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Abstract. The collection, processing, and analysis of remote sensing data since the early 1970s has rapidly im-
proved our understanding of change on the Earth’s surface. While satellite-based Earth observation has proven
to be of vast scientific value, these data are typically confined to recent decades of observation and often lack
important thematic detail. Here, we advance in this arena by constructing new spatially explicit settlement data
for the United States that extend back to the early 19th century and are consistently enumerated at fine spatial
and temporal granularity (i.e. 250 m spatial and 5-year temporal resolution). We create these time series us-
ing a large, novel building-stock database to extract and map retrospective, fine-grained spatial distributions of
built-up properties in the conterminous United States from 1810 to 2015. From our data extraction, we anal-
yse and publish a series of gridded geospatial datasets that enable novel retrospective historical analysis of
the built environment at an unprecedented spatial and temporal resolution. The datasets are part of the Histor-
ical Settlement Data Compilation for the United States (https://dataverse.harvard.edu/dataverse/hisdacus, last
access: 25 January 2021) and are available at https://doi.org/10.7910/DVN/YSWMDR (Uhl and Leyk, 2020a),
https://doi.org/10.7910/DVN/SJ213V (Uhl and Leyk, 2020b), and https://doi.org/10.7910/DVN/J6CYUJ (Uhl
and Leyk, 2020c).

1 Introduction

Over the last 200 years, the number of people living in ur-
ban areas in the United States has grown more than 800-fold,
from around 320 000 and 6 % of the population in 1800 to
270 million and 80 % of the population by 2016 (US Census
Bureau, 1993, 2016). The urbanization of the United States
has produced vast metropolitan areas and an array of smaller
to mid-size settlements, reorganizing the population and land
structure of the continent in the process. Despite being crit-
ical to understanding the changes and coupling mechanisms
underlying human and natural systems, our knowledge of

settlement and development in the United States (and else-
where) is far from complete. Understanding these long-term
changes is both of historical interest and crucial for the re-
liable projection of future change. These are challenging is-
sues to contend with, especially as, prior to the post-1970 era
of remote-sensing-based Earth observation and digital car-
tography, there is a serious scarcity of structured historical
geospatial data.

In previous work, we presented the Historical Settlement
Data Compilation for the United States (HISDAC-US), a
novel database that enables analysis of fine-resolution set-
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tlement and urban development patterns at 5-year intervals
from 1810 to 2015 (Leyk and Uhl, 2018a). This long time-
frame of observation is one of the distinguishing features of
the HISDAC-US, which is providing unprecedented oppor-
tunities for studying long-term settlement and development
trends. To date, the HISDAC-US contains two main gridded
data products: (a) a built-up intensity surface series (BUI;
Leyk and Uhl, 2018b), mapping the approximate building in-
door area of all built-up structures within each 250× 250 m
grid cell in the conterminous USA, and (b) a temporal com-
posite surface, mapping the year when a grid cell was first
built up, the “first built-up year” (FBUY; Leyk and Uhl,
2018c). The BUI surface series represents an aggregated, vol-
umetric measure of built-up intensity, the total indoor floor
area present within a fixed area. However, as noted in our
previous work, these retrospective estimates of built-up in-
tensity will be less accurate in areas that have undergone sub-
stantial building replacement or remodelling activities (Leyk
and Uhl, 2018a).

Herein, we introduce two significant developments in the
HISDAC-US that allow for more generic and unbiased an-
alytical characterization of long-term building patterns in
the United States. These new, gridded, spatial time-series
data map (a) counts of built-up property records (i.e. repre-
senting individually owned buildings or building units) and
(b) counts of unique built-up property locations (i.e. physical
structures, disregarding the ownership situation), at a 250 m
spatial resolution and for each half decade (i.e. 5-year inter-
vals) from 1810 to 2015. We derived these counts from vast
numbers of cadastral records contained in the Zillow Trans-
action and Assessment Dataset (ZTRAX; Zillow Inc., 2016).
These additions to the HISDAC-US provide an important
step beyond our previously published BUI surfaces: they en-
able reconstruction of fine-grained historical building densi-
ties for much of the United States and have applications illus-
trated in various research efforts leveraging the HISDAC-US
to study urban geography (Uhl et al., 2021), historical de-
mography (Leyk et al., 2020), road network evolution (Boe-
ing, 2020), population allocation (Leyk et al., 2019), natu-
ral hazards and extreme events (Balch et al., 2020; Iglesias
and Travis, 2020; Mietkiewicz et al., 2020), landscape frag-
mentation (Millhouser, 2019), and popular science (Finan-
cial Times, 2020).

The generation of these new products has been driven
by the ongoing “data revolution” (Kitchin, 2014), which
has spurred rapid advancements in web-based data storage
and distribution infrastructure, high-performance computing,
and the expansion of public and private open-data policies.
The decision by US county-level administrations to pub-
licly share rich cadastral and tax assessment data and the ac-
quisition and harmonization of these data by the real-estate
company, Zillow Group, Inc., has been particularly impor-
tant for our work. Through their efforts, Zillow has produced
ZTRAX, a large building-stock and property database hold-
ing millions of records on built-up properties and their char-

acteristics, including building size, land use type, age, and
property value. Zillow has recently made ZTRAX available
for scientific research via institutional data share agreements,
and it has recently been employed by researchers in various
scientific disciplines (e.g. Bernstein et al., 2019; Boslett and
Hill, 2019; Clarke and Freedman, 2019; Gindelsky et al.,
2019; Kim et al., 2019; Peng and Zhang, 2019; Tarafdar
et al., 2019; Uhl et al., 2019; Zoraghein and Leyk, 2019;
Baldauf et al., 2020; Bechard, 2020; Buchanan et al., 2020;
Connor et al., 2020; D’Lima and Schultz, 2020; Nolte, 2020;
Onda et al., 2020; Shen et al., 2021; Stern and Lester, 2020;
Wentland et al., 2020). We have continued to leverage this
novel and unique data source in producing and advancing the
HISDAC-US.

The HISDAC-US consists of a variety of gridded sur-
face datasets (i.e. geospatial raster layers) measuring dif-
ferent characteristics of the built environment and provides
an unprecedented data source for longitudinal geographic
and demographic research. The HISDAC-US exploits the
“year-built” attribute provided by ZTRAX, reporting the year
when a built-up structure has been established. This attribute
is derived from historical, county-level tax assessment data
records and is available for more than 117 million built-up
structures in the USA. The detailed spatial and temporal in-
formation provided in ZTRAX allows for mapping retrospec-
tive distributions of human settlement and colonial land de-
velopment at unprecedented spatial and temporal granular-
ity (i.e. 250 m spatial and 5-year temporal resolution), and
extends across an unmatched time period. Hence, these data
help overcome several fundamental temporal and spatial lim-
itations in data sources widely used by the Earth system sci-
ence community such as the Global Human Settlement Layer
(GHSL; Pesaresi et al., 2013), the World Settlement Foot-
print Evolution dataset (Marconcini et al., 2020), the Na-
tional Land Cover Database (NLCD; Homer et al., 2007),
the Global Rural-Urban Mapping Project (GRUMP; CIESIN,
2004), or multi-temporal population datasets (e.g. Gridded
Population of the World (GPW; Balk and Yetman, 2004),
WorldPop (Tatem, 2017), GHS-POP (Freire et al., 2016), or
LandScan (Dobson et al., 2000)) (see an overview in Leyk
et al., 2019)1, as well as sparse and more computationally
expensive and labour-intensive alternatives such as historical
and archaeological records (Reba et al., 2016; Hedefalk et al.,
2017; Ostafin et al., 2020; Lieskovský et al., 2018), georefer-
enced social science data (Kugler et al., 2019), data extracted
from historical maps (Uhl et al., 2019; Kaim et al., 2016), or
model-based inferences (Klein Goldewijk et al., 2011; Sohl
et al., 2016).

The remainder of this data description discusses the pro-
duction, potential utility, and uncertainty present in these new
additions to the HISDAC-US. Section 2 describes and show-
cases the data products. Section 3 discusses the underlying

1Many of the global datasets mentioned here use country-
specific inputs in their training or modelling procedure.
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source data and the data processing and introduces the vali-
dation datasets. Section 4 describes the types of uncertainty
inherent in the data and presents a thorough, systematic val-
idation study against three different validation datasets. Sec-
tion 5 describes data availability, and Sect. 6 provides some
concluding remarks.

2 Main data products

Herein, we describe three novel time series of gridded,
geospatial surfaces, representing long-term, spatially ex-
plicit building-stock statistics for the conterminous USA
over 2 centuries, in fine spatial and temporal detail. These
datasets include two versions of the number of built-up prop-
erty records (Uhl and Leyk, 2020a, b), derived from his-
torical administrative and cadastral data sources that have
been assembled in the ZTRAX database, aggregated into
spatial bins (i.e. grid cells) of 250× 250 m at a temporal
resolution of 5 years from 1810 to 2015, and a correspond-
ing series of binary surfaces, indicating built-up areas (Uhl
and Leyk, 2020c). The underlying binning grid is referenced
to the Albers equal-area conic projection for the contigu-
ous USA (United States Geological Survey (USGS) ver-
sion, SR-ORG:7480 2). We derived the grid-cell-level aggre-
gates from approximately 150 million discrete point loca-
tions given in the ZTRAX database with each record repre-
senting a built-up property, of any usage type, including resi-
dential, commercial, industrial, recreational, or mixed build-
ing uses. Importantly, a built-up property record may rep-
resent an individually owned physical structure, such as a
single-family housing unit, an individually owned factory or
commercially used building, a multi-unit building often in
the form of a residential-income property, or an office build-
ing owned by a single entity. A record may also represent an
individually owned unit within a multi-owner structure such
as a condominium unit or office unit within a larger physi-
cal structure. Records associated with multi-owner structures
typically share the same geospatial location in the ZTRAX
database. Thus, there are three meaningful ways to aggregate
the ZTRAX built-up property records into grid cells:

1. counting individual property records per grid cell, as a
proxy variable for building units; this count is reported
in the first time series of datasets, the built-up property
record (BUPR) surfaces;

2. counting the unique locations of property records per
grid cell, as a proxy variable for individual, physical
built-up structures; this count is reported in separate
datasets, the built-up property location (BUPL) sur-
faces;

3. indicating the presence or absence of at least one built-
up property record per grid cell, as a proxy for devel-

2https://spatialreference.org/ref/sr-org/usa_contiguous_albers_
equal_area_conic_usgs_version-2/ (last access: 25 January 2021)

oped land, or built-up area; these binary surfaces are
provided as separate datasets, the built-up area (BUA)
surfaces.

