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Abstract. Event-based landslide inventories are important for analyzing the relationship between the intensity
of the trigger (e.g., rainfall, earthquake) and the density of the landslides in a particular area as a basis for the
estimation of the landslide probability and the conversion of susceptibility maps into hazard maps required for
risk assessment. They are also crucial for the establishment of local rainfall thresholds that are the basis of early
warning systems and for evaluating which land use and land cover changes are related to landslide occurrence.
The completeness and accuracy of event-based landslide inventories are crucial aspects to derive reliable results
or the above types of analyses. In this study, we generated a relatively complete landslide inventory for the 2018
monsoon landslide event in the state of Kerala, India, based on two inventories that were generated using different
methods: one based on an object-based image analysis (OBIA) and the other on field surveys of damaging
landslides. We used a collaborative mapping approach based on the visual interpretation of pre- and post-event
high-resolution satellite images (HRSIs) available from Google Earth, adjusted the two inventories, and digitized
landslides that were missed in the two inventories. The reconstructed landslide inventory database contains 4728
landslides consisting of 2477 landslides mapped by the OBIA method, 973 landslides mapped by field survey,
422 landslides mapped both by OBIA and field methods, and an additional 856 landslides mapped using the
visual image (Google Earth) interpretation. The dataset is available at https://doi.org/10.17026/dans-x6c-y7x2
(van Westen, 2020). Also, the location of the landslides was adjusted, based on the image interpretation, and
the initiation points were used to evaluate the land use and land cover changes as a causal factor for the 2018
monsoon landslides. A total of 45 % of the landslides that damaged buildings occurred due to cut-slope failures,
while 34 % of those having an impact on roads were due to road cut-slope failures. The resulting landslide
inventory is made available for further studies.
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1 Introduction

Landslides are a significant type of natural hazard occur-
ring worldwide and incurring serious losses to human so-
ciety. Landslides frequently damage buildings, communica-
tion systems, agriculture, natural vegetation, and the envi-
ronment, and they are a major cause of fatalities (Froude and
Petley, 2018; Petley et al., 2005). A landslide inventory forms
the basis for studies of landslide hazard, risk, and prevention
studies (Fan et al., 2019; Guzzetti et al., 2012; Marcelino et
al., 2009; Moosavi et al., 2014). Critical elements of anal-
ysis include their spatial distribution pattern (Duman et al.,
2005; Galli et al., 2008; Xu, 2015), their occurrences with
respect to landform evolution (Guzzetti et al., 2012; Rosi et
al., 2018), and a range of other environment factors (Duman
et al., 2005), susceptibility mapping (van Den Eeckhaut et
al., 2009), triggering factors (Li et al., 2016), community risk
assessment and mitigation (Marcelino et al., 2009), and land
use planning and risk management (Colombo et al., 2005).
A detailed landslide inventory should contain information on
location, types of failures, geometries, date of occurrence,
triggering factors, possible failure mechanisms, and damage
caused (Rosi et al., 2018). Landslide inventory maps can be
generated by compiling existing historical landslide data or
acquiring new landslide data using a variety of technical ap-
proaches (Rosi et al., 2018; Santangelo et al., 2015).

A new landslide inventory that is generated after a ma-
jor triggering event, e.g., an earthquake, storm, snowmelt, or
volcanic eruptions, is referred to as an event-based landslide
inventory (Fiorucci et al., 2011; Galli et al., 2008; Rosi et al.,
2018). Methods for event-based landslide inventories include
field investigation, visual interpretation of remotely sensed
images, and often an automatic image classification. Field
investigation shortly after the event (Fiorucci et al., 2011;
Mondini et al., 2011) allows for the collection of detailed in-
formation through field surveys recording information on the
location, types, volumes, contributing factors, and damage
(Yang and Chen, 2010; Samodra et al., 2018). Visual inter-
pretation based on remote sensing images (Alkevli and Er-
canoglu, 2011; Mondini et al., 2011; Samodra et al., 2018)
allows us to map and classify landslides in terrain that is less
accessible. This method will be more accurate when higher-
resolution images are available of the situation before and
after the event (Li et al., 2013; Xu et al., 2013; Zhong et al.,
2019). The automated classification of remote sensing im-
ages is a means to rapidly map many landslides over large
areas, using different classification algorithms (Aksoy and
Ercanoglu, 2012; Lei et al., 2018; Lu et al., 2019; Plank et
al., 2016). Often the field survey methods are combined with
remote-sensing-based methods to improve accuracy (Ardiz-
zone et al., 2012; Galli et al., 2008; Mondini et al., 2011; Oh
and Pradhan, 2011; Rosi et al., 2018; Trigila et al., 2010).

