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Abstract. The turnover time of terrestrial ecosystem carbon is an emergent ecosystem property that quantifies
the strength of land surface on the global carbon cycle–climate feedback. However, observation- and modeling-
based estimates of carbon turnover and its response to climate are still characterized by large uncertainties. In
this study, by assessing the apparent whole ecosystem carbon turnover times (τ ) as the ratio between carbon
stocks and fluxes, we provide an update of this ecosystem level diagnostic and its associated uncertainties in
high spatial resolution (0.083◦) using multiple, state-of-the-art, observation-based datasets of soil organic carbon
stock (Csoil), vegetation biomass (Cveg) and gross primary productivity (GPP). Using this new ensemble of data,
we estimated the global median τ to be 43+7

−7 yr (median+difference to percentile 75
−difference to percentile 25) when the full soil is considered, in

contrast to limiting it to 1 m depth. Only considering the top 1 m of soil carbon in circumpolar regions (assuming
maximum active layer depth is up to 1 m) yields a global median τ of 37+3

−6 yr, which is longer than the previous
estimates of 23+7

−4 yr (Carvalhais et al., 2014). We show that the difference is mostly attributed to changes in
global Csoil estimates. Csoil accounts for approximately 84 % of the total uncertainty in global τ estimates;
GPP also contributes significantly (15 %), whereas Cveg contributes only marginally (less than 1 %) to the total
uncertainty. The high uncertainty in Csoil is reflected in the large range across state-of-the-art data products,
in which full-depth Csoil spans between 3362 and 4792 PgC. The uncertainty is especially high in circumpolar
regions with an uncertainty of 50 % and a low spatial correlation between the different datasets (0.2< r < 0.5)
when compared to other regions (0.6< r < 0.8). These uncertainties cast a shadow on current global estimates of
τ in circumpolar regions, for which further geographical representativeness and clarification on variations in Csoil
with soil depth are needed. Different GPP estimates contribute significantly to the uncertainties of τ mainly in
semiarid and arid regions, whereas Cveg causes the uncertainties of τ in the subtropics and tropics. In spite of the
large uncertainties, our findings reveal that the latitudinal gradients of τ are consistent across different datasets
and soil depths. The current results show a strong ensemble agreement on the negative correlation between
τ and temperature along latitude that is stronger in temperate zones (30–60◦ N) than in the subtropical and
tropical zones (30◦ S–30◦ N). Additionally, while the strength of the τ–precipitation correlation was dependent
on the Csoil data source, the latitudinal gradients also agree among different ensemble members. Overall, and
despite the large variation in τ , we identified robust features in the spatial patterns of τ that emerge beyond the
differences stemming from the data-driven estimates of Csoil, Cveg and GPP. These robust patterns, and associated
uncertainties, can be used to infer τ–climate relationships and for constraining contemporaneous behavior of
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Earth system models (ESMs), which could contribute to uncertainty reductions in future projections of the carbon
cycle–climate feedback. The dataset of τ is openly available at https://doi.org/10.17871/bgitau.201911 (Fan et
al., 2019).

1 Introduction

Terrestrial ecosystem carbon turnover time (τ ) is the aver-
age time that carbon atoms spend in terrestrial ecosystems
from the initial photosynthetic fixation until respiratory or
non-respiratory loss (Bolin and Rodhe, 1973; Barrett, 2002;
Carvalhais et al., 2014). Ecosystem turnover time is an emer-
gent property that represents the macro-scale turnover rate of
terrestrial carbon that results from different processes such
as plant mortality and soil decomposition. Alongside photo-
synthetic fixation of carbon, τ is a critical ecosystem prop-
erty that co-determines the terrestrial carbon storage and the
terrestrial carbon sink potential. The magnitude of τ and its
sensitivity to climate change are central to modeling car-
bon cycle dynamics. Therefore, τ has been used as a model
evaluation diagnostic and to constrain Earth system model
(ESM) simulations of the carbon cycle. These analyses have
shown that current ensembles of ESMs show a large spread
in the simulation of soil and vegetation carbon stocks and
their spatial distribution, which are mostly attributed to the
differences in τ among ESMs (Friend et al., 2014; Todd-
Brown, 2013, 2014; Wenzel et al., 2014, Carvalhais et al.,
2014; Thurner et al., 2017).

At large scales, and for ecosystem-level comparisons,
model simulations and observations do not agree in the
global distribution of τ and its relationship with climate. Pre-
vious observational datasets, covering both lower latitudes
and circumpolar regions and used to estimate global τ for
comparison with ESM simulations from the fifth phase of
the Coupled Model Intercomparison Project (CMIP5) have
shown a generalized tendency of the models towards faster
turnover times of carbon which are more sensitive to temper-
ature when compared to observation-based estimates (Car-
valhais et al., 2014). The variability between the ESMs alone
was also substantial, showing a wide range of τ from 8.5
to 22.7 yr (mean difference of 29 %) leading to a substan-
tial divergence in global simulated total terrestrial carbon
stocks that range from 1101 to 3374 PgC (mean difference
of 36 %). The models also exhibit a large discrepancy in the
τ–temperature and τ–precipitation relationships across dif-
ferent latitudes compared to observations. The difficulty of
evaluating the response of soil carbon to climate change is
partly due to the fact that the dynamical observations at rel-
evant timescales, e.g., multi-decadal to centennial scales, are
lacking, and the magnitude of projected change in τ to cli-
mate change is still poorly constrained (Koven et al., 2017).