We generated both BUPR and BUPL surfaces for each half
decade from 1810 to 2015, with each grid cell holding the
count of records with a built-year attribute up to the year T .
Moreover, we generated “contemporary” BUPR and BUPL
datasets, summarizing the built-up property records and lo-
cations, respectively, regardless of their built-year attribute.
Since we obtained the underlying ZTRAX data in early
2017, these contemporary layers reflect the BUPR and BUPL
counts circa 2016. Likewise, we generated BUA surfaces for
each half decade, indicating the presence of at least one built-
up property record per grid cell and year, as well as a contem-
porary BUA surface, reflecting developed land in 2016.

2.1 Built-up property record (BUPR) surfaces

The BUPR dataset series (Uhl and Leyk, 2020a) contains a
gridded surface for each half decade from 1810 to 2015, with
each grid cell holding the count of records with a built-year
attribute up to the respective year T . We highlight these grid-
ded surfaces for selected years and regions in Fig. 1. Fig-
ure 1a shows the nationwide BUPR surface for the contermi-
nous USA in 2016. To illustrate both the spatial granularity
and the temporal coverage of the data, we visualized the di-
rectional sums of built-up property records for selected years
along east–west and north–south cross sections. The trends
illustrate the well-known settlement patterns reflecting early
colonial settlements in the northeast and subsequent expan-
sion into the west and the south of the USA.

The BUPR surfaces provide novel insights into regional,
peri-urban, and rural development, as shown in Fig. 1b for
the Syracuse–Rochester region (New York). The map se-
quence documents both the existence and persistence of
early, rural settlements; their growth in density over time; the
simultaneous sprawl of towns and cities during the 20th cen-
tury; and the emergence of settlements along the shorelines
of the lakes in the centre of the maps in the second half of
the 20th century. At a more local scale, the BUPR time se-
ries enables the assessment of detailed long-term built-up de-
velopment, as shown for the eastern New Hampshire region
in Fig. 1c, where settlement quickly expands and intensifies
around the coastal town of Portsmouth, which already ex-
hibits a considerably large built-up area in 1810. Moreover,
the potential of the BUPR surfaces for multi-temporal assess-
ment of intra-urban building density variations can be seen in
the video supplement (https://doi.org/10.5446/48115).

2.2 Built-up property location (BUPL) surfaces

In residential neighbourhoods dominated by individually
owned, single-family, residential housing, the BUPL surfaces
(building counts) (Uhl and Leyk, 2020b) closely resemble the
BUPR surfaces (building unit counts). Differences are subtle
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Figure 1. Fine-resolution time series of gridded building data for the USA: (a) contemporary (2016) built-up property records (BUPRs)
in the USA, including log-transformed directional (i.e. north–south and east–west) histograms for different time periods; also shown are
counties of missing data; (b) BUPR time series in mixed urban–rural context shown for the Syracuse–Rochester region (New York) for
1900, 1950, and 2000; and (c) long-term BUPR time series covering the whole time period 1810–2016 showing early settlements in New
Hampshire and their development patterns.

and occur mainly in urban centres and regions where high-
rise buildings and multi-unit buildings dominate the built en-
vironment. This difference is illustrated in Fig. 2, showing
BUPR in 2015 for Denver, Colorado (Fig. 2a), and the corre-
sponding BUPL surface (Fig. 2b). Differences become visi-
ble in a cell-by-cell ratio surface (Fig. 2c) where the Denver
downtown area, dominated by high-rise buildings, exhibits
higher values.

2.3 Built-up area (BUA) surfaces

Built-up area (BUA) gridded surfaces (Uhl and Leyk, 2020c)
represent a binary discrimination between built-up (value 1)

and not built-up (value 0) areas, within 250× 250 m grid
cells, for each half decade. The BUA surfaces are shown in
Fig. 3a–c for selected US cities, as well as the correspond-
ing BUPR surfaces (Fig. 3d–f) from which the BUA datasets
have been derived through pixelwise thresholding (i.e. a grid
cell is considered built-up if BUPR > 0). We also show grid
cells where no built-year information is available (Fig. 3c),
which are provided as a separate dataset (Sect. 4.4.3). While
the BUA surfaces have been employed for assessing long-
term trends in land development (Leyk et al., 2020) and for
the multi-temporal analysis of urban form (Uhl et al., 2021),
they have not been published previously. These applications
are evident from Fig. 3 which depicts the growth of cities,

Earth Syst. Sci. Data, 13, 119–153, 2021 https://doi.org/10.5194/essd-13-119-2021



J. H. Uhl et al.: 200 years of land development in the USA 123

Figure 2. Comparison of (a) built-up property records, and (b) built-up property location surfaces, shown for Denver, Colorado; (c) cell-
by-cell ratio surface (i.e. built-up property records per built-up property location) highlighting the presence of structures of multi-address or
multi-owner records, representing large and high-rise office or apartment buildings or condominiums.

the increasing connectedness between urban cores and sur-
rounding places (BUA, Fig. 3a–c), intra-urban density varia-
tions across space and time (BUPR, Fig. 3d–f), and the abil-
ity for these surfaces to characterize urban settlement trends.
For example, the BUA surface for 1915 (Fig. 3a) highlights,
with unprecedented spatial detail, the well-known disparity
between early-developing northeastern cities and the slower
urban development of the south (see video supplement for
a corresponding animation). Thus, these visualizations high-
light the empirical value of these surfaces in assessing het-
erogeneity in urban growth over long temporal extents and
with (currently) unparalleled spatial detail (see video supple-
ment). While advanced GIS practitioners would be able to
derive the BUA surfaces from the BUPR–BUPL datasets, we
provide them as a separate dataset, to facilitate the use for ap-
plications where binary built-up–not built-up differentiation
is sufficient. Moreover, the BUA surfaces are assumed to be
the least affected by uncertainties in the ZTRAX data (see
Sect. 4.1).

3 Data and data processing

3.1 Source data and data processing

The ZTRAX database is based on existing cadastral data
sources and contains more than 400 million data records (Zil-
low Inc., 2016), out of which around 150 million contain
spatial information, while the remaining 250 million records
represent transactional records (e.g. detailed information on
property sales) and other aspatial data tables, as well as the
database history. This database is available to the authors via
a data share agreement and is used as a basis to derive pub-
licly available datasets, enabling scientists to benefit from
the spatial, temporal, and semantic richness of ZTRAX. The
raw ZTRAX database consists of around 2500 state-level text
files of a total volume of 1.4 TB, with each file representing

a table of the original database. The data tables are themat-
ically split into three major groups (i.e. contemporary and
historical assessment data and transaction data) (Fig. 4a). We
used the Feature Manipulation Engine (FME; Safe Software
Inc., 2020) to import these files into a set of SQLite relational
databases (SQLite, 2020). Using SQL queries and the Esri
ArcPy (ESRI, 2019) python package we retrieved relevant at-
tributes and extracted them as geospatial vector datasets into
Esri file geodatabases. Geometries were generated using the
geospatial information contained in ZTRAX (i.e. geographic
coordinates), representing address points or cadastral-parcel
centroids given as geographic coordinates in North Ameri-
can Datum (NAD) 1927. These geolocations have been gen-
erated by Zillow Group, Inc., using geocoding and spatial
refinement techniques. We then imported each of the 3000+
county-level geospatial vector datasets into GeoPandas (Jor-
dahl et al., 2020) data frames and projected all records that
indicate the presence of a built-up structure into the Al-
bers equal-area conic projection for the conterminous United
States (CONUS) (SR-ORG:7480). More specifically, we ex-
cluded records of land use type “vacant land”. Based on the
built-year attribute, we generated temporal slices of the data
points (in 5-year increments, i.e. all records built up between
T and T − 5 years) and computed 2D histograms using the
NumPy python package (Oliphant, 2006), with histogram
bins derived from the underlying 250× 250 m grid cover-
ing the CONUS. This approach allows for an efficient spa-
tial binning of the vast numbers of data points. Using tem-
poral slices of 5 years kept the total number of data points
to a minimum and significantly reduced the overall process-
ing time. For the BUPL surfaces, which contain unique lo-
cations of property records within each grid cell, duplicate
coordinate pairs were removed prior to the spatial binning
step. The resulting 2D-histogram arrays were then exported
in GeoTIFF format using the Geospatial Data Abstraction
Library (GDAL; GDAL/OGR contributors, 2020). Lastly, in
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Figure 3. Built-up area (BUA) surfaces for 35 selected US cities in (a) 1915, (b) 1965, and (c) 2016 and (d–f) corresponding BUPR surfaces.
Cities are arranged in a quasi-geographic space, e.g. northeastern cities shown in the upper right part of the panels. Panel (c) also shows grid
cells where no built-year information is available. Note that cities are depicted at individual scales; see 20 km scale bars in panel (a) and
Fig. B1 for size relationships between shown extents.
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Figure 4. (a) Entity diagram illustrating the complexity of the ZTRAX data model, showing each database table and table attributes, and
(b) generalized processing workflow to generate the BUPR, BUPL, and BUA surface series based on ZTRAX data records.

order to obtain the total counts of built-up property records
and locations for each half decade T , all temporal slices from
the year 1810 to T were added up cell by cell. The complete
processing of all 150 million data records took around 2.7 d
and is illustrated in Fig. 4b.