With the continuous improvement of earth observation
technology, such as multi-temporal high-resolution optical
satellite remote sensing, it is more feasible to acquire re-

mote sensing images before and after an event, which leads to
more landslide inventory maps (Casagli et al., 2016; Santan-
gelo et al., 2015; Solari et al., 2019; Travelletti et al., 2012).
The availability of multi-sourced and multi-temporal high-
resolution satellite images (HRSIs) on the Google Earth plat-
form with 3D viewing capabilities (Crosby, 2012; Fisher et
al., 2012) offered major advantages for landslide inventory
mapping (Mohammadi et al., 2018). Many authors have gen-
erated landslide inventories using the Google Earth platform
(Rabby and Li, 2019; Sato and Harp, 2009; Fiorucci et al.,
2011; Borrelli et al., 2015). It has also proven to be possible
to map event-based landslides by comparing images before
and after the event using the Google Earth history viewer (Xu
et al., 2014a, b). However, recognizing and mapping specific
types of landslides such as rainfall triggered shallow land-
slides over large areas can be still challenging when using
automated techniques. Field verification is only feasible for
a limited number of landslides as it is time and labor inten-
sive, and many landslides may be difficult to access. There-
fore, visual image interpretation using HRSI from different
time periods may be the best solution. Landslide mapping
and classification requires mapping experience and the avail-
ability of HRSI in 3D views, using either stereo images or
oblique views such as in Google Earth, allowing us to recog-
nize the specific diagnostic features (Soeters and van Westen,
1996; Zieher et al., 2016).

Between 1 June and 26 August 2018, the southern Indian
state of Kerala witnessed the most severe extreme rainfall
event since 1924 (Agarwal, 2018; Megha et al., 2019; Sankar,
2018; Vishnu et al., 2019). The torrential rains triggered sev-
eral thousand landslides (Singh et al., 2018) and extensive
flooding, affecting 5.4 million people in over 1200 villages
and causing enormous property losses (buildings, roads, and
agriculture damage) and more than 440 casualties (Mishra
et al., 2018; Vishnu et al., 2019). Furthermore, the follow-
ing year, from 8 to 14 August, 2019, Kerala was hit again
by another extreme precipitation event, causing more than
100 deaths due to landslides and floods (Koshy, 2019). Due
to these severe events, both the United Nations Environment
Programme (UNEP) and the Government of Kerala came to-
gether to study the causes of the extreme occurrences of slope
failure in this region. Concern was raised whether anthro-
pogenic activities such as deforestation and agriculture exac-
erbate the occurrence of mass movements in this region. In
order to study this, a complete event-based landslide inven-
tory is required that contains detailed land use information to
determine a causal relationship.

In this research, we generated a complete landslide inven-
tory for the 2018 monsoon event in Kerala using a collabora-
tive mapping approach based on the visual interpretation of
pre- and post-event HRSIs available in Google Earth and two
pre-existing inventories. This paper focuses on the genera-
tion of the dataset consisting of a detailed landslide inventory
with land use and land cover (LULC) information for two
periods: shortly before the event and almost a decade before.
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Figure 1. Overview map of Kerala with districts and elevation.

The main objective of the study is to develop a comprehen-
sive event-based landslide inventory database for the 2018
monsoon in Kerala that can be used to analyze the extent to
which these landslides were affected by land use changes.

2 Study area and data sources

2.1 Study area

Kerala is one of the most susceptible areas to mass move-
ments in India (Sreekumar, 2009; Vasudevan and Ra-
manathan, 2016) with a long history for the natural occur-
rence of slope instability going back to 1341 CE (Kuriakose
et al., 2009). Both the climate and landscape make slopes in

Kerala prone to failures. Kerala is located in the southwest
of the Indian Peninsula in the windward slope of the West-
ern Ghats (Sajinkumar et al., 2011) and on the east coast of
the Arabian Sea (Fig. 1a) with a typical tropical climate (the
average minimum and maximum temperatures are 22 and
34 ◦C) characterized by two monsoon seasons. The south-
west monsoon, lasting from June to September, delivers 80 %
of the annual rainfall (Paul et al., 2016), and the remain-
der falls in the northeast monsoon lasting from October to
November. The annual average rainfall in this area is 200
to 500 cm, which increases from the southwestern coastal
plains to the mountain areas in the east due to the orographic
effect of the Western Ghats (Kuriakose et al., 2009; Sajinku-
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Figure 2. Overview map of the existing inventories.

mar et al., 2011). Under global climate change, extreme rain-
fall events have hit India frequently (Mishra et al., 2018), and
the extreme rainfall events during the monsoon season are ex-
pected to increase (Hunt and Menon, 2020; Rai et al., 2019,
2020; Shashikanth et al., 2018), making it more vulnerable
to slope failures.

Owing to the tropical climate, weathering of the bedrock
is strong in Kerala, leading to most of this area being covered
with thick, poorly consolidated soil (Sajinkumar et al., 2011).
The main soil is laterite with an average thickness of 5 m de-
pending on the slope (Kuriakose et al., 2009). Physiograph-
ically, Kerala can be divided into two units: a plateau with
rugged mountains and deep valleys in the east and coastal

plains in the west (Fig. 1b) (Kuriakose et al., 2009; Sajinku-
mar and Anbazhagan, 2015; Vishnu et al., 2019). The West-
ern Ghats are controlled by ancient faulted escarpments lo-
cated along the plateau, often with very steep slopes, which
are susceptible to slope failures (Kuriakose et al., 2009).
Metamorphic rocks, such as charnockites, khondalites, and
gneisses, are the predominant rock types in Kerala (Kuri-
akose et al., 2009; Sajinkumar and Anbazhagan, 2015). The
combination of highly weathered bedrock and steep slopes
in a monsoon climate make each district in Kerala (save
the whole coastal plain district of Alappuzha) susceptible to
slope instability (Fig. 1) (Kuriakose et al., 2009; Sajinkumar
and Anbazhagan, 2015).
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Figure 3. Examples of landslides in the NRSC inventory that were not considered as actual landslides after visual inspection. The examples
in (a) and (b) show that there are no visible scarps before or after the event near the marked polygons. Basemap data © 2019 Google.