The current understanding of the factors that drive changes
in τ is unclear due to the confounding effects of temperature

and moisture even though, for instance, it is well perceived
that temperature and water availability are the main climate
factors that affect root respiration and microbial decomposi-
tion (Raich and Schlesinger, 1992; Davidson and Janssens,
2006; Jackson et al., 2017). Therefore, it is difficult to im-
plement the local temperature sensitivity of τ into carbon cy-
cle models due to the large discrepancy between the intrin-
sic and apparent sensitivity of τ to temperature. As the soil
environment and climate are highly heterogeneous in space,
the temperature sensitivity of τ and terrestrial carbon fluxes
may be substantially affected by other factors as spatial scale
decreases (Jung et al., 2017). Additional challenges emerge
in understanding the role of climate and other environmental
factors in defining vegetation dynamics related to mortality
and recovery trajectories that control the plant-level contri-
bution to τ (Friend et al., 2014; Thurner et al., 2016). Large
uncertainties in the simulated total carbon stock of soil and
vegetation represent process uncertainty or potentially miss-
ing processes that lead to diverse or even opposite responses
of τ to changes in climate (Friedlingstein et al., 2006; Friend
et al., 2014). Thus, it is instrumental to use observation-based
estimations of carbon turnover times and their associated un-
certainties in order to constrain the models and better predict
the response of the carbon cycle to climate change.

On the other hand, the observation-based estimates of car-
bon turnover times themselves are prone to uncertainties
stemming from the different data sources of different com-
ponents of τ : soil and vegetation stocks and ecosystem car-
bon flux. Specifically, estimates of global total carbon stocks
are characterized by large uncertainties because different in
situ measurements and upscaling methods are used to derive
total carbon stocks (Batjes, 2016; Hengl et al., 2017; San-
derman et al., 2017). Alongside recent soil carbon datasets
(Tifafi et al., 2018), there are also several different global
vegetation biomass estimates (Thurner et al., 2014; Avitabile
et al., 2016; Sassan Saatchi, personal communication, 2011;
Santoro et al., 2020) and gross primary productivity (GPP)
datasets (Jung et al., 2017), which may lead to substantial dif-
ferences in the global τ distribution and its relationship with
climate. Thus, building and evaluating an observation-based
ensemble of global τ estimates derived from different prod-
ucts is key in quantifying the uncertainties in the τ–climate
relationship.

This study thus aims at developing an ensemble global
estimation of τ at a spatial resolution of 0.083◦, which is
derived from different observation-based products. Specifi-
cally, we will (1) update τ estimations with multiple state-of-
the-art datasets, (2) quantify the contribution of the different
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components of τ to the global and local uncertainties, and
(3) identify the robust patterns across the different ensemble
members.

2 Datasets

The attributes of the τ dataset provided in this study and the
key external datasets that were used to estimate τ are sum-
marized in Table 1. Details for each dataset are described in
the following subsections. Note that all the datasets are har-
monized into the same spatial resolution of 0.083◦ (∼ 10km)
using a mass conservative approach (see Sect. S1 in the Sup-
plement).

2.1 Soil organic carbon datasets

Five different estimates of global soil carbon stock (Csoil)
were obtained from independent datasets. The main features
of the datasets and the approaches used are briefly described
below:

a. SoilGrids is an automated soil mapping system that
provides consistent spatial predictions of soil proper-
ties and types at the spatial resolution of 250 m (Hengl
et al., 2017). A global compilation of in situ soil pro-
file measurements is used to produce an automated soil
mapping based on machine learning algorithms. The
dataset contains global soil organic carbon content at
soil depths of 0, 5, 15, 30, 60, 100 and 200 cm. In addi-
tion, physical and chemical soil properties such as bulk
density and carbon concentration are provided. A total
of 158 remote-sensing-based covariates including land
cover classes and long-term averaged surface tempera-
ture were used to train the machine learning model at the
site level. According to Hengl et al. (2017), the current
version of the dataset explains 68.8 % of the variance in
soil carbon stock compared to a mere 22.9 % in the pre-
vious version (Hengl et al., 2014). However, it has also
been recognized that SoilGrids may overestimate car-
bon stocks due to high values of bulk soil density (Tifafi
et al., 2018). In general, the estimation of Csoil is mainly
caused by the geographically biased availability of mea-
sured data especially in the circumpolar regions. Even
though in situ measurements had a large spatial extent
and cover most of the continents, the remote regions that
are characterized by severe climate were sampled much
less.

b. The dataset of soil carbon provided by Sanderman et
al. (2017; hereafter Sanderman) used the same method
as SoilGrids but different input covariates. The main dif-
ference between SoilGrids and Sanderman is that, in ad-
dition to topographic, lithological and climatic covari-
ates, Sanderman also included land use and forest frac-
tion as covariates in the model fitting. The relative im-
portance analysis based on the random forest method

showed that soil depth, temperature, elevation and to-
pography are the most important predictors of soil car-
bon, which is consistent with SoilGrids. Land use types
such as grazing and cropland also contribute signifi-
cantly to the variance. The Sanderman dataset provides
soil carbon stocks for the soil depths of 0–30, 30–100
and 100–200 cm. The dataset is available at a spatial res-
olution of 10 km.

c. The Harmonized World Soil Database (HWSD) coor-
dinated soil data from more than 16 000 standardized
soil-mapping units worldwide into a global soil dataset
(Batjes, 2016). It combines regional and national soil
information to estimate soil properties, and yet reliabil-
ity of the data varies due to the different data sources.
The database derived from the SOTER soil and terrain
database had the highest reliability (Central and East-
ern Europe, the Caribbean, Latin America, southern and
eastern Africa), while the database derived from the Soil
Map of the World (North America, Australia, western
Africa and South Asia) had a relatively lower reliability.
The HWSD dataset is available at a spatial resolution of
30 arc seconds, and it includes soil organic carbon and
water storage capacity at topsoil (0–30 cm) and subsoil
(30–100 cm).