3.2 Validation data

We conducted an extensive validation study of the gener-
ated BUPR and BUPL surfaces against three different val-
idation datasets and across different domains. The valida-
tion datasets include contemporary building footprint data
for the CONUS (Microsoft, 2018) and an integrated, multi-
temporal database of building footprint data and cadastral-
parcel records (Uhl et al., 2016), as well as historical US
census housing counts (Manson et al., 2019) (see Table 1 for
details). Moreover, a US county boundary dataset (US Cen-
sus Bureau, 2017), a US-census-designated places boundary
dataset (US Census Bureau, 2017), and US Department of
Agriculture (USDA) rural–urban continuum codes (USDA
Economic Research Service, 2020) were used for stratified
validation. These datasets are described in detail in the fol-
lowing subsections.

3.2.1 Contemporary US-wide building footprint data

We used Microsoft’s US building footprint (MSBF) data,
which have been generated from Bing maps imagery (i.e.
a compilation of different airborne and spaceborne re-
mote sensing data sources; Microsoft, 2018) using a deep-
learning-based computer vision algorithm. This database
contains more than 125 million building footprints and is
available in GeoJSON format. According to the data produc-
ers, this dataset is highly accurate (i.e. precision of 0.993, re-
call of 0.935; Microsoft, 2018) and thus represents the most
reliable, recent, and complete data source of building foot-
print data in the USA. We used FME software to convert the
GeoJSON data into Esri file geodatabase format and aggre-

gated these data into grid cells in analogy to the data process-
ing step as described in Sect. 3.1. This approach allowed us to
create a US-wide, highly reliable reference building density
surface, referred to the grid cell area of 0.0625 km2, approx-
imately temporally referenced to the year 2016, and compat-
ible with the BUPR and BUPL surfaces (i.e. using the same
underlying grid). This surface and the underlying building
footprint data are shown in Fig. 5a.

3.2.2 Multi-temporal building footprint data

While MSBF data cover the whole CONUS, they are avail-
able for one point in time only. To evaluate the agree-
ment of BUPR and BUPL surfaces with reference mea-
sures of building density over time, we used an integrated
data product of building footprint data and cadastral-parcel
records. Built-year information from the cadastral-parcel
data (Fig. 5b) was transferred to the (typically lidar-derived)
building(s) contained within the parcel (Fig. 5c; Uhl et al.,
2016). This database was used previously for validation
studies of the HISDAC-US BUI surfaces (Leyk and Uhl,
2018a) and remote-sensing-derived settlement data (Leyk
et al., 2018; Uhl et al., 2020) and was tested as training
data for remote-sensing-based urban change detection (Uhl
and Leyk, 2020e). By querying the building footprints by
their built-year attribute, this database enables the creation of
granular snapshots of built-up areas for user-specified points
in time. The geographic coverage of this database is con-
strained to 30 US counties, where there is publicly available
parcel data on built year (see Table A1). Based on this multi-
temporal building footprint database (herein referred to as
MTBF30), we created time slices of building footprints and
generated corresponding gridded building density surfaces
for each half decade, as shown in Fig. 5d and e.
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Table 1. Overview of the datasets used for validation of the BUPR, BUPL, and BUA surface series.

Validation dataset Measure Geographic cover-
age

Temporal coverage Spatial granularity Temporal granular-
ity

Microsoft US
building footprint
(MSBF) data

Physical built-up
structures

CONUS approx. 2016 (uni-
temporal)

building outline –

Multi-temporal
building foot-
print database
(MTBF30)

Physical built-up
structures

30 counties in the
CONUS (Table A1)

approx. 1800 to
2015

building outline annual

US census housing
unit counts

Housing units or
households

CONUS 1890–2010 county between 10 and
30 years

3.2.3 Multi-temporal US census housing statistics

As a third validation dataset, we employed historical US cen-
sus housing unit counts. While for recent census years (e.g.
1990–2010), housing unit counts are available at very fine
spatial granularity (i.e. census tract and finer), in earlier years
such data are available at the county level only. We used his-
torical county boundaries and housing unit counts obtained
from the National Historical Geographical Information Sys-
tem (NHGIS; Manson et al., 2019) for all available years, i.e.
1890–1940 and 1970–2010. These county-level counts are
shown in Fig. 5f for selected years.

3.2.4 Rural–urban continuum classification data and
US-census-designated place boundaries

Uncertainty in many geospatial datasets increases from ur-
ban towards rural settings (see e.g. Smith et al., 2002; Wick-
ham et al., 2013; Leyk et al., 2018). In order to examine if
the ZTRAX data and the derived HISDAC-US data prod-
ucts exhibit this trend, we examined uncertainty trajecto-
ries across the rural–urban continuum, as modelled by the
USDA rural–urban continuum codes (RUCCs; for 2013; But-
ler, 1990). These codes assign a degree of “rurality” to each
US county, on a scale from 1 (most urban) to 9 (most ru-
ral), based on proximity to cities of certain population sizes
(see Fig. 5g). Due to the lack of RUCCs covering the en-
tire study period (i.e. 1810–2016) we used the most recent
RUCC definition from 2013 for stratified assessment of the
2016 data only (Sect. 4.2.2). Moreover, we assume data un-
certainty to vary between incorporated places (i.e. villages,
towns, cities) and more fragmented and dispersed rural set-
tlements. To account for this uncertainty, we used 2010 US-
census-designated place boundaries (US Census Bureau, De-
partment of Commerce, 2016, herein referred to as “cen-
sus places”) to analyse uncertainty separately within county
boundaries (i.e. including rural settlements that are not incor-
porated into a census place) and within census place bound-
aries only (see Fig. 5h and i, respectively).

3.2.5 Data on public housing and buildings

As publicly owned buildings are mostly not contained in
the ZTRAX dataset, we employed several auxiliary datasets
to quantify the effects of these omissions. These auxiliary
datasets include (a) the USGS National Structures Dataset
(NSD; USGS National Geospatial Technical Operations
Center, 2016), (b) US Department of Housing and Urban De-
velopment (HUD) data on public housing (U.S. Department
of Housing and Urban Development, 2019), and (c) public
amenities from OpenStreetMap (OpenStreetMap contribu-
tors, 2020) (see Appendix C).

4 Data uncertainty and validation

The BUPR and BUPL datasets suffer from several types of
uncertainty, mainly inherited from the underlying ZTRAX
data. These types of uncertainty can broadly be categorized
into three groups: data incompleteness, locational uncer-
tainty, and quantity disagreement. Data incompleteness en-
compasses incomplete geographic coverage (e.g. data gaps)
of the ZTRAX data, as well as attribute incompleteness,
resulting from missing attribute values in the underlying
ZTRAX database, and the omission of public properties and
buildings in ZTRAX (Appendix C). We analysed data in-
completeness at the county, census place, and grid cell level
(Sect. 4.1). Moreover, the ZTRAX data suffer from a cer-
tain survivorship bias, resulting from lacking information
on building teardowns and potentially inconsistent records
on building replacements (Sect. 4.1). Locational uncertainty
results from uncertainty in the geospatial information re-
ported in ZTRAX and includes issues of spatial generaliza-
tion (Sect. 4.2.1) and low positional precision (Sect. 4.2.2
and 4.2.3). Lastly, we used our validation dataset to assess
quantity disagreement in the BUPR and BUPL densities, in-
cluding (systematic) under- and overestimation (Sect. 4.3).
At this point, it is worth noting that the systematic under-
estimation of BUPRs and BUPLs towards early years may
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Figure 5. Datasets used for validation of the created surfaces: (a) contemporary US-wide building count surface, generated from the Mi-
crosoft building footprint data (overlaid) by aggregating to grid cells of a 250 m spatial resolution, shown for downtown Denver, Colorado;
(b, c) multi-temporal building footprint data available for 30 counties in the USA, shown for a region in Charlotte, North Carolina; (d, e) re-
sulting building count surfaces for 1925 and 1950, respectively; and (f) US-census-based dwelling statistics for US counties in 1890, 1940,
and 2010. (g) County-level USDA rural–urban continuum codes (RUCCs) in 2013; (h) enlargement of the county-level RUCC data around
Des Moines (Iowa); (i) RUCCs attached to US-census-designated places in 2010 for the same area.

be a result of lacking information on building teardowns and
replacements in ZTRAX (see Sect. 4.3).