2.2 Original data

Two landslide inventories for the 2018 triggering rainfall
event were available. The first inventory came from the Na-
tional Remote Sensing Center (NRSC), of the Indian Space
Research Organization (ISRO), which did a rapid mapping
project aimed to quickly identify slope failures in the whole
Western Ghats region. They used a combination of visual
image interpretation and semiautomated landslide detection
based on an object-based image analysis (OBIA) algorithm
(Martha et al., 2010, 2011, 2012, 2013, 2016). They used
multi-temporal images acquired before and after the mon-
soon rainfall event from Resourcesat-2 and Sentinel-2 Earth
observation satellites (Martha et al., 2019), resulting in an in-
ventory with 5191 landslide polygons for Kerala (Martha et
al., 2019). This rapid assessment was crucial for the emer-
gency response by the disaster management authorities in
Kerala. The fast mapping method allowed the determination
of the general distribution, density, and size of landslides in
order to plan for the relief operations and overall assessment.
The landslide dataset can be consulted on the Bhuvan web
platform of NRSC (https://bhuvan-app1.nrsc.gov.in/disaster/
disaster.php?id=landslide_monitor, last access: 9 Novem-
ber 2020). In this study, the original NRSC data were ob-
tained as a polygon shapefile (Fig. 2), and then the shapefile
was converted into the Keyhole Markup Language (KML)
for the subsequent visual interpretation in Google Earth.

Another landslide inventory was generated by the Geolog-
ical Survey of India (GSI) in collaboration with the Kerala
State Disaster Management Authority (KSDMA) with the
aim of making a detailed survey of the landslides that specif-
ically caused damage to buildings, roads, and other infras-
tructure. It is important to recognize this deliberate bias in

the dataset as almost all landslides would have been mapped
near roads; almost by definition they are going to be related
to human occupation and transformation of the land. During
a period of several months after the event, teams from GSI
visited hundreds of landslide sites. The landslides character-
istics were recorded in data sheets and transferred to spread-
sheets with many attributes, including the names of admin-
istrative units, latitude, longitude, types of landslide, build-
ings affected, roads affected, recommendations, and remarks.
The GSI landslide data spanned 10 districts (Fig. 2), and the
landslides studied were mainly along roads. A total of 1437
landslide points were converted into a point shapefile with all
the attributes using ArcGIS 10.3 and KML for easier visual
interpretation in Google Earth.

2.3 Problems with the use of existing inventories

After combining the above-mentioned inventories and over-
laying them on multi-sourced submeter-resolution satellite
images for both the pre- and post-monsoon situation on the
Google Earth platform (Jacobson et al., 2015; Rabby and
Li, 2019), several problems with the data were discovered
through visual interpretation.

Many challenges arose when analyzing the NRSC in-
ventory. For some of the landslide polygons, no noticeable
changes were visible in the images from before and after the
event, and we decided to exclude these from the final in-
ventory (Fig. 3a, b). In some instances, there were changes
visible when comparing images before and after the event
which were not caused by a landslide but by other factors,
i.e., vegetation clearing (Fig. 4a–c) or engineering activities
(Fig. 4d–f). These landslides were also excluded from the
inventory. Instances were also found in which the landslide
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Figure 4. Examples of landslides in the NRSC inventory that were not considered as actual landslides after visual inspection. The example in
(a)–(c) shows that the changes in the polygon before and after the event were caused by vegetation clearing and agricultural activities. Images
(d)–(f) show that the changes near the polygon before and after the event were caused by building construction. Basemap data © Google
Earth 2019.

Figure 5. Example of a situation where the original NRSC landslide polygons were combined and converted into points and digitized on the
top of the scarps: (a) pre-landslide image, (b) post-landslide image, and (c) final inventory using points. Basemap data © Google Earth 2019.
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Figure 6. Example of a situation where the original NRSC landslide polygon was subdivided into several landslides, marked by points and
digitized on the top of the scarps: (a) pre-landslide image with NRSC landslide polygon on top, (b) post-landslide image with the NRSC
polygon on top which shows that there are two landslides instead of a single one, and (c) the mapping of landslide points in the scarps of the
two landslides. Basemap data © Google Earth 2019.

Figure 7. Example of a situation where vegetation regrowth made it difficult to identify the scarps in Google Earth images due to the large
time span between the event and the first available images from Google Earth. The original NRSC landslide polygons were generated from the
classification of Resourcesat-2 LISS-IV images that were taken within 15 days of the event: (a) pre-landslide Google Earth image, (b) earliest
available post-landslide Google Earth image in which the landslide cannot be recognized, and (c) mapping of the landslide initiation point
based on Resourcesat-2 LISS-IV images (RGB combination: near infrared, red, green). Basemap data for (a) and (b) © Google Earth 2019.