d. The Northern Circumpolar Soil Carbon Database (NC-
SCD) quantifies the soil organic carbon storage in the
northern circumpolar permafrost area (Hugelius et al.,
2013). The dataset contains soil organic carbon con-
tent for soil depths of 0–30, 0–100, 100–200 and 200–
300 cm. The soil samplings included pedons from pub-
lished literature, existing datasets and unpublished ma-
terial. The data for 200 and 300 cm depths were ob-
tained by extrapolating the bulk density and carbon con-
tent values at the deepest available soil depth for a spe-
cific pedon. Only the pedons with the data for at least
the first 50 cm were extrapolated to the full soil depth.
The deep soil carbon (100–300 cm) showed the lowest
level of confidence due to lack of in situ measurements
and much lower spatial representativeness.

e. The soil carbon stock and properties produced by the
LandGIS maps development team (hereafter LandGIS)
were also used in this study (Wheeler and Hengl, 2018).
The soil profile measurements used in the training have
a wide geographic coverage in America, Europe, Africa
and Asia. One unique feature of LandGIS is that it
includes additional soil profiles in Russia from the
Dokuchaev Soil Science Institute and the Russian Min-
istry of Agriculture, improving the predictions of Csoil
significantly there. Further, different machine learning
methods, including random forest, gradient boosting
and multinomial logistic regression, were used to up-
scale the soil profiles to a global gridded dataset. Con-
tinuous soil properties were predicted at six different
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soil depths: 0, 10, 30, 60, 100 and 200 cm. Compared to
the SoilGrids dataset, LandGIS added new remote sens-
ing layers as covariates in the training and used 5 times
more training datasets (360 000 soil profiles compared
to 70 000 in SoilGrids).

2.2 Vegetation biomass datasets

Four different datasets of biomass were used to produce the
total vegetation biomass (Cveg) data on the global scale.

a. Thurner et al. (2014) estimated the aboveground
biomass (AGB) and belowground biomass (BGB) for
Northern Hemisphere boreal and temperate forests
based on satellite radar remote sensing retrievals of
growing stock volume (GSV) and field measurements
of wood density and biomass allometry. The carbon
stocks of tree stems were estimated from GSV retrieval
of the BIOMASAR algorithm. The BIOMASAR algo-
rithm uses remote sensing observations from the Ad-
vanced Synthetic Aperture Radar (ASAR) instrument
on the Envisat satellite (Santoro et al., 2015). The re-
mote sensing retrievals are then converted to biomass
using information on wood density and allometry. The
other tree biomass compartments (BCs) including roots,
foliage and branches were estimated from stem biomass
using field measurements of biomass allometry. The to-
tal carbon content of the vegetation was then derived
as the sum of the biomass in different compartments
and converted to carbon mass units using carbon frac-
tion parameters. A comparison between the data and
inventory-based estimates shows good agreement on re-
gional scales in Russia, the United States and Europe
(Thurner et al., 2014). The data from Thurner et al.
(2014), at 0.01◦ spatial resolution and representative for
the year 2010, only cover the northern boreal and tem-
perate forests between 30◦ and 80◦ N latitudes.

b. To accommodate for lower latitudes not covered in the
Thurner et al. (2014) data, we used the forest biomass
carbon stocks to cover the tropical regions provided
by Saatchi et al. (2011). The data were derived using
lidar, optical and microwave satellite imagery trained
with in situ measurements in 4079 forest inventory plots
(Saatchi et al., 2011). Using the Geoscience Laser Al-
timeter System (GLAS) lidar observations to sample
forest structure, the method applies a power-law func-
tional relationship to estimate biomass from the lidar-
derived Lorey’s height of the canopy. This extended
sample of biomass density is then extrapolated over the
landscape using MODIS and radar imagery, resulting in
a pantropical AGB map. BGB was estimated as a func-
tion of AGB, and the two were summed together to de-
rive total forest carbon stock at 1 km spatial resolution.

c. The GlobBiomass map (Santoro et al., 2018) estimated
GSV and AGB density on the global scale for the year
2010 at 100 m spatial resolution. The AGB was derived
from GSV using spatially explicit biomass conversion
and expansion factors (BCEFs) obtained from an exten-
sive dataset of wood density and compartment biomass
measurements. GSV was estimated using space-borne
synthetic aperture radar (SAR) imagery (the Advanced
Land Observing Satellite’s Phased Array type L-band
Synthetic Aperture Radar – ALOS PALSAR – and En-
visat’s ASAR), Landsat-7, ICESat’s lidar and auxiliary
datasets and utilizing the BIOMASAR algorithm to re-
late the SAR backscattered intensity with GSV (Santoro
et al., 2018).

d. Avitabile et al. (2016) combined two existing AGB
datasets (Saatchi et al., 2011; Baccini et al., 2012) to
produce data for pantropical AGB. These data use a
large independent reference biomass dataset to calibrate
and optimally combine the two maps. The data fusion
approach is based on the bias removal and weighted-
average of the input maps, which integrates the spatial
patterns of the reference data into the combined data.
The resulting data of total AGB stock for the tropical
regions were 9 %–18 % lower than the two reference
datasets with distinctive spatial patterns over large ar-
eas. The combined data from Avitabile et al. (2016) is
available at a spatial resolution of 1 km.

2.3 Soil depth dataset

The data for global distribution of soil depth were obtained
from the Global Soil Texture and Derived Water-Holding Ca-
pacities database (Webb et al., 2000). The data contain stan-
dardized values of soil depth and texture selected from the
values from the same soil type within each continent. The to-
tal soil depth depends on soil texture and water availability,
and it is usually deeper than 100 cm. In regions with per-
mafrost, total soil depth can extend beyond 400 cm (Fig. S1
in the Supplement).

