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Abstract. Cold region hydrology is very sensitive to the impacts of climate warming. Impacts of warming over
recent decades in western Canada include glacier retreat, permafrost thaw, and changing patterns of precipitation,
with an increased proportion of winter precipitation falling as rainfall and shorter durations of snow cover, as
well as consequent changes in flow regimes. Future warming is expected to continue along these lines. Physically
realistic and sophisticated hydrological models driven by reliable climate forcing can provide the capability
to assess hydrological responses to climate change. However, the provision of reliable forcing data remains
problematic, particularly in data-sparse regions. Hydrological processes in cold regions involve complex phase
changes and so are very sensitive to small biases in the driving meteorology, particularly in temperature and
precipitation, including precipitation phase. Cold regions often have sparse surface observations, particularly at
high elevations that generate a large amount of runoff. This paper aims to provide an improved set of forcing
data for large-scale hydrological models for climate change impact assessment. The best available gridded data
in Canada are from the high-resolution forecasts of the Global Environmental Multiscale (GEM) atmospheric
model and outputs of the Canadian Precipitation Analysis (CaPA), but these datasets have a short historical
record. The EU WATCH ERA-Interim reanalysis (WFDEI) has a longer historical record but has often been
found to be biased relative to observations over Canada. The aim of this study, therefore, is to blend the strengths
of both datasets (GEM-CaPA and WFDEI) to produce a less-biased long-record product (WFDEI-GEM-CaPA)
for hydrological modelling and climate change impact assessment over the Mackenzie River Basin. First, a
multivariate generalization of the quantile mapping technique was implemented to bias-correct WFDEI against
GEM-CaPA at 3 h ×0.125◦ resolution during the 2005–2016 overlap period, followed by a hindcast of WFDEI-
GEM-CaPA from 1979. The derived WFDEI-GEM-CaPA data are validated against station observations as a
preliminary step to assess their added value. This product is then used to bias-correct climate projections from the
Canadian Centre for Climate Modelling and Analysis Canadian Regional Climate Model (CanRCM4) between
1950 and 2100 under RCP8.5, and an analysis of the datasets shows that the biases in the original WFDEI
product have been removed and the climate change signals in CanRCM4 are preserved. The resulting bias-
corrected datasets are a consistent set of historical and climate projection data suitable for large-scale modelling
and future climate scenario analysis. The final historical product (WFDEI-GEM-CaPA, 1979–2016) is freely
available at the Federated Research Data Repository at https://doi.org/10.20383/101.0111 (Asong et al., 2018),
while the original and corrected CanRCM4 data are available at https://doi.org/10.20383/101.0162 (Asong et al.,
2019).
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1 Introduction

Accurate and reliable weather and climate information at
the basin scale is in increasingly high demand by policy-
makers, scientists, and other stakeholders for many purposes
including water resources management (Barnett et al., 2005),
infrastructure planning (Brody et al., 2007), and ecosys-
tem modelling (IPCC, 2013). Specifically, the potential im-
pacts of a warming climate on water availability in snow-
dominated high-latitude regions continue to be a serious con-
cern given that over the past several decades these regions
have experienced some of the most rapid warming on Earth
(Demaria et al., 2016; Diffenbaugh et al., 2012; Islam et al.,
2017; Martin and Etchevers, 2005; Stocker et al., 2013). The
ongoing science suggests that these warming trends are re-
sulting in the intensification of the hydrologic cycle, leading
to significant recent observed changes in the hydro-climatic
regimes of major river basins in Canada and globally (Coop-
ersmith et al., 2014; DeBeer et al., 2016; Dumanski et al.,
2015). Changes in the timing and magnitude of river dis-
charge (Dibike et al., 2016); shifts in extreme temperature
and precipitation regimes (Asong et al., 2016b; Vincent et
al., 2015); and changes in snow, ice, and permafrost regimes
are anticipated (IPCC, 2013). Substantial evidence also indi-
cates that the long-held notion of stationarity of hydrologi-
cal processes is becoming invalid in a changing climate. As
pointed out by Milly et al. (2008), this loss of stationarity
means that there will be an increase in the likelihood and
frequency of extreme weather and climate events, including
floods and droughts. What is particularly troubling is that
these impacted regions typically have extremely low density
of weather and climate observations, making any attribution
and climate impact analysis on water resources difficult.