polygons were displaced with respect to the landslide scarps
visible in the Google Earth images (Figs. 5b, 6b). The NRSC
landslide polygons were derived from the automatic classi-
fication of Resourcesat-2 LISS-IV images with 5.8 m spatial
resolution which were taken shortly after the event. Due to
the coarse resolution and short time available for geocor-
rection, the images presented georeferencing errors which
were responsible for the mismatches. In these cases, the land-
slides were mapped in the correct locations according to the
Google Earth images. In other cases, a polygon in the in-
ventory was merging several smaller ones (Fig. 5b), requir-
ing us to map the individual landslides. Also the opposite
was found in which several smaller polygons in the inven-
tory were part of the same large landslide (Fig. 6b). Prob-
lems were also found with the use of the Google Earth im-

ages, and landslides clearly identified in the NRSC inven-
tory could not be visually confirmed. This could be due in
some areas to a long time span of 5 months between the 2018
monsoon and the first available image after the event, which
caused problems with identification due to the fast regrowth
of vegetation (Fig. 7b). In some cases, the post-event images
in Google Earth were of poor quality due to distortion in-
duced by steep slopes (Fig. 8b, c), shadows induced by steep
slopes (Fig. 9b), or clouds obstructing the view (Fig. 10b).

Also, the landslide points of the GSI inventory had some
problems. The surveyors marked some points where cracks
or small subsidence had occurred that did not lead to an ac-
tual landslide. These were not included in the final database.
Moreover, some of the landslide points could not be recog-
nized as slope failures in the images if they were too small
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Figure 8. Example of distorted images in Google Earth in which it was not possible to check the original NRSC landslide polygons. They
were converted into points and digitized on the top of the scarps based on Resourcesat-2 LISS-IV images: (a) pre-landslide image, (b) post-
landslide image, and (c) creation of a new inventory using points based on post-landslide image. Basemap data © Google Earth 2019.

Figure 9. Example of the presence of dark shadows in the post-event images in Google Earth images making it impossible to check the orig-
inal NRSC landslide polygons: (a) pre-landslide Google Earth image, (b) earliest available post-landslide Google Earth image in which the
landslide cannot be recognized, and (c) mapping of the landslide initiation point based on Resourcesat-2 LISS-IV image (RGB combination:
near infrared, red, green). Basemap data for (a) and (b) © Google Earth 2019.

to be recognized, sheltered by shadows, trees or buildings
(Fig. 11a, b), or the landslide point did not match with a vis-
ible landslide scarp in the image (Fig. 12b).

3 Methodology

3.1 Workflow

Since the above-mentioned problems with the two available
landslide inventories would have a large influence on the
analysis, we decided to correct and edit all landslides using
visual interpretation based on multi-temporal HRSIs avail-
able before and after the event on the Google Earth plat-
form. These images with varying dates allow us to recog-
nize details in landforms and land use. For those areas where
the post-event images in Google Earth were distorted, ob-

scured, or missing, we used Indian Resourcesat-2 LISS-IV
images (with a spatial resolution of 5.8 m and three bands
of green, red, and near infrared) for the earliest available
post-monsoon period of 2018, which were obtained from the
NRSC. By using two screens, the same landslide area was vi-
sualized using Google Earth on one screen (with KML files
of the landslide points or polygons) and ArcGIS on another
screen with shapefiles. With the aid of the historical image
viewer tool from Google Earth, the landslides were evalu-
ated, interpreted, assessed, and measured on one screen by
experts comparing multi-temporal images of the same area,
while they edited the same area on the other screen. For each
landslide, we visually interpreted the LULC types using the
Google Earth history viewer for two time periods: before the
monsoon of 2018 and for the oldest and nearly complete
cover of HRSIs for Kerala, which date back to 2010. Our
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Figure 10. Example of the obstruction of view by clouds in which the original NRSC landslide polygons could not be checked: (a) pre-
landslide Google Earth image, (b) earliest available post-landslide Google Earth image in which the landslide cannot be recognized, and (c)
mapping of the landslide initiation point based on Resourcesat-2 LISS-IV image (RGB combination: near infrared, red, green). Basemap
data for (a) and (b) © Google Earth 2019.

Figure 11. Example of a situation in which the original GSI landslide points were accepted although there were no manifestation of landslide
scarps visible in pre- and post-event images from Google Earth. We assumed that landslides were properly marked in the field by the surveyors
and that they must have been very small and hidden from view by surrounding vegetation or buildings. Basemap data © Google Earth 2019.

final landslide inventory dataset was made as points which
were carefully located on the initiation point of the landslides
with attributes related to the landslide type and the LULC in
2010 and 2018. Due to the large number of landslides in the
inventory, it was not possible to map the landslides as poly-
gons, separating initiation, runout, and accumulation areas
(Soeters and van Westen, 1996). The workflow for the land-
slide inventory is shown in Fig. 13.

3.2 Landslide mapping

The landslide mapping included the conversion of the avail-
able polygons from NRSC to points, the checking of the
points from GSI, and the addition of new landslides that were
overlooked by the available existing inventories according
to the diagnostic image and geomorphological features by
comparing pre- and post-event images (Borrelli et al., 2015;
Fisher et al., 2012; Rabby and Li, 2019; Zieher et al., 2016).
For the polygons from NRSC, the correction included the
removal of erroneous polygons (Figs. 3 and 4) and the dig-
itizing of a landslide point at the top of the landslide scarp
(Figs. 5c, 6c). For areas with NRSC landslide polygons but

where post-event images in Google Earth were of poor qual-
ity or missing, a landslide point was digitized at the top of
the landslide scarp based on available Resourcesat-2 LISS-
IV images and a comparison with the Google Earth pre-event
image in 3D (Figs. 7c, 9c, 10c). As the entire landslide points
from GSI were mapped in the field by geologists, we only
removed those points that were not classified as actual land-
slides but as zones with cracks and subsidence and retained
all the other points and their locations even when the land-
slide scarps could not be recognized in images (Fig. 11a, b).
In the locations where the GSI landslide did not match the
image, we moved the landslide point to the scarp (Fig. 12c).
Using this procedure, the entire area was carefully checked
through a visual comparison of images before and after the
event, and landslides that were missed in the two available
inventories were added by digitizing a point on the top of
their scarp.