2.4 Gross primary productivity datasets

The GPP datasets used to calculate ecosystem carbon
turnover times were obtained from the FLUXCOM initia-
tive (http://fluxcom.org/, last access: 28 February 2018). In
FLUXCOM, the global energy and carbon fluxes are up-
scaled from eddy covariance flux measurements using dif-
ferent machine learning approaches with meteorological and
Earth observation data (Jung et al., 2017). In this study, we
used GPP derived from the two different FLUXCOM setups
based on (1) only remote sensing covariates and (2) both re-
mote sensing and meteorology forcing (Tramontana et al.,
2016; Jung et al., 2020). In this study, we derived the long-
term mean annual GPP across different machine learning
methods over the time period from 2001 to 2015.
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2.5 Climate datasets

The high spatial resolution (∼ 1 km) climate dataset World-
Clim (Fick and Hijmans, 2017) was used to investigate
the relationship between τ and climate. The data included
monthly maximum, minimum, and average temperature, pre-
cipitation, solar radiation, vapor pressure, and wind speed.
The WorldClim data were produced by assimilating 9000–
60 000 ground-station measurements and covariates such as
topography, distance to the coast and remote sensing satel-
lite products including maximum and minimum land surface
temperature, as well as cloud cover in model fitting. For dif-
ferent regions and climate variables, different combinations
of covariates were used. The 2-fold cross-validation statistics
showed a very high model accuracy for temperature-related
variables (r > 0.99) and a moderately high accuracy for pre-
cipitation (r = 0.86).

3 Methods

3.1 Estimation of ecosystem turnover times

As a result of the balance between influx and outflux of
carbon, the terrestrial carbon pool can be approximated to
reach the steady-state condition (influx equals outflux) when
long timescales are considered. This simplifies the calcula-
tion of τ to the ratio between the total terrestrial carbon stor-
age and the influx or the outflux of carbon. The approach
is advantageous in representing the highly heterogeneous in-
trinsic properties of the terrestrial carbon cycle as an aver-
aged apparent ecosystem property which is more intuitive to
infer large-scale sensitivity of τ to climate change. Instead
of focusing on the heterogeneity of individual compartment
turnover times, we show the change in the carbon cycle on
the ecosystem level using τ as an emergent diagnostic prop-
erty. The total land carbon storage can be estimated by sum-
ming soil carbon stocks derived from extrapolation and veg-
etation biomass. Assuming a steady state in which the total
efflux (autotrophic and heterotrophic respiration, fire, etc.)
equals the influx (GPP), then τ can be calculated as the ratio
between carbon stock and influx:

τ =
Csoil+Cveg

GPP
, (1)

where Csoil and Cveg are the total soil and vegetation carbon
stocks, respectively, and GPP is the total influx to the ecosys-
tem. An ensemble of τ estimates is generated by combining
three soil carbon stocks at three different soil depths (1 m,
2 m, full soil depth), four vegetation biomass products, and
24 GPP values resulting in an ensemble with 864 members.

3.2 Estimation of global vegetation biomass stock

Two different corrections had to be addressed in order
to assess the whole vegetation carbon stock from current
observation-based products. First, the aboveground biomass

datasets only consider the biomass within woody vegetation
(mostly trees), while the biomass of herbaceous vegetation is
missing. To account for herbaceous biomass, we used a pre-
viously developed method in which the live vegetation frac-
tion is assumed to have a mean turnover time of 1 yr and a
uniform distribution of respiratory costs of carbon (Carval-
hais et al., 2014). The carbon in herbaceous vegetation can
then be expressed as a function of GPP:

CH =GPP× (1−α) · fH, (2)

where CH is the carbon stock of the herbaceous vegetation,
GPP is the gross primary productivity from FLUXCOM, α is
respiration cost of carbon (0.25–0.75), and fH is the fraction
of a grid cell covered by herbaceous vegetation, which was
obtained from the SYNMAP database (Jung et al., 2006).

Second, two of the vegetation biomass datasets (Glob-
Biomass and Avitabile; see Table 1) do not include BGB. For
consistency across all Cveg datasets, we estimated the BGB
using a previously developed empirical relationship (Saatchi
et al., 2011) between AGB and BGB:

BGB= 0.489×AGB0.89. (3)

3.3 Extrapolation of soil datasets

We used observed soil profiles and multiple empirical mod-
els to extrapolate soil carbon stock to full soil depth (Fig. S1
and Table S1 in the Supplement). This approach is neces-
sary to obtain the accumulated carbon stock from the sur-
face to full soil depth because the soil datasets only extend
up to 2 m below the surface. However, a large amount of
Csoil is stored below this depth, especially in peatland re-
gions where soil carbon content can be substantially higher
in deeper soil layers (Hugelius et al., 2013). To estimate the
total carbon storage in the land ecosystem, different empiri-
cal mathematical models were used (Table S1 in the Supple-
ment). The covariance matrix adaptation evolution strategy
(CMA-ES) method, which is based on an evolutionary algo-
rithm that uses the pool of stochastically generated parame-
ters of a model as the parents for the next generation (Hansen
et al., 2001), was used to optimize parameters of the models.

Extrapolation using empirical numerical models may
cause arbitrary bias and higher uncertainty if the models
are not appropriately chosen. Here we used the in situ ob-
servational data from the World Soil Information Service
(WOSIS) (Batjes et al., 2020) and the International Soil Car-
bon Network (ISCN) (Nave et al., 2017) to select the en-
semble of the models that could best simulate soil carbon
stocks at full depth. We used a global dataset of soil depth
(Webb, 2000) as the maximum soil depth to which we ex-
trapolated. The approach fit each empirical model against
cumulative Csoil with all data points and then predicted the
cumulative Csoil at full soil depth for each soil profile in-
dependently. The ability of a particular empirical model or
combination of models was then evaluated by comparing the
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Table 1. Overview of the data used and produced in this study.