Herein, we expand on previous analyses of these uncer-
tainties (Leyk and Uhl, 2018a) to provide a more in-depth
assessment of these shortcomings and their implications for

data users. More specifically, we employ additional valida-
tion datasets and explicitly assess these uncertainty types
across time and across the rural–urban continuum.
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4.1 Data incompleteness

Data incompleteness consists of two components: (a) in-
complete geographic coverage of the ZTRAX data (i.e. data
gaps) and (b) incomplete coverage of specific attributes
in the ZTRAX database. The geographic coverage of the
ZTRAX data extends across 3026 out of 3108 counties in
the CONUS. The remaining 82 counties do not have any
geospatial ZTRAX data records (Fig. 6a, b). These coun-
ties correspond to 2.5 % of the CONUS area and were inhab-
ited by 0.82 % of the US population in 2010. Of these coun-
ties, 73 % are classified as “non-metropolitan” (i.e. RUCCs 4
to 9), according to the USDA rural–urban classification in
2013 (USDA Economic Research Service, 2019, 2020). An
additional source of incomplete coverage arises from the-
matic limitations in the ZTRAX data, i.e. the omission
of publicly owned buildings. Many big cities have public-
housing projects, which may be omitted from the ZTRAX
records. We quantified the effects of the omission of publicly
owned buildings using three auxiliary data sources (see Ap-
pendix C).

Moreover, we analysed the built-year attribute coverage,
which is the most relevant attribute for the creation of the
multi-temporal BUPR and BUPL surfaces. The built-year at-
tribute exhibits high levels of completeness, with notable ex-
ceptions including states in the northern midwest, Vermont,
Louisiana, and New Mexico (Fig. 6a). A county boundary
shapefile containing the county-level summary statistics un-
derlying Fig. 6a was published and is available to data users
(Leyk and Uhl, 2018d). We computed the same complete-
ness statistics within census place boundaries (Fig. 6b) and
observe higher levels of built-year attribute completeness
in western and midwestern states. This result indicates that
built-year attribute missingness is likely to affect records
in unincorporated, spread-out, rural settlements, rather than
those in urban areas or census-designated places such as
towns or villages. We provide a gridded dataset flagging grid
cells without any built-year information (Fig. 6c; see also
Fig. 3c, Sect. 4.4.3) that allows for excluding the respec-
tive areas, constituting approximately 2.7 % of the CONUS
landmass. The previously made observation is confirmed in
the boxplots shown in Fig. 6d, indicating, on average, higher
levels of built-year completeness within census place bound-
aries than within county boundaries. In addition to that,
Fig. 6d reveals clear trends of increasing built-year incom-
pleteness from urban to rural counties.

Importantly, the ZTRAX data and derived datasets suffer
from a survivorship bias, or selection bias, that increases to-
wards early points in time, and manifests in omission errors
affecting both locational uncertainty over time (Sect. 4.2.3)
and quantity agreement over time (Sect. 4.3.1 and 4.3.3).
This bias is introduced by lacking consistent information on
building demolitions and replacements in the ZTRAX data,
as well as by the absence of information about properties
existing prior to building replacements. The reasons for this

bias can be threefold: (1) demolished buildings that existed
in the past and have not been replaced by a contemporar-
ily existing structure are not contained in the data. (2) The
built-year information contained in ZTRAX at a given loca-
tion typically represents the year when the first structure at
that location was built but may also indicate the year of a
replacement, as empirical tests have shown. Thus, the part
of a structure’s lifespan prior to the replacement may not be
measured by our data. (3) Finally, the number of property
records associated with a given location and built year may
have been different in the year when the first structure was
built. While the former two components of this bias would
result in omission errors, the latter component could result
in either a commission error (e.g. if the built year associ-
ated with a multi-owner structure in fact represents the built
year of a single-family home that has been replaced) or an
omission error if small, individual properties have been re-
placed by large, single-owner structures. While these indi-
vidual components of survivorship bias are difficult to assess
in detail, the assessments in Sect. 4.2.3, 4.3.1, and 4.3.3 allow
us at least to quantify the upper bounds of the effects intro-
duced by this bias. Here, it is worth noting that the binary
BUA surfaces are expected to be least affected by the sur-
vivorship bias, as they are based on the presence of ZTRAX
records, independently from the quantity of records per grid
cell.

4.2 Locational uncertainty

We group locational uncertainties in the ZTRAX data that
propagate into the derived HISDAC-US surfaces into two
main categories: (a) locational uncertainty due to spatial
generalization of the geospatial information in ZTRAX and
(b) positional imprecision of the spatial information (i.e.
geospatial coordinates deviating from actual building loca-
tions). The latter component may be affected by the geocod-
ing quality and by the spatial refinement methods used by
Zillow Group, Inc. We developed several visual and analyt-
ical methods to assess and quantify these uncertainties, and
we provide additional uncertainty surfaces that accompany
the BUPR and BUPL datasets (Sect. 4.4).

At this point, it is important to describe some issues re-
lated to the geospatial locations reported in ZTRAX. In ur-
ban, single-family, residential neighbourhoods, geospatial lo-
cations are typically derived from cadastral-parcel centroids.
Parcel sizes are typically similar in size to the buildings
within parcels, and thus, the locations given in ZTRAX are
likely to spatially coincide with the location of the building
(Fig. 7a). In peri-urban and rural, agricultural settings, where
parcels are often large, the parcel centroid may be far from
the actual building location and, thus, may provide a less pre-
cise estimate of the actual location of the built-up structure in
question (Fig. 7b). This precision also applies to cases where
address points are used. Address points typically represent
the location of a building snapped to the road median, as an
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Figure 6. Data completeness analysis. (a) Built-year county-level completeness and (b) census-place-level completeness, (c) grid cells
without built-year information, and (d) trends of built-year completeness across the rural–urban continuum. Census place boundaries shown
in (b) are generalized using Thiessen polygons derived from place polygon centroids for readability purposes.

approximate location of the mailbox, in cases where build-
ings are located far from the road (see Fig. 7c). These issues
may potentially result in locational precisions below the par-
cel level (see also Nolte, 2020). While these effects are ex-
pected to be partially mitigated by the 250× 250 m grid cell
aggregation, our BUPR, BUPL, and BUA surfaces may not
accurately reflect the location of actual built-up structures,
particularly in rural areas.

Moreover, due to the ZTRAX data model, built-up prop-
erty records reflect legal ownership. These records may
represent an individually owned built-up structure, such as
single-family residential buildings, or an individually owned
multi-family building (residential income, i.e. apartments).
If housing units within physical structures are individually
owned, each unit is represented as an individual property
record in the ZTRAX database (multi-owner records, i.e.
condominiums). This designation also applies to residential
communities, which may encompass multiple physical struc-
tures (multi-address records). This peculiarity of the ZTRAX
data model may lead to multiple overlapping records at the
same location. We refer to these cases as “multi-record loca-
tions” (represented in the BUPL surfaces) and to their asso-
ciated records as “multi-records”. If such multi-records are
encountered in regions characterized by high-rise buildings
(see Fig. 2c), their locational uncertainty is low, since the
properties (i.e. building units) represented by these records

are, in fact, stacked on top of each other. However, there
are cases when such multi-records are used for structures or
complexes that are spatially more spread out, such as mo-
bile home parks (Fig. 7d) or planned communities (Fig. 7e).
As illustrated in these examples, the reported locations of
these multi-records may deviate considerably from the ac-
tual location and, thus, introduce positional error in the grid-
ded BUPR and BUPL surfaces. Moreover, densities at those
locations can be exorbitantly high. While ZTRAX contains
a considerable number of such locations (see Sect. 4.2.1),
there are, to a much lesser extent, multi-record locations as
a result of “pseudo-locations”. These pseudo-locations were
likely assigned as rough location estimates for built-up prop-
erty records in places where detailed spatial information was
not available during the original database creation. Such an
example is shown in Fig. 7f, where the highlighted multi-
records likely represent nearby properties.

The illustrations shown in Fig. 7 aim to raise awareness
among data users that positional accuracy can be low in
areas with mobile home parks, sprawling residential hous-
ing, apartment buildings, or condominiums, typically rep-
resented by multi-record locations. Figure 7 also illustrates
that pseudo-locations may be the reason for extreme BUPR
counts in sparsely, rural regions or in developing areas.
While the effects of spatial generalization cannot be quan-
tified without manual checks against aerial imagery or the
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Figure 7. Variations in positional accuracy and generalization levels in the ZTRAX database: example of (a) highly accurate settlement
locations in a dense residential neighbourhood dominated by single-family homes, (b) settlement locations of medium positional accuracy,
and (c) settlement locations of low positional accuracy in rural parts of the USA. Spatially generalized settlement locations (i.e. multi-record
locations) for (d) a mobile home park and (e) a planned community or condominium; (f) a rare agglomeration of records, likely resulting
from pseudo-locations assigned during database work in progress. Base map imagery from © Microsoft 2020.

use of rarely available volumetric building data, we con-
ducted a spatial analysis of these multi-record locations (see
Sect. 4.2.1). This analysis provides additional insight into
how and to what degree multi-record locations and the as-
sociated potential positional errors may bias the generated
BUPR and BUPL surfaces (see also Appendix D).

4.2.1 Analysing spatial generalization effects

Out of 117.5 million built-up property records in the CONUS
in 2016, there are 89.5 % referenced to unique spatial loca-
tions and 10.5 % share the geospatial location with at least
one other record (i.e. multi-records). Among the 101.7 mil-
lion built-up property locations, 96.7% contain a single
record and only 3.3 % contain two or more records (i.e.
multi-record locations). From these 3.3 %, a proportion of
6.7 % of the multi-record locations contains built-up records
that include mobile home parks and other residential-income
properties, and 27.9 % of the multi-record locations contain
usage types related to office space, planned communities, or
residential condominiums. Thus, the potential positional in-
accuracies discussed above affect only a small proportion of
the data, as these numbers indicate.