For each of the mapped landslide points, a number of at-
tributes were also obtained either from those recorded in the
GSI inventory or through visual interpretation. The follow-
ing attributes were considered: landslide type, length, width,
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Figure 12. Example of a situation in which the original GSI landslide points were shifted to the top of the landslide scarps: (a) pre-event
image with landslide points from the GSI inventory, (b) post-event image with original landslide points from the GSI inventory, and (c)
post-event image with adjusted landslide points. Basemap data © Google Earth 2019.

Figure 13. Overview of the methodology adopted for the creation
of a new landslide inventory in this study.

area, damage to buildings, roads, and agriculture, specific
reasons for failure, and the land use in 2010 and 2018.

The landslides were classified into three simple groups:
shallow landslide (SS), debris flow (DF), and rock fall (RF).
Based on the diagnostic features described in Soeters and van
Westen (1996), DF features were differentiated from an SS
by the presence of a runout zone, often reaching to the near-
est stream, which is not the case for SS. RF features can be
differentiated from the other two processes as they occur on
very steep and bare rocky slopes.

The maximum length and width were measured in Google
Earth. Based on the GSI survey data and our interpretation
of the satellite data, we marked those landslides that caused
damage to buildings, roads, and agricultural land. Wher-
ever possible, we identified the apparent reasons for fail-

ure through image interpretation and the attributes from the
GSI data. The following causes were identified: (1) building
cut slope failure, (2) road cut slope failure, (3) inadequate
drainage along the road, (4) reactivation of old landslides,
(5) undercutting of slope by river, (6) reservoir increase caus-
ing instability along the slopes, (7) deforestation, (8) clear-
ing of tea plantation, (9) clearing of rubber plantation, and
(10) the margin area between different land use types.

3.3 Land use attributes

To study the relation between landslides and recent land use
changes, detailed and precise land use information immedi-
ately before the 2018 event was required, together with land
use information for some time earlier. The available online
land cover products, such as IGBP DISCover, UMD Land
Cover, Global Land Cover 2000, and GlobCover 2009 (Con-
galton et al., 2014), have resolutions that are too coarse for a
proper correlation with the landslides (Seo et al., 2014). Sev-
eral historical digital land use maps from Kerala were also
available from the KSDMA; however, after careful compar-
ison with the corresponding HRSIs using the Google Earth
history viewer, we decided not to use them because of the
insufficient spatial and thematic accuracy. Figure 14a illus-
trates this by overlaying the 2010 land use map on the HRSI
of the same year. The first problem is that the land use poly-
gons do not match the image information (i.e., the shape of
polygon A and B do not match with the image from the
same year). The second problem is that the land use poly-
gons in this 1 : 50 000 scale land use map are too generalized
for analyzing specific relations with landslides. One land use
polygon may contain more than one land use type, i.e., the
land use type of polygon B is Tea, while on the detailed im-
ages it can been interpreted that it contains roads, buildings,
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Figure 14. Example of the problem in using the available land use map. The boundaries of the available 1 : 50 000 land use map from 2010
are shown on a HRSI of the same year. The detailed images shown in (b) and (c) contains many more land use types than the single one
indicated on the map, leading to wrong correlations between landslides and land use. Basemap data © Google Earth 2019.

shrubs, bare farm land, and forest as well (Fig. 14a). If this
map had been used for correlating landslide occurrences with
land use types, the land use type in 2010 of all landslides in
Fig. 14b would have been Tea. However, the actual land use
types were bare farmland (landslide I, III, and IV) and shrub
plantation (landslide II and V) (Fig. 14c).

In order to correlate landslide occurrences with the land
use (change) at specific locations (like landslide scarps), de-
tailed and accurate land use data are needed. Automatic im-
age classification would not give the required accuracy and
detail (Srivastava et al., 2012) due to the complexity of the
terrain and the detailed land use legend needed. It has proven
very difficult to differentiate natural land use types (e.g., for-
est) from cultivated area (e.g., mixed forest plantations) us-
ing automatic image classification. Automatic image classi-
fication also requires a large number of very high-resolution
cloud-free images for at least two periods covering the whole
landslide affected area of Kerala, which requires costs that
were beyond the scope of this project.