Dataset Dataset abbreviation
used in this paper

Spatial
domain

Spatial
resolution

Depth distribution
(cm)

Original data
format

Original data source

Csoil

Sanderman et al. (2017) Sanderman Global 10 km 0, 30, 100, 200 GeoTIFF https://github.com/whrc/
Soil-Carbon-Debt/tree/master/SOCS
(last access: 1 June 2019)

SoilGrids SoilGrids Global 250 m 0, 5, 15, 30, 60,
100, 200

GeoTIFF https://soilgrids.org/ (last access:
5 November 2019)

LandGIS LandGIS Global 250 m 0, 10, 30, 60, 100,
200

GeoTIFF https://zenodo.org/record/2536040{#}.
XhxHRBf0kUF (last access:
8 June 2019)

Harmonized World Soil
Database

HWSD Global 1 km 0, 30, 100 Raster http://www.fao.org/soils-portal/
soil-survey/soil-maps-and-databases/
harmonized-world-soil-database-v12/
en/ (last access: 5 November 2017)

The Northern Circumpo-
lar Soil Carbon Database

NCSCD Circumpolar
(30–80◦ N)

1 km 0, 30, 60, 100, 200,
300

GeoTIFF/
NetCDF

https://bolin.su.se/data/ncscd/ (last ac-
cess: 5 November 2017)

WoSIS Soil Profile
Database

WoSIS Global In situ 0–300 Shape https://www.isric.org/explore/wosis/
accessing-wosis-derived-datasets

International Soil Carbon
Network

ISCN Global In situ 0–400 Spreadsheet https://iscn.fluxdata.org/ (last access:
19 February 2019)

Global Soil Texture And
Derived Water-Holding
Capacities database

Webb Global 100 km Not applicable ASCII https://daac.ornl.gov/SOILS/guides/
Webb.html (last access: 20 Febru-
ary 2019)

Cveg

Global biomass dataset Saatchi Global 1 km Not applicable GeoTIFF Dataset available through direct corre-
spondence (Saatchi et al., 2011)

GEOCARBON global
forest biomass

Avitabile Global 1 km Not applicable GeoTIFF http://lucid.wur.nl/datasets/
high-carbon-ecosystems (last access:
5 March 2019)

Integrated global
biomass dataset

Saatchi-Thurner Global 1 km Not applicable GeoTIFF https://www.pnas.org/content/108/24/
9899 (last access: 5 January 2018)
https://onlinelibrary.wiley.com/doi/
full/10.1111/geb.12125 (last access:
5 January 2018)

GlobBiomass Santoro Global 1 km Not applicable GeoTIFF https://globbiomass.org/ (last access:
5 February 2019)

GPP

FLUXCOM GPP (driven by remote
sensing)

Global 10 km Not applicable NetCDF http://www.fluxcom.org/ (last access:
28 February 2018)

FLUXCOM GPP (driven by remote
sensing plus meteorol-
ogy)

Global 50 km Not applicable NetCDF http://www.fluxcom.org/ (last access:
28 February 2018)

Climate

WorldClim Mean annual tempera-
ture (T )
Mean annual precipita-
tion (P )

Global 1 km Not applicable GeoTIFF http://www.worldclim.com/version2
(last access: 5 November 2017)

τ database

BGI τ database Terrestrial carbon
turnover times

Global 50 km 100, 200, full depth NetCDF https://www.bgc-jena.mpg.de/geodb/
projects/FileDetails.php (last access:
5 August 2020)
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predictions of Csoil at full depth against the observations (see
Sect. S3.2 in the Supplement). This procedure was applied to
the two different in situ datasets: WOSIS, which covers most
of the biomes, and ISCN, which has more coverage in cir-
cumpolar regions. Finally, after comparing different model
averaging methods (see Table S2 in the Supplement), we
chose two model ensembles that could best represent circum-
polar and non-circumpolar regions based on observational
datasets. The performance of the chosen ensembles is syn-
thesized in Figs. S3 and S4 in the Supplement. Finally, each
model ensemble is applied to extrapolate Csoil to full depth
in corresponding regions (see Sect. S3 in the Supplement).

3.4 Uncertainty estimation

To estimate the sources of uncertainty in τ , we performed an
n-way analysis of variance (ANOVA) on the different vari-
ables (Csoil, Cveg and GPP). The ANOVA provides the sum
of squares of each variable and the total sum of squares of all
variables. The contribution of each variable (data from dif-
ferent sources) to the total uncertainty can then be calculated
as follows:

Cn =
SSn

SStotal
, (4)

where Cn is the relative contribution of uncertainty from the
nth variable, SSn is the sum of the square of the nth variable,
and SStotal is the total sum of the square of all variables. Note
that the uncertainty was quantified in two domains:

1. grid cell – the relative contributions of different vari-
ables to uncertainty in τ were calculated independently
for each grid cell;

2. global – the same method was applied to the estimate of
the global τ , which is calculated using the global total
carbon stocks in vegetation and soil and GPP.

3.5 The analysis of zonal correlations

The local correlation between τ and climate across latitudes
was obtained by using a zonal moving window approach in
which the Pearson partial correlations between τ and T and
P were calculated using a 360◦ (longitudinal span) × 2.5◦

(latitudinal span) moving window. This approach allowed for
the assessment of the correlation strength between τ and each
climate parameter. The τ values below the local 1st percentile
and above the 99th percentile were removed in each moving
window to avoid the effect of potential outliers in the cor-
relations with climate. In order to investigate the effect of
latitudinal span, we chose different band sizes of 0.5◦, 2.5◦

and 5◦ and performed the correlation analysis in the same
manner for each selection.