It is well understood that water resources in most water-
sheds north of 30◦ N are heavily dependent on natural water
storage provided by snowpacks and glaciers, with water ac-
cumulated in the solid phase during the cold season and re-
leased in the liquid phase during warm events and the warm
season. Particularly, the Canadian Rocky Mountains, the hy-
drological apex of North America with headwater streams
flowing to the Arctic, Atlantic, and Pacific oceans, consti-
tute an integral part of the global hydrological cycle (Fang et
al., 2013). Flows in these high-elevation headwaters depend
heavily on meltwater from snowpacks and glaciers. How-
ever, given that it is characterized by a highly varying cold
region hydro-climate, studies indicate that it is in these high-
elevation regions where climate variability and change are
expected to be most pronounced in terms of their impacts on
water supply (Beniston, 2003; Kane et al., 1991; Prowse and
Beltaos, 2002; Woo and Pomeroy, 2011). More physically
realistic and sophisticated hydrological models driven by re-
liable climate forcing information can enhance our ability to
assess short- and long-term regional hydrologic responses to

increasing variability and uncertainty in hydro-climatic con-
ditions in a changing climate. Nonetheless, hydrological pro-
cesses in cold regions involve complex phase changes and so
are very sensitive to small biases in the driving meteorology,
particularly in temperature and precipitation.

As described earlier, cold regions often have sparse sur-
face observations, particularly at the high-elevation and high-
latitude regions that could potentially generate a major
amount of runoff. The effects of mountain topography and
high latitudes are currently not well reflected in the observa-
tional record. Ground-based measurements (e.g. gauges) are
limited especially over the Canadian Rocky Mountains and
suffer from inaccuracies associated with cold climate pro-
cesses (Asong et al., 2017; Wang and Lin, 2015; Wong et
al., 2017). The advent and use of weather radar systems have
addressed some of the shortcomings of gauge coverage, at
least where radar systems exists. Unfortunately, in Canada,
for example, the spatial coverage of weather radar systems is
limited to the southern (south of 55◦ N) part of the country
(Fortin et al., 2015b). Recently, improved satellite products
have emerged, such as the Global Precipitation Measurement
(GPM) mission that provides meteorological information at
fine spatio-temporal resolutions and regular intervals. How-
ever, the GPM is still at an early stage of development and
only covers the region south of 60◦ N (Asong et al., 2017;
Hou et al., 2014).

The capability of the current generation of Earth system
models (ESMs) to represent meteorological forcing variables
is therefore of major interest for hydrological climate change
impact studies in cold region watersheds. Despite commend-
able progress being made, raw outputs from regional and
global ESMs still have large differences between models
and from the limited observational reference meteorology,
due partly to spatial-scale mismatches and systematic biases
(Taylor et al., 2012). Therefore, ESM outputs are often down-
scaled and biases are adjusted statistically before being used
in hydrological simulations (Asong et al., 2016b; Chen et al.,
2013, 2018; Gudmundsson et al., 2012). Recent research has
demonstrated that bias correction, including adjustment of
the dependence between driving variables, can lead to more
realistic hydrological simulations in cold region watersheds
where the response of the system is sensitive to accumulation
and melt of snow and ice (Meyer et al., 2019).

Apart from the uncertainty due to the many empirical
statistical techniques which have been developed to post-
process ESM outputs (Maraun, 2016), the quality and length
of the reference observational dataset for bias correction re-
mains a major issue (Reiter et al., 2016; Schoetter et al.,
2012; Sippel et al., 2016). In Canada and other regions of
North America, regional gridded datasets such as the com-
bined Global Environmental Multiscale (GEM) atmospheric
model forecasts (Yeh et al., 2002) and the Canadian Pre-
cipitation Analysis (CaPA; Mahfouf et al., 2007) have been
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found to perform comparably to ground observations, both
statistically and hydrologically (Alavi et al., 2016; Boluwade
et al., 2018; Eum et al., 2014; Fortin et al., 2015a; Gbam-
bie et al., 2017; Wong et al., 2017). However, the duration
of GEM-CaPA is too short to be used to directly correct
ESM climate due to unsynchronized internal variability – the
recommended minimum record length for bias correction is
30 years (Maraun, 2016; Maraun et al., 2017). Other grid-
ded products such as the EU WATCH ERA-Interim reanaly-
sis (WFDEI; Weedon et al., 2014) and Princeton (Sheffield et
al., 2006) have a longer historical record but have been found
to be biased relative to observations over Canada (Wong et
al., 2017) and the United States (Behnke et al., 2016; Sapi-
ano and Arkin, 2009). However, the WFDEI reanalysis has
been found to outperform other long-record gridded products
(Chadburn et al., 2015; Park et al., 2016; Wong et al., 2017).

