt measuring the collinearity between simulations
and observations used to be higher in the former version of
the dataset, particularly for minimum temperature.

Inter-annual variability of RMSEsdt exhibits quite differ-
ent behaviour for minimum (Fig. 13) and maximum (Fig. 14)
temperature. In the former case, a sharp decreasing trend,
possibly connected to the rising number of stations, can be
observed until 1980, followed by an increase until the early
2000s and another decrease afterwards. In the latter case
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Figure 18. Relative humidity ρ (top) and RMSEsd (bottom) values
calculated for stations in the period 1951–2019. National borders
(black lines) are labelled with country codes.

there is a clear negative trend for the entire period, although
in its middle (1970–2000) the values were fluctuating around
the mean without any trend. This behaviour is not fully con-
sistent with the temporal evolution of RMSEsdt for these
two variables in Berezowski et al. (2016), but the previously
stated conclusion that kriging errors for temperature are not
dependent on the density of the observation network seems
to hold true.

In the analysis of ρs and RMSEsds for all stations both the
minimum and maximum temperatures show rather uniformly
distributed values with very few outliers, usually located in
the proximity of the edge of the interpolation area (Figs. 15–
16). It is noteworthy that the source of data (IMGW-PIB or
international databases) does not influence the errors for tem-
perature as much as for precipitation.

The interpolation error expressed in absolute, not-
standardized values, i.e. RMSE, equals 1.33 and 1.11 ◦C for

Figure 19. Annual RMSEsd median (blue) and number of available
stations per year (red) for wind speed in the period 1951–2019. The
daily results, also summarized in Table 1, were used for calculating
the annual medians.

minimum and maximum temperature, respectively (see Ta-
ble 1 for other statistics).

3.3 Relative humidity

The median values of ρt and RMSEsdt for relative humid-
ity were equal to 0.36 and 0.82, respectively (Table 1). Be-
cause relative humidity was not included in the first version
of the dataset, no prior statistics are available for compari-
son, as occurred for precipitation and temperature. ρt values
for relative humidity are generally considerably lower than
for temperature and precipitation, pointing to low collinearity
between simulations and observations. The same holds true
for RMSEsdt, although the fraction of data with root mean
squared errors exceeding 1 standard deviation is relatively
low, reaching 4.4 %.

RMSEsdt values fluctuate in a range of 0.75–0.9 for
most of the analysed years. Three sub-periods can be dis-
tinguished: 1951–1990 with a low, decreasing trend; 1991–
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Figure 20. Wind speed ρ (top) and RMSEsd (bottom) values calcu-
lated for stations in the period 1951–2019. National borders (black
lines) are labelled with country codes.

2005 with an increasing trend; and 2005–2019 with a de-
creasing trend (Fig. 17). Trends in the first two sub-periods
can be related to changes in relative humidity station density
(increasing until 1990 and then decreasing).

Spatial variability in ρs and RMSEsds is much higher
for relative humidity than for temperature or precipitation
(Fig. 18). The dataset uncertainty evidently increases with
elevation, with stations located in the mountainous southern
belt of the study domain showing the lowest ρs and the high-
est RMSEsds values. The proximity of the coast is another
possible cause of higher errors. For the great majority of the
Polish Plain, which covers the interior part of the study do-
main, Pearson’s correlation exceeds 0.6 and RMSEsds is be-
low 0.7.

The interpolation error for relative humidity expressed in
absolute, not-standardized values, i.e. RMSE, equals 0.06
(see Table 1 for other statistics).

Figure 21. Mean annual daily minimum and maximum temperature
in the time period 1990–2019: output from the G2DC-PL+ dataset.

3.4 Wind speed

According to Table 1 median values of ρt and RMSEsdt for
wind speed were found to be 0.24 and 0.87. As was the case
with relative humidity, wind speed was not included in the
first version of the dataset; hence, the comparison which was
possible for precipitation and temperature was not feasible in
this case. ρt values for wind speed were found to be substan-
tially lower than for other studied variables. A similar pattern
was noticed for RMSEsdt, although the fraction of data with
root mean squared errors exceeding 1 standard deviation is
very low, reaching 1.2 %.

Wind speed exhibits lower inter-annual variability of
cross-validation errors than other variables (Fig. 19). The
range of variability during the period 1951–2019 is 0.84–
0.92. Furthermore, no trend in the data and no correlation
of RMSEsdt with station density exists.
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Figure 22. Mean annual precipitation in the time period 1990–2019: output from the G2DC-PL+ dataset.

Like in the case of relative humidity, the spatial variability
of ρs and RMSEsds was much higher than for temperature
or precipitation (Fig. 20). The majority of stations with low
correlation (below 0.2) are located in Czechia, and the great
majority of stations with correlation below 0.4 are located at
the southern edge of the interpolation domain. ρ values for
German stations are higher than for Polish ones. In the case
of RMSEsds, spatial variability is much lower, but several
outliers are also located in the south.

The interpolation error for wind speed expressed in abso-
lute, not-standardized values, i.e. RMSE, equals 1.56 ms−1

(see Table 1 for other statistics).

4 Consistency with climatic data

Berezowski et al. (2016) compared the consistency of the
CPLFD-GDPT5 dataset with maps of climatic statistics for
the period 1971–2000 provided by IMGW-PIB. The com-
parison revealed a high level of consistency as well as cer-
tain differences that could be attributed to different data pro-
cessing methods. Here, we have updated the previous set of
these comparison maps and found only a minor difference in
climatic means. Therefore, the previous conclusions remain
valid. One difference is that due to a larger number of stations
in the northern part of Poland close to the Baltic Sea coast,

the updated dataset predicts higher long-term mean precip-
itation for this area than the previous one. Figures 21–23
demonstrate the spatial pattern of temperature, precipitation,
relative humidity and wind speed respectively during 1990–
2019 from the G2DC-PL+ dataset.