For example, Fig. 8a shows the BUPR 2016 surface for
Denver, Colorado, and Fig. 8b shows only the grid cells that
contain at least one multi-record location. It is not surpris-
ing that these grid cells are mainly found in the downtown
area (map centre), which is dominated by high-rise com-
mercial buildings and office condominiums. Additionally, we
used a land use type attribute reported for each record in
the ZTRAX database (McShane et al., 2021) to analyse the
usage type at multi-record locations. To do so, we flagged
multi-record locations involving office or residential condo-
miniums and large residential-income properties (e.g. mo-
bile home parks, large apartment complexes). Grid cells with
multi-record locations not involving office or residential con-
dominiums or mobile home parks are shown in Fig. 8c and d,
respectively. Most of these multi-record locations hold two
or very few multi-records and likely represent parcels with
multiple buildings, e.g. commercially or industrially used
parcels. A few spatially isolated grid cells in peri-urban areas
(Fig. 8d) indicate multi-record locations holding higher num-
bers of multi-records and may represent pseudo-locations
in developing areas, which will likely be refined in future
ZTRAX database versions. However, multi-record locations
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Figure 8. Analysis of multi-record locations. (a) BUPR surface for Denver, Colorado; (b) BUPRs for multi-records only; BUPRs for multi-
records (c) without residential-income land use and (d) without residential income or condominiums; (e) rank–size plots of multi-record
locations (size= number of multi-records per location) for different land use categories.

containing extremely high numbers of records are very rare
and follow a rank–size distribution, as the rank–size plots in
Fig. 8e suggest. Users are able to mitigate the effect of these
locations using the accompanying positional uncertainty sur-
face (Sect. 4.4.1). See Appendix D for further analyses of
multi-record locations.

4.2.2 Positional accuracy across multiple spatial
resolutions

Due to the nature of locational information in ZTRAX, the
created BUPR and BUPL surfaces do not necessarily reflect
the precise locations of physical built-up structures, as previ-
ously discussed. Lower levels of precision due to large par-
cel sizes (Fig. 7b, c) and spatial generalization effects intro-
duced by certain types of multi-record locations (Fig. 7d–f,
Sect. 4.2.1) generate positional uncertainty in the resulting
surfaces. To quantify positional accuracy of the 2016 BUPR,
BUPL, and BUA surfaces, we conducted a cell-by-cell map
comparison against the reference surface generated from the
MSBF data (Sect. 3.2.1).

While positional agreement assessment using map com-
parison techniques is a commonly applied method in remote
sensing and related sciences, it assumes semantic compati-
bility between reference data and data under test; i.e. the ge-
ographic process measured by both datasets should be iden-
tical. In our case, we compare building outlines to locations
derived from parcel centroids or address points, possibly re-
sulting in spatial disagreement between the (gridded) test and
reference data, even though both datasets are in agreement
(i.e. ZTRAX location and building footprint are within the

same parcel boundaries). Hence, spatial disagreement (i.e.
false positive or false negative instances) is assumed if we
can rule out that the disagreement is induced by spatial off-
sets due to different semantics (i.e. parcel centroid or ad-
dress point vs. building footprint) and spatial granularity (i.e.
discrete point vs. polygon) between underlying test and ref-
erence data. Our method models the probability that posi-
tional disagreement is induced by such spatial offsets and is
based on the contemporary BUA2016 surface (Fig. 9a) which
is compared against a binary built-up presence surface de-
rived from MSBF data (Fig. 9b). This multi-scale approach
(see Appendix E for details) quantifies agreement at multiple
spatial aggregation levels (i.e. cell sizes) and generates a sur-
face of offset-induced misclassification probability (Fig. 9c–
f).

We established confusion matrices for each aggregation
level, within county and census place boundaries, and as-
sessed the agreement separately for each county-level rural–
urban continuum code (RUCC) within county and place
polygons (see Fig. 5h, i), excluding counties without ZTRAX
data coverage (Fig. 6a, b). This approach allows for extract-
ing positional agreement measures (i.e. precision or user’s
accuracy, recall or producer’s accuracy, and F measure)
across aggregation levels and across the rural–urban contin-
uum, both within census place boundaries and overall (within
county boundaries, i.e. including scattered rural settlements
outside of census places). There are high levels of precision
across all RUCCs, particularly within census place bound-
aries (i.e. > 0.89; Fig. 10a). Recall shows slightly lower val-
ues not only in rural regions (i.e. RUCCs 6–9) but also in
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Figure 9. Cross-scale positional uncertainty surfaces: (a) contemporary, ZTRAX-derived, settled areas (i.e. BUA surface from 2016); (b) cor-
responding reference surface derived from MSBF data; (c) resulting spatial disagreement surface indicating the estimated offset-induced
misclassification probability; (d) subset shown for a region west of Springfield, Missouri; and enlargements showing regions characterized
by (e) disagreement likely introduced by spatial offsets and (f) false negatives unlikely to have been introduced by spatial offsets but rather
by missing data.

urban regions (i.e. 0.88) which is likely due to the omis-
sion of publicly owned buildings in ZTRAX. When evaluat-
ing agreement using county boundaries (i.e. including settle-
ments not incorporated into census places, such as dispersed,
rural settlements, Fig. 10b), we observe a drop in accuracy,
in particular for recall in rural areas. This decline indicates
lower levels of completeness of ZTRAX in predominantly
rural places but may also be related to inaccuracies in the
MSBF data (see Appendix F). All accuracy measures in-

crease with an increasing spatial aggregation level, in par-
ticular in rural areas for aggregation factors 2 and 4 (corre-
sponding to 500 and 1000 m, respectively), where offsets be-
tween underlying ZTRAX locations and building footprints
may be large (see Fig. 9e). In these cases, the spatial aggre-
gation method is particularly effective and likely provides a
more unbiased accuracy estimate.

Moreover, we examined how the offset-induced misclas-
sification probability changes across the rural–urban contin-
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Figure 10. Positional accuracy assessment results: precision, recall, and F measure between contemporary built-up grid cells derived from
the 2016 BUPR surface across the rural–urban continuum and for multiple spatial aggregation levels, (a) evaluated within 2010 census
place boundaries and (b) evaluated within all CONUS landmass (excluding 82 counties where no ZTRAX data are available); (c) pie charts
showing the proportions of agreement classes (outer rings) and probability categories of disagreement induced by spatial offsets between
test and contemporary building footprint data within each disagreement class (inner rings), shown for strata of RUCCs 1 (highly urban), 5
(intermediate), and 9 (most rural), respectively; and trajectories of accuracy measures over time for counties of (d) low built-up density and
(e) high built-up density, against the validation database MTBF30.

uum. As illustrated in Fig. 10c, which is based on calcula-
tions within county boundaries, we observe that the propor-
tion of false positives and false negatives with high offset-
induced misclassification probability increases steadily, from
24 % of the true positives in urban counties (RUCC 1) to
53 % in intermediate counties (RUCC 5) to 82 % in the most

rural counties (RUCC 9). Based on these observations and
given the spatial offsets between ZTRAX data and validation
building footprint data, we assume that offset-induced bias is
the main cause for low recall measurements in rural settings.
Hence, the accuracy trajectories for aggregation levels 2 or
even 4 (Fig. 10a, b) are likely to show a more realistic picture
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of the agreement between the BUPR–BUPL surfaces and the
validation data.

4.2.3 Positional accuracy over time

While the previous assessment illustrates accuracy trajecto-
ries across the rural–urban continuum, it is based on the con-
temporary built-up areas (i.e. derived from the BUPR 2016
surface) and does not assess accuracy variations over time.
Since our previous work on temporal accuracy trajecto-
ries (Leyk and Uhl, 2018a) has not differentiated between
predominantly urban and rural places, we fill this gap by
computing positional agreement measures of the binarized,
multi-temporal BUPR surfaces against the reference surfaces
generated from our database MTBF30, for each half decade
and separately for high-density and low-density counties (see
Sect. 3.2.2). Since this reference database covers 30 coun-
ties in the USA and, thus, represents a rather small sam-
ple, we computed county-level building densities based on
the reference data. Using the 75th percentile of building den-
sity measures for each point in time as a threshold, we sep-
arated the 30 counties into counties of predominantly low
and high built-up density (Table B1), rather than using the
USDA RUCCs temporally referenced to 2013. Results are
shown in Fig. 10d and e for predominantly rural and ur-
ban counties, respectively, indicating high levels of precision
since the early 1800s, whereas recall drops almost logarith-
mically when going back in time. This indicates higher levels
of omission errors for structures established prior to 1900.
However, it is also affected by larger positional offsets be-
tween ZTRAX and building data for older structures. Pre-
vious work included a multi-temporal accuracy assessment
across different levels of spatial aggregation (Leyk and Uhl,
2018a) and showed that, for a spatial aggregation level of
1250 m, recall values in 1850 increase to over 0.75. More-
over, accuracy levels are slightly lower in predominantly ru-
ral counties (Fig. 10d) than in urban counties (Fig. 10e).

4.3 Assessing quantity agreement

Lastly, we assessed the quantity agreement of the counts
reported in the BUPR and BUPL surfaces with our val-
idation datasets at different spatial-granularity levels and
across different domains: (a) agreement over time between
county-level housing unit counts obtained from the US cen-
sus (Sect. 4.3.1), (b) agreement across the rural–urban con-
tinuum at grid-cell-level building counts generated from the
MSBF dataset (Sect. 4.3.2), and (c) agreement over time
against our database MTBF30 (Sect. 4.4.3). Since the vali-
dation datasets are based on different measurements but are,
to a certain degree, semantically coherent with the BUPR and
BUPL surfaces, we expected certain levels of disagreement
when comparing these counts but high levels of association
and correlation over time.