Because of the sparse observational network, few gridded
climate datasets exist that contain the necessary meteorologi-
cal variables to drive physically based land surface models at
sub-daily temporal resolution north of 55◦ N in North Amer-
ica. Because the combination of the GEM and CaPA datasets
has been shown to perform relatively well in these regions,
the intent here is to use these datasets to bias-correct the
WFDEI dataset, which contains a sufficient length of record
for bias-correcting climate projection datasets. Aside from its
short record length, a limitation of the GEM-CaPA dataset
for wider use for hydrological models is that the wind, tem-
perature, and humidity variables are available only at the
0.995 sigma(σ ) level (approximately 40 m, varying in time
and space; herein referred to as the 40 m level) across the
full length of record. The WFDEI dataset contains these vari-
ables at the surface level, which is more typically used by hy-
drological models. Therefore, the bias correction effectively
modifies the source surface level data to reproduce the cli-
mate found at the 40 m level of the reference dataset (GEM-
CaPA). Many regional and large-scale land surface hydro-
logical models are capable of using climate data at this at-
mospheric level. Thus, no effort is made to interpolate the
product back to surface level (although this could be done if
needed). In addition, the bias-corrected dataset at an effective
40 m level can then be used to bias-correct these same fields
from the CanRCM4 dataset, which are at the same 0.995σ
level as in the reference dataset (GEM-CaPA). The analy-
sis results in a bias-corrected set of historical and projected
climate data that is consistent in time and considers the re-
gional topography and climate effects of GEM and CaPA and
is suitable to drive large-scale simulations of distributed hy-
drological models for assessing climate change impacts in
data-sparse regions.

The aim of this study, therefore, is to combine the strengths
of both datasets (GEM-CaPA and WFDEI) to produce a
less-biased long-record product (WFDEI-GEM-CaPA) us-
ing a multistage bias correction framework. First, a multi-
variate generalization of the quantile mapping technique was
implemented to bias-correct WFDEI against GEM-CaPA at

3 h ×0.125◦ resolution during the 2005–2016 period, fol-
lowed by a hindcast of WFDEI-GEM-CaPA from 1979. Sub-
sequently, a 15-member initial condition ensemble of the
CanESM2 ESM (historical followed by RCP8.5 scenario),
which has been dynamically downscaled at 0.44◦ (50 km)
resolution using the fourth-generation Canadian Regional
Climate Model (CanRCM4), is sourced from the Canadian
Centre for Climate Modelling and Analysis. A multivariate
bias correction algorithm is applied to the CanRCM4 out-
puts (1950–2100) to adjust the data against WFDEI-GEM-
CaPA. The bias-corrected products are important for devel-
oping distributed hydrological models as well as for assess-
ing climate change impacts over the Mackenzie River Basin
(MRB), which constitutes a test bed for the Changing Cold
regions Network (CCRN) project’s large-scale hydrological
modelling strategy and is the case study for the current anal-
ysis.

2 Methodology

2.1 Study area

The study area is the Mackenzie River Basin, which is the
largest river basin in Canada and the largest river draining
from North America to the Arctic Ocean (Fig. 1). It drains
an area of about 1.8 million km2 and discharges more than
300 km3 of freshwater to the Beaufort Sea in the Arctic each
year. The basin drains parts of British Columbia, Alberta,
Saskatchewan, the Northwest Territories, and the Yukon ter-
ritory in northwestern Canada. The western tributaries are
relatively steep as they originate from the Canadian Rocky
Mountains, while the eastern tributaries have milder topog-
raphy with several large lakes, thousands of interconnected
small lakes, fens, and bogs. The general vegetation ranges
widely between alpine, boreal, and tundra landscapes. Cli-
matic conditions are also quite variable and can be generally
classified as cold-temperate, mountain, subarctic, and arctic
zones, with about 75 % of the basin underlain by continuous
and discontinuous permafrost.

2.2 Data sources

2.2.1 Gridded GEM-CaPA product

Hourly archived forecast data from the GEM model were
acquired from Environment and Climate Change Canada
(http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/
submenus/rdps_e.html, last access: 28 September 2018).
The fields include downward incoming solar radiation;
downward incoming longwave radiation and pressure at
the surface; and specific humidity, air temperature, and
wind speed at approximately 40 m above ground surface.
The 40 m level was used because surface level variables at
1.0σ (approximately at 2 m for temperature and humidity,
and 10 m for wind speed) are only available in the archive
from 2010 onward. The GEM data are at approximately
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Figure 1. Location of the Mackenzie River Basin in North Amer-
ica. Digital elevation data come from GTOPO30 – 30 arcsec digi-
tal elevation data for the globe (https://www.arcgis.com/home/item.
html?id=5771199a57cc4c29ad9791022acd7f74; last access: Febru-
ary 2018).

24 km spatial resolution from October 2001, approximately
15 km from June 2004, and approximately 10 km resolution
from November 2012, and they are provided on a rotated
latitude–longitude grid in Environment and Climate Change
Canada (ECCC) standard file format. The archived data are
of former operational forecasts and contain model outputs
from versions of GEM prior to 2.0.0 through 5.0.0.