In view of the above problems, we decided to visually in-
terpret the land use types for each landslide initiated area
based on the Google Earth history viewer, in which the old-
est and nearly complete cover of HRSIs for Kerala dates back
to 2010. Visual interpretation is useful in land use mapping
(Butt et al., 2015; Mohammady et al., 2015; Kibret et al.,
2016) with higher accuracy (Audah et al., 2019; Ghorbani
and Pakravan, 2012), especially in complicated areas (Huang
et al., 2018). A skilled interpreter who is familiar with land
use types and was trained to identify diagnostic features of
various land use types in the study area is able to extract
detailed land use information from the image interpretation
elements of pattern, shape, context, size, shadows, phenol-
ogy, spatial relation, and changes (Cihlar and Jansen, 2001),
as well as using clues from available land use maps from
NRSC for differentiating cultivation from natural vegetation.
Differentiating agriculture from natural vegetation was con-
sidered important in modeling the relationship between land-
slides and land use. An interpreter will generally be able to
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Figure 15. Map of the final landslide inventory dataset. (a) distribution according to the source of the data and (b) distribution of different
landslide types.

discriminate the boundaries of complicated land use types
with a higher accuracy than can be obtained through auto-
matic classification, although it will take much more time
(Miettinen et al., 2019).

The use of the Google Earth history viewer allows us to
frequently compare the temporal image characteristics of the
same area using vertical and also oblique views in differ-
ent directions, which are all helpful in recognizing land use
types. Furthermore, the land use in the direct surrounding of
the landslide can be interpreted as well, allowing the inter-
preters to make a better evaluation of the relation between
land use and landslides. For each landslide, the land use sit-
uation was evaluated for the year 2010 and for the year 2018
prior to the occurrence of the extreme event in August 2018.
Mapping was done as a collaborative exercise, involving a
group of four mappers. A detailed legend was worked out
first and discussed among the mappers in order to achieve
a standard interpretation. Also, regular cross-checks were
made of each other’s results to ensure a standardized ap-
proach. The ability to visually differentiate land use types
was taken into account in defining the land use legends (Fox
et al., 2017). Land use and land cover types were selected in
such a way that they differed with respect to their influence
on landslides in terms of vegetation cover, anthropogenic ac-
tivities, hydrological effects, and the characteristic vegeta-
tion roots (Karsli et al., 2009; Reichenbach et al., 2014). Ul-
timately, 25 land use types were defined in our study (see
Fig. 16). For each landslide point on the top of a landslide
scarp, the historical image viewer of Google Earth was used

to visualize the surrounding areas before failure in 2018 us-
ing the earliest available images and the land use situation
around 2010 (using the image that is closest to this period).

4 Resulting landslide inventory

4.1 Complete landslide inventory for the 2018 Kerala
monsoon event

After the landslide mapping and attribute editing, a com-
plete landslide point inventory dataset for the 2018 monsoon
event in Kerala was generated, containing 4728 confirmed
landslides. Out of these, 2477 landslides (52 %) were de-
rived from the NRSC polygons and 973 landslides (21 %)
from the GSI points with 422 landslides (9 %) that were
included in both inventories. Additionally, 856 new land-
slide points (18 %) were identified using HRSIs available in
Google Earth (Table 1, Figs. 15a, 18).

The most common landslide type was debris flow (DF:
2816 landslides), followed by shallow slide (SS: 1760) and
rock fall (RF: 152) (Table 2, Fig. 15b). The landslide types
for the NRSC inventory were interpreted by us using the
visual mapping of the Google Earth images. They differed
from the GSI landslide inventory with a higher proportion of
debris flows in the NRSC data (71 % of the polygons were
DF, 25 % SS, and 4 % RF) compared to the GSI mapped
slides (44 % DF, 55 % SS, and only 1 % RF). The Idukki
district was affected by landslides the most, accounting for
47.02 % of the total landslides in Kerala (Fig. 15).
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Table 1. The number of landslides per district in Kerala from the
final dataset with various sources.

Source

District NRSC GSI GSI+NRSC New Total / %

Idukki 607 685 256 675 2223/47.02
Pathanamthitta 66 24 7 9 106/2.24
Kottayam 43 18 13 2 76/1.61
Thrissur 206 33 17 256/5.41
Ernakulam 94 10 3 107/2.26
Palakkad 649 54 36 54 793/16.77
Kozhikode 97 23 18 90 228/4.82
Malappuram 312 59 36 22 429/9.07
Wayanad 250 53 26 2 331/7.00
Kannur 116 14 10 1 141/3.00
Kasaragod 24 24/0.51
Kollam 10 10/0.21
Thiruvananthapuram 3 1 4/ 0.09

Total 2477 973 422 856 4728

Table 2. The number of landslides classified by types in each dis-
trict in Kerala.

Type

Shallow Debris
slide flow Rockfall

District (SS) (DF) (RF)

Idukki 1421 679 123
Pathanamthitta 13 92 1
Kottayam 11 65
Thrissur 20 234 2
Ernakulam 11 96
Palakkad 92 699 2
Kozhikode 18 204 6
Malappuram 66 358 5
Wayanad 68 252 11
Kannur 19 120 2
Kasaragod 19 5
Kollam 1 9
Thiruvananthapuram 1 3

Total 1760 2816 152

Figure 16 shows the frequency of landslides for the differ-
ent land use and land cover types in 2010 and 2018. The re-
sults show that the highest proportion of the landslides were
initiated in mixed forest plantation (FMP: 25.06 %), followed
by dense natural forest (FDN: 23.33 %). This is an interesting
result in view of the expectation that forests are less vulnera-
ble to landslides due to the hydrological and geomechanical
characteristics of trees which tend to reduce the chance of
slope instability (Alcántara-Ayala et al., 2006; Reichenbach
et al., 2014; Tasser et al., 2003). Moreover, a significant per-
centage of 14 % of all landslides occurred in steep areas with
bare rock and soil and sparse vegetation.