4.3.1 Multi-temporal quantity agreement against
census-based housing statistics

We visualized the distributions of census-based county-level
housing unit counts and built-up property counts, aggre-
gated to county boundaries of the respective census years
(Fig. 11), for 1890–1940 and 1970–2010 and separately for
counties of predominantly rural (Fig. 11a) and urban charac-
ter (Fig. 11b). We obtained these rural–urban-stratification-
based density percentiles for each point in time, as described
in Sect. 4.2.3. We observe very similar trends in built-up
properties and housing units over time, with census housing
units systematically exceeding the ZTRAX-derived built-up
property counts. This difference may stem from residential-
income housing, such as large rental-based apartment com-
plexes, that appears as a single property record in ZTRAX
but is represented as multiple housing units in the census
data. While this explains the differences in urban counties
(Fig. 11b), the deviations in rural counties (Fig. 11a) may be
a result of higher omission errors (i.e. lower recall values)
in the ZTRAX data in earlier points in time (see Fig. 10).
Agreement trends derived for BUPL surfaces look largely
similar as indicated by the time series of Pearson’s corre-
lation coefficients (Fig. 11e). The correlations are high for
both BUPRs and BUPLs in high-density counties (i.e. > 0.8
since the year 1900) but exhibit lower levels of agreement
in low-density counties, due to higher omission errors in the
ZTRAX database in rural settings, where data tend to be less
reliable and cadastral data acquisition may not be a prior-
ity. Moreover, we observe an increasingly linear relationship
over time between BUPR–BUPL and census-based housing
unit counts (Fig. G1b, c, d).

4.3.2 Quantity agreement across the rural–urban
continuum

The relationships at the grid cell level between the BUPR
2016 surface and the reference surface derived from MSBF
data (Sect. 3.2.1) show a clear trend across the rural–urban
continuum (Fig. 11c). While most grid cell pairs are found
near the main diagonal in these scatterplots in urban coun-
ties (RUCC 1), a second (lower) branch is visible. This
branch results from grid cells of high BUPR but low refer-
ence building counts, likely representing high-rise buildings,
large apartment buildings, and office condominiums. More-
over, this progression illustrates the density decline from ur-
ban towards rural settings. The corresponding robust regres-
sion results (Huber, 1973; see also Fig. G1) indicate lin-
ear relationships with slope values of around 1.0 for both
BUPR and BUPL surfaces. The slope for the BUPR distri-
bution is lower (0.68) in rural counties (RUCC 9), likely a
result of few, but very highly valued, multi-record locations,
potentially representing pseudo-locations occurring in rural
regions (see Sect. 4.2.1). In comparison to the BUPR re-
gression lines, the slope coefficients from the BUPL-based
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Figure 11. Results of the quantity agreement analysis: US-wide trends of housing development from 1890 to 2010 according to US census
data and BUPR-derived trajectories for strata of (a) rural and (b) urban counties (separated by the 75th percentile of the decennial census
data distributions); (c) grid-cell-wise quantity agreement between test data and MSBF data in 2016, shown for counties of USDA RUCCs 1
(urban), 5 (intermediate), and 9 (rural); (d) multi-temporal trends of quantity agreement with building counts derived from MTBF30 in 1900,
1950, and 2000; and time series of Pearson’s correlation coefficients for county-level BUPR–BUPL summaries (e) against US census housing
unit counts and (f) against the multi-temporal building footprint reference database at the 250 m grid cell level. Panels (c) and (d) also show
a regression line obtained from robust linear regression.
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regression models are consistently closer to 1.0, indicating
slightly stronger associations between built-up property lo-
cations and building counts. R2 values of these regressions,
as well as the correlation coefficients for each half decade,
are consistently very high across all RUCCs (Fig. G1h).
They exhibit slightly higher correlations for BUPLs than for
BUPRs, with slight drops in highly urban and highly rural
strata (Fig. G1e).

4.3.3 Quantity agreement over time at the grid cell level

BUPR–BUPL and gridded building footprint counts derived
from MTBF30 (Fig. 11d) show a general increase in both
building and built-up property record counts at the grid cell
level across the 20th century. Counts increase notably during
the first half of the 1900s (i.e. densification), while growth
in built-up area after 1950 occurred increasingly also in the
form of suburban expansion (Leyk et al., 2020). These rela-
tionships are highly linear across all points in time. Similar to
the observation made in RUCC 1 counties (Sect. 4.3.2), the
surfaces in the year 2000 show an emerging accumulation
of grid cells with high BUPR values but low building counts
(likely high-rise buildings, planned communities, etc.). In ad-
dition, larger numbers of data points above the main diagonal
appear after 1950, i.e. where reference building counts ex-
ceed the number of property records. This result may be at-
tributed to some underestimation in the ZTRAX database but
is more likely to be a result of increasing numbers of prop-
erties with several physically separated buildings, such as
garages, sheds, or carports contained in the reference build-
ing database. These data points also cause the BUPL re-
gression line slopes of > 1.0, which we do not observe in
the MSBF-based scatterplots (Fig. 11c). This observation is
likely an effect of the low sample size in the multi-temporal
building database (1 % of US counties) as compared to the
MSBF data coverage, and the under-representation of high-
rise buildings located in highly urban settings.

Corresponding correlation time series (Fig. 11f) reveal
several interesting insights. First, correlation levels over time
are fairly high back to 1850 and drop below 0.8 only prior to
that. Second, correlation between building counts and BU-
PLs are consistently higher over time than for BUPRs, indi-
cating that changes in the number of buildings over time are
reflected better in the BUPL surfaces than in the BUPR sur-
faces, likely a result of multi-record locations holding large
numbers of property records. Third, correlations are higher
in the low-density counties than in high-density counties and
are lowest for BUPRs in high-density counties. This trend
is likely due to higher numbers of multi-apartment buildings
in high-density areas as compared in to low-density areas,
resulting in larger deviations of BUPRs from the number
of physical built-up structures within grid cells. The higher
correlations in low-density counties are surprising, since we
found low correlations to census-based housing unit counts
in rural (low-density) counties (Fig. 11e). Moreover, stable

slope values and high R2 values over time from 1850 im-
ply a strongly linear relationship between BUPR–BUPL and
MTBF30 data (Fig. G1j). These observations reveal that the
BUPR and BUPL surfaces hold great potential to describe
changes in the built environment across different settings but
show different associations with housing trends as reported
and defined by the census over time, particularly in rural set-
tings. A quantitative assessment of the differences between
BUPR–BUPL counts and the reference data counts can be
found in Fig. G2.

4.4 Accompanying uncertainty surfaces

To allow users to mitigate and reduce the effects of loca-
tional uncertainty inherent in the BUPR, BUPL, and BUA
surfaces, we provide three accompanying uncertainty sur-
faces at a spatial resolution of 250 m (Uhl and Leyk, 2020d).
These surfaces are (a) a “multi-record count surface”, as
a measure of potential positional uncertainty due to spa-
tial generalization of the underlying ZTRAX data records
(Sect. 4.2.1); (b) a positional reliability surface, containing
the agreement–disagreement type for each grid cell, obtained
by map comparison against the MSBF-derived reference sur-
face (Sect. 4.2.2); and (c) a built-year missingness surface,
flagging grid cells containing built-up properties but no built-
year information (Fig. 5c).

4.4.1 Multi-record count surface

The multi-record maxima surface contains, for each grid cell
in the CONUS, the maximum number of built-up property
records with the same geolocation. This count does not in-
clude any residential-income or office or residential condo-
minium land use type, as shown in Fig. 8d. Extreme grid cell
values in this gridded surface may indicate the presence of
pseudo-locations (see Sect. 4.2.1). The data user can decide
how to employ this surface to mask out locations in question
by applying a suitable threshold.

4.4.2 Positional reliability surface

The positional reliability surface is a simplified version of
the probabilistic agreement–disagreement surface shown in
Fig. 9c–f, containing three classes (i.e. true positive, false
positives, false negatives) resulting from map comparison
against the MSBF data. This surface enables the data user
to identify grid cells that represent commission and omission
errors with respect to MSBF data, such as sub-county-level
data gaps not captured in the county-level uncertainty statis-
tics available for the HISDAC-US (Leyk and Uhl, 2018d).
Such sub-county-level data gaps are, in part, due to the pre-
viously described omission of publicly owned buildings in
ZTRAX (see Appendix C). Here, it is worth noting that many
cities provide geospatial datasets indicating the location of
their public-housing buildings (see e.g. NYC Housing Au-
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Table 2. Overview of all data products currently contained in the HISDAC-US.

Data product DOI Data citation

Built-up property records (BUPRs) https://doi.org/10.7910/DVN/YSWMDR Uhl and Leyk (2020a)
Built-up property locations (BUPLs) https://doi.org/10.7910/DVN/SJ213V Uhl and Leyk (2020b)
Built-up areas (BUAs) https://doi.org/10.7910/DVN/J6CYUJ Uhl and Leyk (2020c)
BUPR–BUPL–BUA uncertainty surfaces https://doi.org/10.7910/DVN/T8H5KF Uhl and Leyk (2020d)

Published in Leyk and Uhl (2018a)

Built-up intensity (BUI) https://doi.org/10.7910/DVN/1WB9E4 Leyk and Uhl (2018b)
First built-up year (FBUY) composite https://doi.org/10.7910/DVN/PKJ90M Leyk and Uhl (2018c)
County-level uncertainty statistics https://doi.org/10.7910/DVN/CXD9BW Leyk and Uhl (2018d)

thority, 2020; City of Los Angeles Controller’s Office, 2017)
at least for contemporary periods, and such data could be
used to quantify and mitigate these specific omission errors
in detail. Moreover, positional uncertainty (i.e. deviations
from actual building locations) may be introduced by im-
precise geolocations as a result of Zillow’s geocoding and
spatial refinement strategy. Besides this positional reliability
surface derived from the MSBF data, we refer the reader to
previously published positional uncertainty surfaces that take
into account the parcel size of a ZTRAX record and the dis-
tance of a given geolocation to the grid cell edges (Leyk and
Uhl, 2018b).