Six-hourly total precipitation data from the complemen-
tary CaPA product (http://collaboration.cmc.ec.gc.ca/cmc/
cmoi/product_guide/submenus/capa_e.html, last access: 28
September 2018) were also acquired. The analysis incor-
porates observed precipitation from meteorological weather
stations, and more recently from radar, into the precipitation
field from GEM. The CaPA data are approximately 10 km
resolution from January 2002, also on a rotated latitude–
longitude grid in ECCC standard file format. The data con-
tain reanalysis outputs from CaPA 2.4b8 from 2002 to 2012
and of former operational analyses from versions of CaPA
2.3.0 through 4.0.0 from November 2012 onward.

The variables from GEM and CaPA were spatially inter-
polated and reprojected to a regular latitude–longitude grid
at 0.125◦ resolution. For data from GEM, the interpolation
was done using a bilinear algorithm, while data from CaPA
were interpolated using nearest neighbour (Schulzweida et
al., 2004). Where necessary, the GEM fields were converted
to SI units, and CaPA was converted to a precipitation rate
in SI units for better compatibility with some hydrological
models.

2.2.2 Gridded WFDEI product

The gridded WFDEI meteorological forcing data have a
global 0.5◦ spatial resolution and 3 h time step cover-
ing the period 1979–2016 (http://www.eu-watch.org/data_

availability, last access: 25 July 2018). Weedon et al. (2014)
used the ERA-Interim surface meteorology data as base-
line information to derive the WFDEI product. Firstly, ERA-
Interim data were interpolated at 0.5◦ spatial resolution to
match the land–sea mask defined by the Climatic Research
Unit (CRU) of the University of East Anglia, Norwich, Eng-
land. Subsequently, corrections for elevation and monthly
bias of climate trends in the ERA-Interim fields were applied
to the interpolated data. The WFDEI data have two sets of
precipitation data: the Global Precipitation Climatology Cen-
tre product (GPCC) and CRU Time Series version 3.1 (CRU
TS3.1). Thus, two variants of the WFDEI product are avail-
able – WFDEI-GPCC and WFDEI-CRU. The WFDEI-CRU
dataset was used here because it goes up to 2016, whilst the
WFDEI-GPCC had only been updated until 2013 at the time
of our analysis.

2.2.3 Station observations

To evaluate the added value of bias-correcting WFDEI
against GEM-CaPA, in situ hourly precipitation, tempera-
ture, surface pressure, relative humidity, and wind speed at
773 stations located across the MRB were initially consid-
ered (Fig. 2). This station network is maintained by Environ-
ment and Climate Change Canada (ECCC) (http://climate.
weather.gc.ca/historical_data/search_historic_data_e.html,
last access: 17 December 2019) and includes some duplicate
stations (stations at the same location but having different
IDs). Total daily precipitation and average daily temperature
are found in daily data files, while surface pressure, relative
humidity, and wind speed are only found in hourly files.
Unfortunately, radiation data are not available at any of
those stations. The data were extracted for the period from
1 January 2005 to 31 December 2016, and hourly data were
averaged to the daily time step. This reduced the number
of stations to 364. Out of these 364 stations, only 10 were
found to have less than 10 % missing data (calculated at the
daily timescale after aggregating/averaging the data) for all
studied variables concurrently over the 2005–2016 period
and were retained for further consideration. Precipitation
and surface pressure are the only two surface variables
in all datasets (gridded and stations). Due to differences
in heights between gridded variables of GEM-CaPA and
WFDEI-GEM-CaPA datasets for air temperature, humidity,
and wind speed (see Sects. 2.2.1 and 3.1) and the ECCC
station data, we expect deviations. Nevertheless, the compar-
isons are still informative. Relative humidity observations
were converted to specific humidity to be comparable to
gridded datasets using concurrent station temperature and
surface pressure data at those stations, which reduced the
record completeness further but was still within 90 % for the
10 selected stations. Table 1 provides additional information
for the 10 stations retained for further analysis, which are
highlighted in Fig. 2. This dataset is hereafter referred to
as ECCC-S (S for stations). Table S1 in the Supplement
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Figure 2. Spatial distribution of the initial 773 ground-based
precipitation gauges (all dots) over the study area. Only 364
of these have records during the period 2005–2016 (brown and
yellow dots). Data screening for missing values (10 % thresh-
old concurrently applied for all variables) during the 2005–2016
period resulted in 10 of these stations (yellow dots) being re-
tained for validation of gridded datasets. Blue lines indicate
river network sourced from: https://open.canada.ca/data/en/dataset/
16e8a362-d8be-53b7-acb8-e3f9c5cd54ef (last access: December
2019).

provides a similar listing to Table 1 but for all 364 stations
with records during the 2005–2016 period.