4 Results

4.1 The global carbon stock

Table 2 summarizes the estimates of Csoil, Cveg and GPP.
Globally, estimates of soil carbon stocks within the top 2 m
of soil are 2863, 3969 and 3710 PgC for the datasets of San-
derman, SoilGrids and LandGIS, respectively (bulk density
corrected; see Sect. S2 in the Supplement). The significant
differences among different datasets indicate a high uncer-
tainty in the current estimation of global soil carbon storage.
The extrapolation of Csoil to the full soil depth (FD) shows
that approximately 18 % of soil carbon is stored below the
depth of 2 m. Compared to the previous generation of HWSD
Csoil data (available only for top 1 m), the current state-of-
the-art datasets show significantly higher Csoil within the top
1 m (Table 2). On the other hand, the current datasets of vege-
tation biomass show global Cveg ranges from 392 to 437 PgC
and substantially lower relative uncertainty than Csoil. The
estimation of the uncertainty that is derived from different
GPP members shows a range of 100 to 123 PgC (10th per-
centile to 90th percentile) from different products. Note that
the GPP members are different realizations from FLUXCOM
and encompass a wide range of sources of uncertainty such
as different climate forcing, use of remotely sensed data and
machine learning methods (see Sect. 2.4). Overall, the results
show that the differences in Csoil estimates are substantially
larger than the differences in Cveg and GPP datasets.

4.2 The spatial distribution of soil carbon stocks

A significant amount of soil organic carbon is stored in high-
latitude terrestrial ecosystems, especially in the permafrost
regions (Hugelius et al., 2013). However, in comparison with
low latitudes, the uncertainties of Csoil distribution and stor-
age in high latitudes are potentially higher due to fewer
available observations of soil profiles. We therefore divided
the global soil carbon into the non-circumpolar (Fig. 1) and
the circumpolar (Fig. 2) regions based on the northern per-
mafrost region map of the NCSCD. The results show that the
mean value and range (maximum–minimum) of Csoil in non-
circumpolar regions (Table 2) in the top 2 m are 2136 and
537 PgC and in the circumpolar regions within the top 2 m
are 1278 and 574 PgC.

We used in situ observed soil profiles (Fig. S1 in the Sup-
plement) and multiple empirical models to select an ensem-
ble of models to extrapolate soil carbon stock to full soil
depth (Fig. S2 and Table S1 in the Supplement). It was appar-
ent that a unique ensemble would be limited to represent Csoil
profiles globally, resulting in two different model ensembles
being selected to represent the soil vertical distribution: one
for the circumpolar regions, and another for non-circumpolar
regions. In general, the results show good model perfor-
mances for predicting in situ soil carbon stocks up to full
soil depth, although non-circumpolar regions (Fig. S3 in the
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Table 2. Estimates of soil organic carbon stocks (PgC), vegetation biomass (PgC) and GPP (PgCyr−1).

Carbon stock Non-circumpolar Circumpolar Global

Csoil 0–1 m 0–2 m 0–FD 0–1 m 0–2 m 0–FD 0–1 m 0–2 m 0–FD

Sanderman 1218 1867 2158 570 996 1204 1788 2863 3362
SoilGrids 1463 2404 3145 925 1566 1647 2388 3969 4792
LandGIS 1331 2139 2731 847 1570 2061 2179 3710 4792
HWSD 795 n/a n/a 640 n/a n/a 1435 n/a n/a
NCSCD n/a n/a n/a 639 981 n/a 639 981 n/a
Mean 1202 2136 2678 724 1278 1637 1686 2881 4316
Median 1275 2139 2731 640 1281 1647 1788 3286 4792

Cveg

Saatchi 357 48 407
Avitabile 368 35 404
Saatchi-Thurner 398 38 437
Santoro 354 37 392
Mean 369 40 410
Median 363 38 405

GPP

Mean 104 6 110
Median 100 7 107
P10 92 5 100
P90 116 8 123

n/a: not applicable

Supplement) show a higher model performance than that in
circumpolar regions (Fig. S4 in the Supplement). The global
estimation of Csoil to full soil depth results in a higher mean
value of 2678 PgC in non-circumpolar regions and 1637 PgC
in circumpolar regions. Our results show that there are ap-
proximately 500 and 400 PgC of carbon stock stored in the
deep soil layer below 2 m in non-circumpolar and circumpo-
lar regions, respectively.

The spatial distribution of Csoil is more consistent across
datasets in the non-circumpolar regions than in the circum-
polar regions (Fig. 1). The Pearson correlation coefficients
(r) between each pair of datasets in the non-circumpolar re-
gions are generally higher than in the circumpolar regions.
Our results show a moderate agreement among the datasets
in the spatial distribution of Csoil globally (r > 0.65). How-
ever, there are significant differences in the spatial patterns
between the HWSD and each dataset (Fig. 1) as the cor-
relation coefficients are all below 0.3. In addition, there is
a 2-fold lower carbon storage in the HWSD than the other
datasets. Ratios between the total Csoil in the top 100 cm
(Fig. 1, upper off diagonal plots) show that LandGIS, Soil-
Grids and Sanderman are consistent in temperate regions but
show poor agreement in the tropical and the boreal regions.
The comparison also shows that the gradient in carbon stocks
between Europe and the lower latitudes diminished in the
HWSD soil map. In addition, the spatial distribution and the

amount of carbon stocks in insular Southeast Asia are signif-
icantly different in the HWSD.

Greater dissimilarities of spatial patterns across the
datasets in the circumpolar regions are shown in Fig. 2. We
included the NCSCD dataset which specifically focuses on
the circumpolar regions. The spatial correlations between
each pair of the four datasets show low correlation values
(r) which range from 0.2 to 0.5. In contrast to the non-
circumpolar regions, the high spatial dissimilarity in circum-
polar regions indicates higher uncertainty regarding the esti-
mation of total carbon storage. However, there is no evidence
on which dataset is more credible in terms of total carbon
storage and spatial pattern. The large differences are possi-
bly due to fewer observational soil profiles in the northern
high-latitude regions, which are crucial in the model training
process (Hugelius et al., 2013; Hengl et al., 2017).