4.4.3 Built-year missingness surface

The built-year missingness surface flags grid cells that con-
tain built-up property records but no built-year information,
allowing data users for excluding regions where changes
over time cannot be directly measured. This binary “no-built-
year” (NBY) surface is, in similar form, contained in the
FBUY surface (grid cells of value 1; Leyk and Uhl, 2018a, c).
While this binary surface allows for excluding grid cells
without any temporal information, users may be interested
in excluding grid cells based on certain proportions of lo-
cations (i.e. BUPRs) without built-year information. To do
so, we refer to our previously published dataset “TPixMiss”
(Temporal pixel missingness) containing the number of BU-
PLs without built year per grid cell (Leyk and Uhl, 2018b).

5 Code availability

Source code for data extraction, processing, and analysis is
available from the authors upon reasonable request.

6 Data availability

The described datasets are part of the Historical
Settlement Data Compilation for the United States
(https://dataverse.harvard.edu/dataverse/hisdacus,
last access: 25 January 2021) and are available at

https://doi.org/10.7910/DVN/YSWMDR (BUPR, Uhl
and Leyk, 2020a), https://doi.org/10.7910/DVN/SJ213V
(BUPL, Uhl and Leyk, 2020b), and
https://doi.org/10.7910/DVN/J6CYUJ (BUA, Uhl and
Leyk, 2020c). The data are provided as geospatial raster
layers, at a spatial resolution of 250× 250 m, one layer
for each 5-year period, from 1810 to 2015. Gridded
datasets are spatially referenced using the Albers equal-area
conic projection for the CONUS (SR-ORG:7480), and
data are available in GeoTIFF format using LZW data
compression. The uncertainty surfaces accompanying the
BUPR, BUPL, and BUA surfaces are the no-built-year
(NBY) surface, the multi-record maxima surface, and
the positional reliability surface and are also available as
gridded datasets at https://doi.org/10.7910/DVN/T8H5KF
(Uhl and Leyk, 2020d), at identical spatial resolution
and reference, in the HISDAC-US data repository. The
first built-up year surface (Leyk and Uhl, 2018c), the
built-up intensity surfaces (Leyk and Uhl, 2018b), and
county-level uncertainty statistics (Leyk and Uhl, 2018d),
as described in Leyk and Uhl (2018a), are also accessible
at https://dataverse.harvard.edu/dataverse/hisdacus (last
access: 25 January 2021). See Table 2 for an overview of the
different data products.

7 Conclusions

This data description introduces a novel fine-grained build-
ing dataset that spans 2 centuries of development history
in the United States. By providing unique insight into the
long-term dynamics of urbanization and the built environ-
ment, the spatiotemporal richness of this dataset vastly ex-
pands the opportunities to study land use and land cover
change over extended periods of time. These geospatial grid-
ded surfaces not only enable the measurement of physical
building density through time but also can be flexibly inte-
grated with standard demographic data sources like the de-
cennial census. While no reference data can fully validate
a data source of this scale and scope, we conducted cross
comparisons of the counts provided in the BUPR and BUPL
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surfaces to a variety of validation datasets. While our exer-
cises reveal generally high levels of reliability, there is sub-
stantially higher uncertainty in our observations from before
1850. The absence of information on building teardowns or
replacements in the ZTRAX data is one plausible explanation
for this inconsistency. In future work, we will test strategies
to quantify these uncertainties in detail by employing auxil-
iary data sources. This will potentially enable us to provide
refined uncertainty estimates of even corrected datasets. Pre-
liminary tests have shown promising results and that this is-
sue has only minor effects on analytical outcomes (Uhl et al.,
2021). This said, by utilizing our uncertainty estimates, data
users can incorporate uncertainty into their analyses and mit-
igate data discrepancies. These new data products provide
an unprecedented baseline for the modelling of spatiotempo-
ral phenomena related to urbanization, land use transitions,
and even demographic change (see Leyk et al., 2020). More-
over, many of the challenges highlighted in this article can
be tackled through the development of cutting-edge data im-
putation strategies. Taken together, this dataset will enable
predictive models to learn from the past, to better predict fu-
ture environmental, social, or demographic scenarios. Lastly,
these BUPR and BUPL gridded datasets are the newest con-
tribution to our expanding HISDAC-US compilation, which
is making unique industry-generated data derivatives avail-
able to scientists within and beyond the Earth systems re-
search community.
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Appendix A: Geographic coverage of MTBF30

Table A1. List of 30 counties covered by the multi-temporal building footprint database (MTBF30).

County State Population 2015 Area [km2] % built-up according to reference data

Low-density counties (stratification in 2015)

Benton County Oregon 86 414 1747 0.9
Franklin County Massachusetts 70 927 1876.8 1.9
Berkshire County Massachusetts 128 565 2451 2.6
Boulder County Colorado 313 864 1780.4 3.3
Hampshire County Massachusetts 161 106 1413.5 4.1
Carver County Minnesota 97 396 970 4.2
Dukes County Massachusetts 17 320 319.5 4.6
Manatee County Florida 351 771 2064.4 6.5
Nantucket County Massachusetts 10 821 155.5 6.5
Worcester County Massachusetts 814 972 4087.1 6.5
Washington County Minnesota 249 320 1092.8 7.0
Dakota County Minnesota 412 182 1522.3 7.8
Hampden County Massachusetts 469 566 1641.9 8.3
Plymouth County Massachusetts 507 050 1822.3 9.3
Vanderburgh County Indiana 181 918 609.2 9.7
Anoka County Minnesota 341 742 1153.1 10.3
Sarasota County Florida 397 024 1569.5 11.2
Bristol County Massachusetts 554 626 1529.6 11.4
Essex County Massachusetts 770 486 1388 12.2
Barnstable County Massachusetts 214 665 1177.8 12.3
Baltimore County Maryland 827 794 1623.9 12.6
Hillsborough County Florida 1 318 325 2800.3 13.4
Monmouth County New Jersey 629 018 1255.9 15.5

High-density counties (stratification in 2015)

Norfolk County Massachusetts 692 688 1083.9 16.5
Middlesex County Massachusetts 1 572 523 2196.6 16.7
Hennepin County Minnesota 1 212 097 1566.4 20.8
Mecklenburg County North Carolina 1 011 928 1409.6 23.8
Ramsey County Minnesota 533 634 439.5 30.8
Suffolk County Massachusetts 769 809 177.9 38.2
New York City New York 8 537 673 781.1 54.3
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Appendix B: City extent comparison

Figure B1. Size relationships between city extents shown in Fig. 3.
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Appendix C: Assessing the effects of public building
and housing omission

Based on the auxiliary datasets described in Sect. 3.2.5, we
calculated county-level sums of public structures from the
USGS National Structures Dataset (e.g. schools, hospitals,
governmental buildings) and of publicly owned housing units
(e.g. established for low-income renters by housing assis-
tance programmes), reported by the HUD, and covering 1934
counties in the conterminous USA. Moreover, we calculated
the number of public amenities, reported in OpenStreetMap,
as a cross comparison to the public structures reported by
the USGS. More specifically, we used objects from the OSM
database with the key “amenity” that are tagged as one of
the following usage types: public building, townhall, library,
police, hospital, school, community centre, university, social
facility, nursing home, clinic, courthouse, monastery, place
of worship, post office, prison, or college.

To quantify the proportion of structures that may be omit-
ted by ZTRAX, we calculated the proportions of these counts
with respect to the estimated total number of structures or
housing units per county (i.e. the sums of public entities and
ZTRAX-derived counts). As can be seen in Fig. C1, these
proportions are below 5 % for the large majority of counties.
Thus, the omission of public properties in ZTRAX causes
an underestimation of approximately 5 % of the total number
of BUPRs and BUPLs in most counties. For detailed analy-
ses at local scales, users may employ the described auxiliary
datasets (Sect. 3.2.5) to mitigate these omission errors.