2.2.4 Climate model outputs

The historical and future climate simulations utilized in this
study are part of the CanRCM4 large ensemble, which con-
sists of 50 members and is downscaled at horizontal spa-
tial resolutions of 0.44◦ (∼ 50 km). These CanRCM4 sim-
ulations had been produced initially by the Canadian Sea Ice
and Snow Evolution Network (CanSISE) Climate Change
and Atmospheric Research (CCAR) Network project (https:
//www.cansise.ca/, last access: 24 April 2019). The input data
for the historical period, i.e. 1950–2005, as well as the fu-
ture (2006–2100) RCP simulations of CanRCM4 were pro-
vided by the parent ESM (CanESM2) as specified in the
Coupled Model Intercomparison Project Phase 5 (CMIP5)
guidelines. The data are sourced from the Canadian Cen-
tre for Climate Modelling and Analysis (CCCma) at: http:
//www.cccma.ec.gc.ca/data/canrcm/CanRCM4 (last access:
6 March 2019). This study utilized 15 members of the 0.44◦

resolution product at 1 h time step and values were aggre-
gated to 3 h resolution prior to bias correction. The seven
forcing variables needed for driving the CCRN MESH model
(https://wiki.usask.ca/display/MESH/About+MESH, last ac-
cess: 10 May 2019) and which were bias-corrected in the
current study are included in Table 2.

2.3 Data processing and bias correction workflow

The workflow for the multistage bias correction of WFDEI
against GEM-CaPA is shown in Fig. 3. Bias correction was
done after aggregating 1 h GEM-CaPA estimates to 3 h (the

Figure 3. A schematic representation of inputs and the bias correc-
tion procedure used to produce the WFDEI-GEM-CaPA meteoro-
logical forcing dataset.

values at each time step represent the mean of the previ-
ous 3 h period, to make it consistent with WFDEI) and in-
terpolating both WFDEI and GEM-CaPA to 0.125◦ reso-
lution. For bias correction, a multistage approach was im-
plemented as follows. A multivariate generalization of the
quantile mapping technique (MBCn, Cannon, 2018) which
combines quantile delta mapping (Cannon et al., 2015) and
random orthogonal rotations to match the multivariate dis-
tributions of two datasets was implemented to bias-correct
WFDEI against GEM-CaPA at 3 h ×0.125◦ resolution dur-
ing the 2005–2016 period. The rationale for selecting the
above bias correction method is based on fitness for pur-
pose; i.e. the method accounts for dependence between vari-
ables and corrects multiple measures of joint dependence –
attributes that can be important for hydrological simulations
(Meyer et al., 2019) – to preserve the physical realism of the
corrected climate as much as possible. Models were fitted
to data for each calendar month while accounting for the
inter-variable dependence structure. Using the fitted mod-
els (2005–2016), a hindcast was made of WFDEI between
1979 and 2004. Finally, the corrected WFDEI data derived
from the fitted (2005–2016) and hindcast (1979–2004) peri-
ods were concatenated to obtain the bias-corrected WFDEI-
GEM-CaPA product (1979–2016).

For bias-correcting the 15-member CanRCM4 initial con-
dition ensemble against the WFDEI-GEM-CaPA product,
CanRCM4 was also spatially interpolated to match the
WFDEI-GEM-CaPA specifications using nearest-neighbour
interpolation. The multivariate bias correction technique (de-
scribed above) transfers all aspects of the WFDEI-GEM-
CaPA continuous multivariate distribution to the correspond-
ing multivariate distribution of variables from CanRCM4
during the 1979–2008 calibration period (also used here as
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Table 1. List of observation stations used for validating the various gridded historical products.

Station Coordinates Record Percent complete

Name Prov. ID Lat Long Elev. Start End T P RH ps wind

Jasper Warden AB 10223 52.93 −118.03 1020.0 1994 2019 99.0 98.0 96.0 96.9 97.1
Beaverlodge RCS AB 30669 55.20 −119.40 745.0 2001 2019 99.0 93.9 93.8 93.9 93.8
Barrhead CS AB 30641 54.09 −114.45 648.0 2000 2019 98.2 98.1 97.8 97.8 97.0
Lac La Biche climate AB 30726 54.77 −112.02 567.0 2001 2019 99.0 98.8 97.8 97.9 97.9
Uranium City (AUT) SK 9831 59.57 −108.48 318.2 1992 2019 95.8 93.0 94.2 94.4 94.8
Norman Wells climate NT 43004 65.29 −126.75 93.6 2003 2019 98.5 96.6 96.0 95.4 96.2
Fort Smith climate NT 41884 60.03 −111.93 203.0 2003 2019 97.6 96.8 95.8 96.7 97.3
Hay River climate NT 41885 60.84 −115.78 164.0 2003 2019 99.6 99.3 98.4 98.4 98.0
Fort Simpson climate NT 41944 61.76 −121.24 168.0 2003 2019 97.5 99.5 96.1 96.2 98.2
Inuvik climate NT 41883 68.32 −133.52 103.0 2003 2019 99.6 95.1 98.3 98.4 97.0

Table 2. List of variables processed in this study with heights and units in each dataset.