The comparison between all datasets shows good agree-
ment in the vertical structure of terrestrial carbon stocks. The
Csoil in the top 1 m is about half of the total terrestrial car-
bon and 80 % of the top 2 m of Csoil regardless of region or
data source. For the non-circumpolar regions, all the datasets
show significantly higher carbon storage in the top 1 m than
that in the HWSD while showing less divergence of carbon
storage among these three datasets (Table 2). In general, the
current datasets show a similar vertical distribution of Csoil
with consistent values and ratios between 1 and 2 m soil.
The extrapolation results indicate that about 20 % of carbon
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Figure 1. Spatial distributions of soil carbon storage at 0–100 cm in the non-circumpolar regions. The total amount of carbon stock is shown
in the bottom of each diagonal panel. The upper off-diagonal panels show the ratios between each pair of datasets (column/row). The bottom
off-diagonal panels show the density plots and major axis regression line between each pair of datasets (m: slope, b: intercept, r: correlation
coefficient). The ranges of both of the color bars approximately span between the 1st and the 99th percentiles of the data. Hereafter, all
figures comparing different spatial maps include the information in a similar manner.

is stored below 2 m in the non-circumpolar regions. For the
circumpolar regions, the four datasets show a clear trend that
the difference of Csoil increases with soil depth, as shown in
Table 2. The difference between the top 1 m of Csoil among
datasets has a higher difference than that of 2 m. However,
the ratio between storage in 1 and 2 m is similar across all
datasets.

4.3 The spatial distribution of vegetation

Different from the spatial distribution of soil carbon, most
vegetation carbon is stored in the tropics, whereas much
less carbon resides in the higher latitudes. In fact, the Cveg
in the circumpolar regions is only 10 % of that in the non-
circumpolar regions (Table 2). In comparison with soil car-
bon, the results show higher consistency and convergence in
global estimates of carbon stock among the four global vege-
tation datasets (Fig. 3). Our results show that the global veg-
etation carbon stock is 10 % to 25 % of the global soil carbon
stock depending on the soil depth considered. The significant
spatial correlations (r > 0.75, α < 0.01) between each of the
estimates indicate a consistent global spatial distribution of
vegetation across the different data sources. However, the
results show more heterogeneity in the regional distribution
of vegetation biomass and uncertainty of Cveg. Specifically,

Cveg in arid and cold regions has higher relative uncertainty
than that in the moist and hot regions.

The Cveg consists of three components including AGB,
BGB and herbaceous biomass. The herbaceous biomass is
estimated from mean annual GPP (see Sect. 3.2; Carvalhais
et al., 2014) and globally represents 5 % of the total Cveg
and less than 1 % of the total Csoil, indicating the minor role
of herbaceous biomass in affecting the global estimates and
the spatial distribution of τ . The comparison among the four
vegetation datasets shows a mean of 410 PgC in Cveg with a
spread of 11 % across the different datasets and a consistent
spatial distribution across the different sources. Locally these
differences can be higher, as observed in the relatively higher
level of disagreement in sparsely vegetated arid regions and
some cold regions (Fig. 3, upper off-diagonal panels).

4.4 The spatial distribution of GPP

The global spatial distribution of GPP is similar to that of
Cveg, i.e., high in the tropical regions and low in the higher
latitudes (Fig. 4). The GPP datasets show high consistency in
both the spatial patterns and global values. The spread in GPP
estimates is higher (> 50%) in arid and polar regions than the
other regions (Fig. 4, upper off-diagonal plots). Although the
differences among different vegetation and GPP estimations,
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Figure 2. The same as Fig. 1 except for the Csoil in 0–200 cm soil depth and in the circumpolar regions.

Figure 3. The same as Fig. 1 but for vegetation carbon stocks. The total vegetation carbon stock is calculated as the sum of aboveground
(AGB), belowground (BGB) and herbaceous biomass. For consistency, only the grid cells where all four maps have values are included.
Therefore, the total amounts in the diagonal panels differ slightly from those in Table 2.
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in general, are not as high as in soil carbon, the regionally
high uncertainties can be significant.

4.5 The ecosystem carbon turnover times and
associated uncertainties

The ecosystem turnover time and its uncertainty were esti-
mated using different combinations of Csoil, Cveg and GPP
data. We calculated τ using full soil depth, which results in
a global estimate of 43 yr and ranges from 36 yr (25th per-
centiles) to 50 yr (75th percentiles). The uncertainty in the
global estimate of τ is mainly contributed by soil (84 %) and
GPP (15 %), whereas vegetation contributes only marginally
(less than 1 %). In addition, we derived a global τ of 37 yr
and ranges from 31 to 40 yr by assuming the maximum ac-
tive layer thickness to be the full soil depth in the circum-
polar regions instead of using only 1 m Csoil as was done
in the previous study (Carvalhais et al., 2014). The incorpo-
ration of deep soil in the circumpolar regions increased the
global mean value of τ by 6 yr and uncertainties in the es-
timations of τ as well. The global spatial distribution of τ
(Fig. 5) shows a large heterogeneity which ranges from 7 yr
(1st percentile) in the tropics to over 1452 yr (99th percentile)
in northern high latitudes. The results show a U-shaped dis-
tribution of τ along latitudes in which τ increases by nearly
3 orders of magnitude from low to high latitudes (Fig. 7a).
Fig. 5b shows the map of relative uncertainty that is derived
from different datasets. The higher relative uncertainty indi-
cates more spread among the datasets used to estimate τ . Our
result shows that τ estimates at higher latitudes, especially in
circumpolar regions, have higher uncertainties than those at
lower latitudes. We found several regions with large spreads
in τ among the datasets including northeast Canada, central
Russia and central Australia where the relative uncertainties
can span beyond 100 %.