Among all the landslides in this event in Kerala, 2503 out
of 4728 landslides caused damage to buildings, roads, and

Figure 16. General land use types of all landslides in Kerala: QUU
– quarry in use, QUA – quarry abandoned, CSV – vegetated cut
slopes, CSB – bare cut slopes, ROA – roads, BUI – buildings, RUB
– rubber plantation, FMP – mixed forest plantation, FCP – forest
plantation, TEA – tea plantation, SPL – shrub plantation, GMC
– meadows (refers to cultivated grassland), BSL – bare farmland,
FDN – dense natural forest, FNO – open natural forest, BSF – bare
soil with isolated forests, BRF – bare rock with isolated forests,
SNA – natural shrub land, BSS – bare soil with isolated shrubs,
BRS – bare rock with isolated shrubs, GNA – natural grass land,
BSG – bare soil with isolated grass, BRG – bare rock with isolated
grass, BSO – bare soil, and BRO – bare rock.

agriculture, accounting for 52.94 %. Apart from the 1205
damaging landslides surveyed in the field by GSI, the im-
age interpretation revealed another 90 landslides with dam-
age to buildings, 356 with damage to roads, and 1251 with
damage to agriculture (Fig. 17). As for building impacts, 645
landslides destroyed 942 buildings, of which most were res-
idential buildings (Fig. 17). A shallow slide (SS) in Kannur
damaged 23 buildings, while a debris flow (DF) in Wayanad
destroyed 12. Landslides associated with building cut-slopes
were responsible for 45 % of the damaged buildings. Regard-
ing road impacts, 897 landslides caused traffic disruptions
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Figure 17. Damaging landslides of different sources.

after the event, among which 625 landslides covered roads
which needed to be cleared, while 272 landslides damaged
roads that had to be repaired. Landslides associated with road
cut-slopes were responsible for 34 % of the road impacts. For
agriculture impacts, 2194 landslides damaged the agricul-
tural land use classes of tea plantation (TEA), FMP, rubber
plantation (RUB), shrub plantation (SPL), and forest planta-
tion (FCP) (Fig. 16). FMP, SPL, and TEA suffered the most
damage of all cultivation lands.

The results show that only a relatively small number of
landslides (707, 14.95 %) were located at sites where land
use changes occurred in the past 8 years before their occur-
rence (Fig. 16). The vast majority of the landslides were not
related to land use changes in the past decade.

4.2 Comparison of inventories

The final landslide dataset was made by integrating two in-
ventories that were acquired using different methods. In the
final inventory, 2899 (61.32 %) out of 4728 landslides were
obtained directly from the results of the automatic classifica-
tion, which were accepted after careful visual interpretation
of multi-temporal HRSIs. Among the 2899 landslides, 2657
landslides were mapped as points directly from an equal
number of polygons, 163 landslide points were made by
merging 366 polygons (when several polygons belonged to
the same landslide), and 79 landslides were mapped by sepa-
rating 35 polygons (when a single polygon contained several
landslides). Only 422 out of 1437 landslides with confirmed
damage, mapped by GSI, were identified by automatic image
classification (Fig. 18).

In the final landslide point dataset, 1276 (27 %) out of
4728 landslides were confirmed only by one source, while
a total of 3452 (73 %) landslides were confirmed by at
least two independent sources (Table 3). Among the single
sourced 1276 landslides, 420 (9 %) landslides were with-
out an estimation of the area of the landslides as those were
the points from GSI for which no area could be determined
in the images because the landslides were too small. These
420 landslides were mapped by GSI as they caused dam-

age to buildings and roads but could not be identified in
Google Earth or Resourcesat-2 satellite images due to the
small size or sheltering by buildings, trees, and clouds. Still,
they are accepted in the final dataset because they were vis-
ited by geologists in the field. The rest of the 856 (18 %)
single sourced landslides were identified and confirmed by
their clear signs in multi-temporal Google Earth images, and
about 25 of these were confirmed through field investigations
by the authors in May 2019. Therefore, the minimum overall
accuracy of the final inventory is 73 %, although we consider
it to be much larger given the fact that we visually inspected
the entire area. However, it is not possible to quantify the
completeness of the final inventory due to the lack of another
independent and confirmed complete inventory.

5 Data availability

The landslide dataset, and a document with meta-
data, is freely downloadable from https://doi.org/10.17026/
dans-x6c-y7x2 (van Westen, 2020) and available for further
analysis. The landslide dataset is provided in the form of
an Environmental Systems Research Institute (ESRI) point
shapefile including the following attributes: district, land-
slide type, area, damage (building impact, road impact, and
agriculture impact), land use in 2010, land use in 2018, spe-
cific reasons for landslide occurrence, remarks, and data
source. The definition of each attribute and the codes are
provided in an accompanying metadata Word document. The
dataset aims to further the understanding of the relation be-
tween rainfall intensities and associated spatial distribution
of landslides in order to improve the methods for rainfall-
induced landslide hazard assessment and the development
of more accurate rainfall thresholds for early warning. The
dataset also aims to further research on the relation between
land use changes and landslide occurrences, which is also an
important aspect especially due to the observed increase in
extreme hydrometeorological hazard events.
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Table 3. The number of landslide confirmations by different means in Kerala.