Variable Unit Height

WFDEI GEM-CaPA WFDEI-GEM-CaPA

Precipitation kg m−2 s−1 Surface Surface Surface
Air temperature K 2 m 40 m 40 m
Specific humidity kg kg−1 2 m 40 m 40 m
Wind speed m s−1 10 m 40 m 40 m
Surface pressure Pa Surface Surface Surface
Downwelling shortwave radiation W m−2 Surface Surface Surface
Downwelling longwave radiation W m−2 Surface Surface Surface

the historical period). Subsequently, when applied to future
projections, changes in quantiles of each variable between
the historical and future period are also preserved. Models
were fitted to data for each calendar month and for each
grid point while preserving the dependence structure among
variables. The historical datasets used in the fitting pro-
cedure include WFDEI-GEM-CaPA (1979–2008) and Can-
RCM4 (1979–2008). Using the fitted models, quantiles of
CanRCM4 output from 1950 to 2100 were changed. To eval-
uate the need to bias-correct CanRCM4, performance of the
bias correction scheme, as well the impact of bias correction
on the climate change signal, and the seasonal cycle of all
seven variables is assessed over three 30-year periods: 1979–
2008 (referred to hereafter as 1990s), 2021–2050 (referred to
hereafter as 2030s), and 2071–2100 (referred to hereafter as
2080s).

3 Results and discussion

3.1 Bias correction of WFDEI

Table 2 presents an overview of the seven variables processed
in this study. Note that three of the GEM variables (tempera-
ture, specific humidity, and wind speed) are at 40 m and are
used directly to correct the corresponding WFDEI surface

variables (see Table 2). Therefore, the corrected WFDEI-
GEM-CaPA data for those three variables reflect 40 m eleva-
tions above the surface. The spatial coverage of the WFDEI-
GEM-CaPA data is the same as the areal extent of the MRB
(Figs. 1 and 2). The suitability of the bias correction algo-
rithm to reproduce the observed seasonal cycle and inter-
annual variability of the variables was assessed for the fit-
ting (2005–2016) and hindcast (1979–2004) periods. Data
extracted over the entire Mackenzie River Basin are used
to demonstrate the quality of the bias correction exercise
and uniqueness of the resulting output. Figure 4 shows the
seasonal cycle for GEM-CaPA, WFDEI, and WFDEI-GEM-
CaPA during the fitting period. Overall, the monthly distri-
butions show that the bias was removed for all variables re-
sulting in the very close distributions between GEM-CaPA
and WFDEI-GEM-CaPA. The bias was particularly large
for wind speed, an important variable for both alpine and
prairie blowing snow redistribution calculations (Pomeroy
and Li, 2000), but was successfully removed. Figure 5 shows
the mean annual time series of the seven variables over the
1979–2016 period. It is noticeable that the bias is corrected
while the inter-annual variability is well preserved between
WFDEI and WFDEI-GEM-CAPA, except for shortwave ra-
diation where the inter-annual variability is not fully pre-
served as shown by the correlation between the WFDEI and
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Figure 4. Seasonal cycle of GEM-CaPA (dark slate blue), WFDEI (orange), and WFDEI-GEM-CaPA bias-corrected data (green) for air tem-
perature (a), precipitation (b), surface pressure (c), wind speed (d), shortwave radiation (e), longwave radiation (f), and specific humidity (g)
during the fitting period (2005–2016).

WFDEI-GEM-CaPA annual series. However, this should not
be a major issue when impact models are driven using these
data. The foregoing analyses have shown that the bias in the
WFDEI data was removed for both the fitting and hindcast
periods. However, some potential limitations remain – for ex-
ample, WFDEI was interpolated directly from 0.5 to 0.125◦

and bias-corrected against GEM-CaPA at 0.125◦. The inter-
polation does not add any event-scale spatial variability for a
variable like precipitation which is very variable across dif-
ferent scales. These issues have been reviewed extensively
by Cannon (2018), Maraun (2013), Maraun et al. (2010), and
Storch (1999).

3.2 Validation of gridded products against station
observations

In this section, the WFDEI-GEM-CaPA product is validated
against station observations (ECCC-S) to indicate the bene-
fit of bias-correcting WFDEI against GEM-CaPA. As men-
tioned in Sect. 2.2.3, the validation focusses on variables for

which station data could be found. Thus, shortwave and long-
wave radiation are not validated as we could not find station
data for those in ECCC-S data. The height differences for
temperature, humidity, and wind speed between GEM-CAPA
and WFDEI-GEM-CaPA (40 m) on one side and ECCC-S
data (surface) on the other introduce some inconsistencies
that are discussed below. Indirect validation is recommended
for other variables through other means such as hydrolog-
ical modelling. Validation is performed for the 2005–2016
period using daily totals for precipitation and daily averages
for other variables. To compare stations against gridded prod-
ucts, the corresponding time series of gridded products for
each gauge were obtained from the cell that contained the
gauge (i.e. nearest neighbour) and were aggregated to the
daily timescale.