In addition, we present a supplementary analysis focused
on the comparison of maps of climatic statistics for selected
years. One warm and dry year (2015) and one cool and wet
year (2017) were selected for comparison. The maps can be
found in the Supplement (Figs. S1–S6). Although the G2DC-
PL+ dataset precipitation is higher than the IMGW-PIB pre-
cipitation due to the applied correction for precipitation un-
dercatch, spatial patterns in both dry and wet years remain
very similar between both data sources (Figs. S1 and S4).
The spatial agreement was also very high for minimum tem-
perature (Figs. S2 and S5) as well as maximum temperature
(Figs. S3 and S6).

5 Data availability

The G2DC-PL+ product is available in NetCDF and Geo-
TIFF formats. The gridded structure of the data and the
NetCDF and GeoTIFF data formats ensure easy process-
ing in GIS and data analysis software (e.g. R for both
NetCDF and GeoTIFF; list of NetCDF manipulation soft-
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Figure 23. Mean annual relative humidity and wind speed in the
time period 1990–2019: output from the G2DC-PL+ dataset.

ware: http://www.unidata.ucar.edu/software/netcdf/software.
html, last access: 22 March 2021). Example R scripts allow-
ing the reading of the data and conducting basic processing
can be found in Berezowski et al. (2016).

The data are publicly available in the
4TU Centre for Research Data repository at
https://doi.org/10.4121/uuid:a3bed3b8-e22a-4b68-8d75-
7b87109c9feb (Piniewski et al., 2020). Files with daily data
are organized in decades, e.g. 1951–1960, whereas monthly
and annual data are stored in single files. The NetCDF
file naming convention is variable_time step_from year_to
year.nc (e.g. pre_d_1951_1960.nc). Time step can be “d”
for day, “m” for month, “a” for annual aggregation period.
Every NetCDF file follows the CF-1.0 convention. Variable
can be Tmin/Tmax for minimum/maximum air temperature
[◦C], “Pre” for precipitation [kgm−2], “Hmd” for relative
humidity [%] or “Wnd” for wind speed [ms−1].

Each daily grid for each variable is also stored as a sepa-
rate GeoTIFF file. The naming convention for zipped collec-
tions of GeoTIFF files is variable_time step_from year_to
year_tif.zip, with “pre” for precipitation, “tmin” for mini-
mum temperature, “tmax” for maximum temperature, “hmd”
for relative humidity and “wnd” for wind speed, whereas
time is coded as YYYYMMDD, YYYYMM or YYYY for
daily, monthly and annual time step, respectively.

6 Conclusions

In the conclusions of the paper by Berezowski et al. (2016)
we stated that the dataset update was planned on a 3-year
basis. It took slightly more time, but the dataset has been
updated with very recent data reaching 2019. The product’s
spatial resolution has also been increased from 5 to 2 km,
which may be crucial for some high-resolution applications.
Inclusion of two additional variables, namely relative humid-
ity and wind speed, although associated with higher inter-
polation errors as shown in this study, is an important step
towards using the energy-based Penman–Monteith method
for PET estimation in hydrological or agricultural modelling.
Taking advantage of a more open data sharing policy of the
key climate data provider, IMGW-PIB, we have also substan-
tially increased the number of stations available for interpola-
tion of temperature and precipitation, which in the latter case
has led to a noticeable reduction of interpolation error. This
holds promise that future applications of this dataset for hy-
drological modelling will benefit from better input data and
will therefore deliver more reliable predictions.

Note on former version
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2016 and is available at https://doi.org/10.5194/essd-8-127-
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Piniewski, M., Szcześniak, M., Kardel, I., and Bere-
zowski, T.: G2DC-PL+ A gridded 2 km daily climate
dataset for the union of Polish territory and the Vistula and
Odra basins, Dataset in 4TU Centre for Research Data,
https://doi.org/10.4121/uuid:a3bed3b8-e22a-4b68-8d75-
7b87109c9feb, 2020.

Raimonet, M., Oudin, L., Thieu, V., Silvestre, M., Vautard, R.,
Rabouille, C., and Le Moigne, P.: Evaluation of Gridded Mete-
orological Datasets for Hydrological Modeling, J. Hydrometeo-
rol., 18, 3027–3041, https://doi.org/10.1175/JHM-D-17-0018.1,
2017.

Richter, D.: Ergebnisse methodischer Untersuchungen zur Ko-
rrektur des systematischen Messfehlers des Hellmannnieder-
schlagsmessers, Vol. 194, Berichte des Deutschen Wetterdien-
stes, Offenbach am Main, 1995.

Schamm, K., Ziese, M., Becker, A., Finger, P., Meyer-Christoffer,
A., Schneider, U., Schröder, M., and Stender, P.: Global grid-
ded precipitation over land: a description of the new GPCC
First Guess Daily product, Earth Syst. Sci. Data, 6, 49–60,
https://doi.org/10.5194/essd-6-49-2014, 2014.

Serrano-Notivoli, R., Beguería, S., Saz, M. Á., Longares, L. A.,
and de Luis, M.: SPREAD: a high-resolution daily gridded
precipitation dataset for Spain – an extreme events frequency
and intensity overview, Earth Syst. Sci. Data, 9, 721–738,
https://doi.org/10.5194/essd-9-721-2017, 2017.

Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-Year
High-Resolution Global Dataset of Meteorological Forcings for
Land Surface Modeling, J. Climate, 19, 3088–3111, 2006.

Somorowska, U.: Climate-driven changes to streamflow patterns in
a groundwater-dominated catchment, Acta Geophys., 65, 789–
798, https://doi.org/10.1007/s11600-017-0054-5, 2017.
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