Confirmation GSI only Google Earth only GSI, NRSC, Google Earth/ GSI, NRSC,
means (field mapping) (visual image interpretation) Google Earth Resourcesat-2 LISS-IV Google Earth

Number / % 420/9 % 856/18 % 553/12 % 2477/52 % 422/9 %

Figure 18. Overview of the procedure to generate the complete landslide inventory with the number of landslides indicated.

6 Discussion and conclusions

The results show that more than half of the damaging land-
slides (613) surveyed by GSI were very small (< 500 m2).
Many of these small-sized landslides could not be visually
identified and measured even in HRSIs as they may be cov-
ered by dense vegetation or sheltered by buildings and other
objects. This makes it also very difficult to detect them using
automatic image classification as no more than half of these
damaging landslides (422 out of 973) were detected. This
is an important factor as the automatic image classification
provides a rapid survey of the possible landslide area soon
after the event. Reconnaissance in the field by geologists is
the best method for mapping such landslides (Brardinoni et
al., 2003). The survey requires considerably more time and
resources, and it took survey teams of 20 persons 1 month to
carry out the survey with a follow up survey by 10 persons of
another 3 months. The survey was also biased towards dam-
age along the roads. Although time consuming and biased
toward to landslides close to roads, field-based surveys re-
main an essential component for the damage assessment and
post-disaster recovery as they will obtain quantitative infor-
mation on the damage caused by landslides and will not be
replaced by image interpretation or automatic image classifi-
cation (Moosavi et al., 2014).

For landslides with an area larger than 1000 m2, automatic
image classification is a very useful tool, as evidenced by this
study, in which more than 76.3 % of all large landslides were
detected automatically. The automatic classification method

is useful for detecting landslides with a certain minimum
size (Lahousse et al., 2011; Martha et al., 2011) depending
on the resolution of remote sensing images (Fiorucci et al.,
2011; Harp et al., 2011). OBIA is very effective for gener-
ating a rapid first inventory of larger landslides triggered by
an event such as an intense rainfall or earthquake (Behling et
al., 2014; Lu et al., 2011; Martha et al., 2016). However, the
accuracy of these automatic recognition methods still needs
to be improved (Feizizadeh et al., 2017), and care should be
taken when deriving statistical relationships with causal fac-
tors from such inventories due to the significant overestima-
tion of the number of landslides and because the relations
would only be meaningful for the initiation areas of the land-
slides and not for the full polygon areas that are normally
identified using OBIA.

During this monsoon-event-triggered landslide inventory,
it took teams of six persons 39 d (one person works 8 h d−1)
for the visual interpretation check and digitization. Com-
pared to automatic image classification, the visual interpre-
tation of satellite data is a cost-effective yet quite time-
consuming method for mapping event-triggered landslides
(Yu and Chen, 2017) which has a high accuracy if combined
with field investigations (Fiorucci et al., 2011; Mondini et
al., 2011). Also, landslides above a minimum size of 20 m2

can be recognized based on submeter HRSIs if they are not
masked by shadows from nearby slopes, objects, or vege-
tation. The comparison of pre- and post-event satellite im-
ages, and the integration with the results of automatic image
classification on a platform such as the Google Earth history

https://doi.org/10.5194/essd-12-2899-2020 Earth Syst. Sci. Data, 12, 2899–2918, 2020



2914 L. Hao et al.: Constructing a dataset for the 2018 monsoon disaster

viewer, was very useful for the generation of a complete and
reliable inventory. The collaborative mapping approach, in-
volving a number of mappers in different locations, required
good communication and cross-checking of the interpreta-
tion results to ensure consistent results among the mappers,
but it reduced the mapping time compared to field-based sur-
vey methods, and the costs for image acquisition were greatly
reduced by using Google Earth images (van Westen et al.,
2008).

The monsoon event of 2018 in Kerala killed more than
483 persons (Sahana, 2019) and triggered 4728 landslides
which damaged 942 buildings. It was an extreme event,
and the damage was attributed in popular literature to cli-
mate change and anthropogenic changes, especially the de-
crease in natural forests and the increase in buildings on slop-
ing terrain (Naik, 2019). Recent studies (Ramachandra and
Bharath, 2019) have found that the forest cover in the West-
ern Ghats has decreased by 30 %, from 16.21 % in 1985 to
11.3 % in 2018. The region now has a 17.92 % plantation
area, 37.53 % agriculture, and 4.88 % mining and built-up ur-
ban areas. It is therefore remarkable that the majority of the
landslides triggered during the 2018 monsoon event occurred
within forested areas. Also, for the vast majority of the land-
slides, no significant changes in land use were detected in
the past 8 years, suggesting that this was indeed an extraor-
dinary rainfall event in which land use played a relatively
minor role. Further research is needed to study the intricate
relations between land use change and landslide occurrence.

So far, the final inventory of significant landslides that
damaged buildings, roads, and agricultural areas, as well as
failures large enough to be seen in various satellite images,
can be considered relatively complete for the 2018 event as
the entire area was carefully checked using multi-temporal
visual image interpretation. However, it is possible that a few
landslides were still missed in the final dataset due to their
very small size or shelter. It is not possible to quantify the
completeness of the final inventory due to the lack of another
independent and confirmed complete inventory.
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