Figure 6 depicts quantile–quantile (Q–Q) plots of daily
precipitation from WFDEI-GEM-CaPA, WFDEI, and GEM-
CaPA compared against ECCC-S. As expected, although
with noticeable differences across the MRB, CaPA agrees
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Figure 5. Time series of GEM-CaPA (dark slate blue), WFDEI (orange), and WFDEI-GEM-CaPA bias-corrected data (green) for air tem-
perature (a), precipitation (b), surface pressure (c), wind speed (d), shortwave radiation (e), longwave radiation (f), and specific humidity (g)
during the periods 2005–2016 (GEM-CaPA) and 1979–2016 (WFDEI and WFDEI-GEM-CaPA). The correlation (r) between the WFDEI
and WFDEI-GEM-CaPA annual series is indicated for each variable.

better with ECCC-S than WFDEI since some or all of these
meteorological stations are assimilated by the CaPA system.
Large daily amounts are generally underestimated by CaPA,
but CaPA sometimes overestimates these as well (e.g. Ura-
nium City (AUT) station). WFDEI tends to underestimate
the observed precipitation amounts at most stations except
at Jasper Warden, where it slightly overestimates small and
moderate amounts. Bias correction brings WFDEI closer to
CaPA for most stations, but some biases remain, especially
at the high ends of the distributions.

Figure 7 shows quantile–quantile plots of mean daily
temperature for the three gridded datasets versus ECCC-S.
WFDEI is performing generally well for temperature except
for low temperatures at Inuvik (the most northerly station).
Despite the height difference (see Sect. 2.2.3), GEM is also
close to observations for most stations with some overes-
timation of low temperatures. The temperature differences
between the surface and the 40 m level are generally small
(1–2 ◦C) at the daily scale. Given that temperature biases in

WFDEI were small, WFDEI-GEM-CaPA is almost identical
to GEM; i.e. all biases are removed.

Comparisons between gridded datasets and stations for
daily mean surface pressure, wind speed, and humidity are
shown in Figs. 8, 9, and 10 respectively. WFDEI generally
performs well for surface pressure (Fig. 8) such that bias cor-
rection seems unnecessary at most locations. Both datasets
(WFDEI and GEM) underestimate surface pressure at Jasper
Warden station, which is at a relatively high elevation. GEM
is worse than WFDEI for this station, and thus bias correction
against GEM-CaPA deteriorates the results. WFDEI slightly
underestimates surface pressure at Uranium City (AUT) and
Norman Wells climate stations, but because GEM is close
to observations, bias correction makes WFDEI-GEM-CaPA
close to observations at those two stations.

Mean daily wind speed (Fig. 9) is underestimated by
WFDEI for most stations, especially at high speeds. GEM
winds are generally higher (except for Fort Simpson) because
of the higher elevation (40 m) of the dataset, and thus the
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Figure 6. Quantile–quantile plots of modelled (GEM-CaPA, WFDEI, and WFDEI-GEM-CaPA) and observed (ECCC-S) daily total precip-
itation.

comparison to ECCC-S data is not favourable for this vari-
able. It is generally expected that wind speed increases with
height. Bias correction of WFDEI against GEM-CaPA re-
moves differences between the two datasets, and the resultant
wind speed, thus, reflects the higher speeds to be expected at
40 m.

Both WFDEI and GEM are close in terms of specific hu-
midity at most stations (Fig. 10) despite the height difference,

with few exceptions. For example, humidity at the Jasper
Warden, Barrhead CS, and Inuvik climate stations is underes-
timated by both WFDEI and GEM, especially at high values.
Bias correction brings WFDEI closer to GEM and thus re-
sults in improvements only if GEM is closer to observations
than WFDEI. Thus, results at Fort Smith climate and Inuvik
climate stations are worse with bias correction. However, the
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Figure 7. Quantile–quantile plots of modelled (GEM-CaPA, WFDEI, and WFDEI-GEM-CaPA) and observed (ECCC-S) daily mean tem-
perature.

bias correction does not change the quantiles by much for
most stations.

Overall, GEM-CaPA performs similar to or better than
WFDEI for most variables at the studied stations, especially
precipitation. Therefore, correcting WFDEI against GEM-
CaPA adds value to the WFDEI dataset and leads to a closer
agreement between WFDEI-GEM-CaPA and ECCC-S. Pre-
cipitation is one of the most important variables and most

difficult to correct. Note that extracting data from grid points
does not only have the effect of smoothing the areal averages
but comparing grid point estimates to station values may not
provide a clear picture of the quality of a gridded product.
However, this diagnostic analysis provides preliminary in-
sights into the potential performance of a dataset.
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Figure 8. Quantile–quantile plots of modelled (GEM-CaPA, WFDEI, and WFDEI-GEM-CaPA) and observed daily mean surface pressure.