Figure C1. Assessment of omission errors introduced by lacking information on publicly owned buildings in ZTRAX: frequencies of county-
level proportions of (a) public structures, (b) public-housing units, and (c) public amenities, referred to the respective county-level sums of
BUPRs or BUPLs. Note that the y-axis range differs by panel.
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Appendix D: Assessment of multi-record built-up
property locations across different domains

We analysed the usage types of multi-record locations at the
county level across different domains. Counties with high
numbers of multi-records (Fig. D1a) and counties with high
built-up density (Fig. D1b) exhibit high proportions of of-
fice or residential condominiums. Moreover, the total build-
ing indoor area reported at multi-record locations is greater
when condominiums are involved (Fig. D1c). Conversely, we
observe narrow built-year ranges at multi-record locations
involving condominiums (Fig. D1d). These trends reflect
some general characteristics of condominiums and planned
communities: they tend to be built-up in short periods of
time, be close to densely rather than sparsely populated re-
gions, and constitute large shares of the local built-up in-
tensity. Analysing the distributions of multi-records for each
individual multi-record location, rather than looking at gen-
eral trends of multi-record locations at the county level, we
see a different picture. As Fig. D1e indicates, large propor-
tions of multi-records are of residential-income usage. Also,
Fig. D1e suggests that condominium multi-record locations
typically have < 200 records. Multi-record locations hold-
ing larger numbers of records than 300 are less frequent
(see Fig. 8e), and their usage patterns are mixed. The yellow
bars to the very right in Fig. D1e likely represent the previ-
ously described pseudo-locations, i.e. artificial multi-record
locations not representing residential income or condomini-
ums. As can be seen, these cases represent only a minor pro-
portion of all multi-record locations in the USA and can be
masked out or subtracted using the uncertainty surface pro-
vided (Sect. 4.4.1).
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Figure D1. Detailed analysis of multi-record locations across different domains: stacked bar plots with each bar representing the proportions
of involved land use types at multi-record locations per county. Lengths of the bars represent the log-transformed total number of multi-
records per county, and the horizontal sorting of the bars from left to right is based on (a) the number of multi-records per county, (b) the
county-level housing density derived from 2010 US census data (see Sect. 3.2.3), (c) the sum of indoor building area over all multi-records
per county, and (d) the built-year range recorded at multi-record locations (county averages). (e) Distributions of the number of records at
multi-record locations and their land use proportions, overlaid with the log-transformed total number of multi-records (white). Sorted data
series in (a)–(d) were smoothened by a sliding median filter (size= 50) for improved readability.
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Appendix E: Multi-scale accuracy assessment and
offset-induced misclassification probability
modelling

First, classical map comparison is conducted for the con-
temporary BUA2016 surface (Fig. 9a) and reference surface
(Fig. 9b) at the original spatial resolution (here, 250 m), re-
sulting in a categorical gridded surface indicating the agree-
ment type (true positives, true negatives, false positives, false
negatives, i.e. TP250, TN250, FP250, FN250, respectively).
Then, both BUA2016 and the reference surfaces are down-
sampled by a factor of 2, and agreement types per grid cell
are re-computed (i.e. TP500, TN500, FP500, FN500). This is
done iteratively for a specified number of downsampling fac-
tors (here, up to a factor of 4, corresponding to a cell size of
2000 m), which indicates the spatial range within which off-
sets as described above are assumed to occur. The agreement
type surfaces of all downsampled levels are then upsampled
to the native resolution (i.e. 250 m) and stacked into a multi-
scale data cube (Fig. E1). Based on this cube, cross-scale
trajectories per grid cell are extracted for each grid cell that
was misclassified at the native resolution (Table E1). When
a cross-scale trajectory switches from FP to TP or from FN
to TP, a probability of offset-induced misclassification is as-
signed to the grid cell as a function of the aggregation level
where this switch occurs. This probability is lowest for grid
cells that remain in FP or FN categories across all scales and
highest if the switch to TP occurs immediately after the first
downsampling step. Subsets of resulting surfaces indicating
FPs and FNs including their estimated offset-induced mis-
classification probability, as well as the TPs, are shown in
Fig. 9c–f.
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Table E1. Cross-scale disagreement trajectories and assigned offset-induced misclassification probability.

Spatial aggregation level Probability of offset-induced misclassification

250 m 500 m 1000 m 2000 m

FP FP FP FP lowest
FP FP FP TP low
FP FP TP TP medium
FP TP TP TP highest
FN FN FN FN lowest
FN FN FN TP low
FN FN TP TP medium
FN TP TP TP highest

Figure E1. Processing workflow to generate the cross-scale disagreement composite surface.
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Appendix F: Cross-comparing building footprint
validation datasets

Linking the accuracies obtained for the most recent
point in time of the multi-temporal accuracy assessment
(Sect. 4.2.3; Fig. 10d, e) to the US-wide, contemporary re-
sults (Sect. 4.2.2), we observe lower recall values when vali-
dating against MSBF data (0.3 in rural and 0.8 in urban coun-
ties, Fig. 10b) as compared to the recall obtained when val-
idating against the MTBF30 data (0.85 in low-density coun-
ties vs. 0.9 in high-density counties). This effect could be
due to a sampling bias as a result of comparing accuracy
measures derived across 30 counties, selected on the basis of
data availability, against approximately 3000 counties. An-
other possible cause could be high commission errors (i.e.
lower levels of precision) in the MSBF data, for which, to our
knowledge, no thorough validation study has been published.
Thus, we evaluated the spatial agreement between the binary
reference surfaces derived from MSBF data, approximately
representing built-up grid cells in 2016, and the surface de-
rived from MTBF30 in 2015. Considering the latter surface
as reference, we observe remarkably lower levels of precision
in lower-density counties (i.e. 0.854; see Table F1) than the
overall measure reported by Microsoft (precision= 0.993;
Microsoft, 2018). While we would like to emphasize that the
results reported in Table F1 need to be further evaluated crit-
ically, since the validation dataset only covers approx. 1 %
of US counties, they partially explain the low recall values
for the 2016 BUPR surface reported in Sect. 4.2.2. Thus, it
is possible that there is a bias in the MSBF data resulting in
higher-than-expected commission errors in rural areas.

Table F1. Cross comparison of MSBF data against building footprints from integrated 30-counties database.

Agreement measure All counties High-density counties Low-density counties

Percentage correctly classified 0.933 0.969 0.919
Precision (user’s accuracy) 0.901 0.990 0.854
Recall (producer’s accuracy) 0.957 0.960 0.955
F measure 0.928 0.975 0.901
Kappa index 0.866 0.935 0.834
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Appendix G: Quantitative agreement assessment of
BUPR–BUPL and reference datasets

The quantity agreement assessment in Sect. 4.3.3 illustrates
the levels of association and correlation between validation
datasets and the BUPR–BUPL surfaces but does not pro-
vide quantitative measures of difference. To quantify the
differences between ZTRAX-derived BUPR–BUPL counts
(CZTX) and the counts reported in the three reference datasets
(CREF), we define the absolute count difference (ACD) and
the relative count difference (RCD) as

ACDi = CZTX,i −CREF,i (G1)

and

RCDi =
ACDi

CREF,i

=
(CZTX,i −CREF,i)

CREF,i

, (G2)

with i denoting a specific analytical instance or unit (i.e.
county or grid cell). The design of these measures will re-
sult in negative values if the ZTRAX-derived variables un-
derestimate reference counts and vice versa. We observe
several trends. First, the absolute magnitude of the ACD
generally increases from rural (low-density) towards urban
(high-density) strata (Fig. G2a, c, e). Second, magnitudes of
ACD to census-derived housing unit counts are lower for
BUPRs than for BUPLs (Fig. G2a), confirming our previ-
ous observation that BUPRs are more strongly related to
housing units than BUPLs. Moreover, we observe a slightly
increasing underestimation of MSBF counts towards rural
counties (Fig. G2c), in particular for the BUPL counts. This
trend is even more apparent for the relative measure RCD
across RUCC classes (Fig. G2d). Interestingly, ACD trends
over time in urban counties (Fig. G2e) show a varying trend
across the 19th and 20th century, exhibiting maximum lev-
els of building count underestimation in the 1950s, particu-
larly visible in the BUPL-derived ACD. The downward trend
prior to 1950 (i.e. increasing underestimation of building
counts) could reflect the increasing establishment of single-
family homes, during the primary era of US suburbanization,
which are more likely to have additional smaller buildings
such as sheds or garages, contained in the reference building
database. The subsequent upward trend post-1950 may be
due to the increasing building of multi-apartment buildings,
condominiums, etc., which mitigates this effect and results in
lower levels of building count underestimation. The relative
measure RCD shown in Fig. G2b and f illustrates the count
differences with respect to the validation data counts across
time, both exhibiting lower magnitudes towards more recent
years, confirming previously made observations of increas-
ing data reliability over time.
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Figure G1. Regression and correlation results of BUPR and BUPL counts against the three validation datasets: (a)–(d) against census
housing units within historical county boundaries, (e)–(h) against MSBF data across the rural–urban continuum (i.e. 2013 USDA RUCCs at
the county level), and (i)–(l) against MTBF30 within grid cells. Larger differences between linear and robust regression coefficients indicate
the presence of larger numbers of outliers (e.g. planned communities, pseudo-locations).
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Figure G2. Absolute and relative count differences between BUPR, BUPL, and validation datasets: (a) absolute differences between census
housing unit counts and BUPR–BUPL county aggregates over time, calculated within historical county boundaries; (b) corresponding relative
differences; (c) grid-cell-level absolute difference distributions against MSBF data across the rural–urban continuum, derived from MSBF-
based building density deciles; (d) corresponding relative difference distributions, using reference building density deciles for stratification;
(e) temporal trends of grid-cell-level absolute differences against MTBF30; and (f) corresponding relative difference distributions. Urban–
rural stratification in (a), (b), (e), and (f) is based on the 75th percentile of reference count distributions per year. Count difference distributions
in (e) and (f) are based on 25-year aggregates to achieve sufficiently large sample size.
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Video supplement. We provide a supplementary video file high-
lighting the BUA and BUPR surface time series. This video shows
(a) the BUA surfaces (i.e. developed and non-developed grid cells),
(b) BUPR surfaces (i.e. number of built-up property records per
250 m grid cell), and (c) changes in built-up areas for 35 selected US
cities, for each half decade from 1810 to 2015. These changes rep-
resent newly built-up grid cells and are obtained from cell-by-cell
differences in the BUA surfaces for two subsequent points in time.
Changes are shown for moving time intervals of 30 years, to bet-
ter highlight the medium- and long-term development trends. The
cities are arranged in an approximate geographic space (i.e. north-
eastern cities are shown in the upper right part of the array). The
video is available at https://doi.org/10.5446/48115.
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