3.3 Bias correction of future climate projections

In this section, the need to bias-correct the CanRCM4 outputs
is shown and whether the simulated climate change signal
was preserved after applying MBCn to the CanRCM4 out-
puts is determined. Figure 11 shows the climatological sea-
sonal cycle of all seven variables which are required to drive
the MESH model for the MRB. First, between April and Oc-
tober, CanRCM4 overestimates the observed (i.e. WFDEI-
GEM-CaPA) daily precipitation amounts and specific hu-

midity during the historical period. This is also true in the
case of daily mean wind speed in the cold months (October
to April). However, it underestimates the wind speed in the
warm season (May to September). Surface pressure is un-
derestimated during September to May and overestimated in
the summer (June to August). For the other variables (e.g.
air temperature and radiation), CanRCM4 can simulate the
observed seasonal cycle closely, although biases still exist.
These biases necessitated the application of the MBCn algo-
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Figure 9. Quantile–quantile plots of modelled (GEM-CaPA, WFDEI, and WFDEI-GEM-CaPA) and observed daily mean wind speed.

rithm on the raw CanRCM4 outputs. The MBCn algorithm
removed the bias in the CanRCM4 simulations during the
fitting period (1990s) as can be judged from the close fit
between WFDEI-GEM-CaPA and the unbiased CanRCM4
output (corr_1990s). On the projected climate change signal,
there is a projected change in the amplitude of all variables
but not a shift in the phase of the cycle over the MRB with
global warming. Precipitation, specific humidity, and long-
wave radiation are projected to increase in the future, with

larger changes expected in the warm season (April–October),
while air temperature is projected to increase, particularly in
the cold months (October–March). These climate change sig-
nals are very well preserved after applying MBCn to the Can-
RCM4 simulations.
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Figure 10. Quantile–quantile plots of modelled (GEM-CaPA, WFDEI, and WFDEI-GEM-CaPA) and observed daily specific humidity.

4 Data availability

The final product (WFDEI-GEM-CaPA, 1979–2016) is
freely available at the Federated Research Data Repository
at https://doi.org/10.20383/101.0111 (Asong et al., 2018),
while the original (raw) and corrected CanRCM4 data are
also freely available at https://doi.org/10.20383/101.0162
(Asong et al., 2019).

5 Conclusions

Cold region hydrology is very sensitive to the impacts of cli-
mate warming. More physically realistic hydrological mod-
els need to be driven by reliable climate forcing and can pro-
vide the capability to assess hydrological responses to cli-
mate variability and change. However, cold regions such as
the Mackenzie River Basin often have sparse surface obser-
vations, particularly at high elevations and latitudes where a
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Figure 11. Seasonal cycle of WFDEI-GEM-CaPA, raw, and bias-corrected CanRCM4 data for air temperature (a), precipitation (b), specific
humidity (c), surface pressure (d), wind speed (e), shortwave radiation (f), and longwave radiation (g) during the periods 1979–2008, 2021–
2050, and 2071–2100.

large amount of runoff is generated or important cryosphere
processes are impacting the hydrology. A novel approach
to developing a long-term dataset using the WFDEI-GEM-
CaPA approach outlined above was necessary to better un-
derstand and represent the seasonal/inter-annual variability
of hydrological fluxes and the timing of runoff, as well as
their long-term trends. This dataset is also valuable for bias
correction of climate model projections to assess potential
impacts of future climate change on the hydrology and water
resources of the basin.

The raw CanRCM4 outputs were found to have system-
atic biases, which required bias correction towards WFDEI-
GEM-CaPA. There are clear discrepancies between the sea-
sonal cycle of WFDEI-GEM-CaPA, raw, and bias-corrected
CanRCM4 data. For example, the CanRCM4-simulated cli-
matological daily mean precipitation in June over the MRB
between 1979 and 2008 is ∼ 2.5 mm d−1 while the observed
value is ∼ 1.5 mm d−1. This results in a 1.0 mm d−1 wet bias
which can have various implications for quantifying water
resource availability, management, and adaptation in a fu-
ture changed climate. Therefore, it was crucial to produce the
bias-corrected CanRCM4 outputs prior to using the data to

drive large-scale hydrological models for climate change im-
pact analysis in the MRB. Nevertheless, the WFDEI-GEM-
CaPA dataset, used here as the reference, has uncertainties
(although it is superior to WFDEI as shown in Figs. 6–11)
and should be used with caution especially from the perspec-
tive of over-interpreting impact model outputs.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-12-629-2020-supplement.
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