4.6 The zonal pattern of turnover times

The latitudinal distributions of τ can be best represented by
a second-degree polynomial function (Fig. 7b). After fitting
the data of all ensemble members, the rate of τ change with
latitude can be obtained by taking the first derivative of the
fitted polynomial function. We found that the rate of τ change
with latitude has very consistent zonal patterns for different τ
ensemble members from different data sources (Fig. 7c). The
result shows a consensus in the change in τ with latitude of
different datasets. We also found that the zonal τ gradients
were not significantly (p > 0.05) different from each other
for different selections of soil depth, indicating that soil depth
has no significant effect on the τ gradient along latitude. It is
worth noting that there is a significant difference in the zonal
τ gradient between the Northern Hemisphere and Southern
Hemisphere (p < 0.0001) and that τ increases faster from
low to high latitudes in northern latitudes than in the southern
latitudes. The results show a high confidence in the zonal

distribution of τ and that the difference across datasets does
not affect the robustness of the pattern.

4.7 The zonal correlation between turnover time and
climate

The correlations between τ and temperature and precipita-
tion are analyzed for all the ensemble members on the global
scale (see Sect. 3.5). The τ–T correlation (Fig. 8a) is the
strongest in northern middle to high latitudes between 25 and
60◦ N, and it decreases rapidly from 20◦ N to the Equator.
In the Southern Hemisphere, it increases until 40◦ S, albeit
with a weaker gradient than in the Northern Hemisphere.
The uncertainties due to differences in the ensemble mem-
bers (shown by the shaded area) are higher in the transition
between the temperate and Arctic regions (50 to 70◦ N), as
well as between tropical humid and semiarid regions (20◦ N
to 20◦ S). Similar to the contribution of different sources
to global uncertainty, the spread in the τ–T correlation is
mostly due to Csoil, whereas GPP only affects the zonal cor-
relation to a limited extent (Fig. 8c). However, we find that
the τ–T zonal correlation varies negligibly due to data source
and soil depth. All ensemble members agree that the τ–T
correlation is negative with stronger associations in cold re-
gions than in warm regions.

The τ–P correlation, in general, has larger variability
across latitude and a higher uncertainty related to differences
in Csoil (Fig. 8e). Contrary to the τ–T relationship, the un-
certainty of the τ–P correlations from both different data
sources and soil depths is smaller in the tropics than at high
latitudes. Negative correlations dominate the high latitudes
between 20 and 50◦ N and between 20 and 40◦ S. On the
other hand, stronger positive correlations prevail in the trop-
ics. The τ–P correlation changes the direction from negative
in the temperate zone to positive in the tropics, indicating
the role of moisture availability in transitions from arid to
humid regions. We also find that the τ–P relationship does
not change with different soil depths (Fig. S11 in the Supple-
ment).

5 Discussion

The accurate estimation of terrestrial carbon storage and
turnover time are essential for understanding carbon cycle–
climate feedback (Saatchi et al., 2011; Jobbágy et al.,
2000). The present analysis benchmarks carbon storage in
soil, vegetation and GPP fluxes from multiple, state-of-the-
art, observation-based datasets on a global scale and provides
an estimate of the total carbon stock but also estimates of its
vertical distribution and spatial variability. In this section, we
will discuss the robustness of the current state-of-the-art es-
timation on global terrestrial carbon turnover times resulting
from the different stock and flux components of τ , as well as
the robustness of its covariation with climate. We first show
the variation of the spatial and vertical distribution of carbon
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Figure 4. Spatial distributions of GPP and its uncertainty. Panel (a) shows the spatial distribution of mean annual GPP, and panel (b) shows
the relative uncertainties (calculated as a ratio of interquartile range to mean). The ranges of both the color bars approximately span between
the 1st and the 99th percentiles of the data.

stock in different regions and the possible reason for the dif-
ference, and we then discuss the robustness of zonal distribu-
tion of turnover times and zonal changing rates across differ-
ent datasets. Finally, we focus on the sensitivity of turnover
times to climate and potential implications.

5.1 Estimation of global soil carbon stocks

We found that there is a significant difference across the
current soil carbon datasets in both circumpolar and non-
circumpolar regions (Figs. 1 and 2). The results show that the
uncertainty of Csoil estimations in the circumpolar regions
(52 %) is much larger than that in the non-circumpolar re-
gions (37 %). The spatial patterns of total ecosystem Csoil
among the soil datasets are more consistent in the non-
circumpolar regions, indicating a higher confidence in the
current estimation of soil carbon stock in these regions. In
contrast to the non-circumpolar regions, there is lower con-
fidence in the circumpolar regions in estimating Csoil due to
the fact that there is a low spatial correlation across datasets
(Fig. 1). The difference can be caused by a variety of rea-
sons: for example, (i) as an important input to the machine
learning methods, in situ soil profiles are very important fac-
tors that influence the final results of the upscaling and, using

different training datasets, can lead to relevant differences in
outputs, and (ii) the sparse coverage of soil profiles in the
circumpolar regions may cause the large divergence in the
northern circumpolar region. A major difference in the San-
derman soil dataset compared to the other two soil datasets
(SoilGrids and LandGIS) is that here the direct target of up-
scaling was the soil carbon stock, while in the other two
datasets, the targets were each individual component used to
calculate Csoil (carbon density, bulk density and percentage
of coarse fragments) which were predicted individually. Ad-
ditional discrepancies may also be associated with the differ-
ences in climatic and other input covariates used in the up-
scaling which may yield a different estimation of Csoil (see
Sect. 2.1).

The estimation of a whole ecosystem turnover time is de-
pendent on an estimate of soil carbon stock up to full soil
depth. Here, we rely on the available global datasets to follow
an ensemble approach for predicting Csoil at full depth that
selects models with a minimum distance between prediction
and observations by using in situ soil profiles (see Sect. S3
in the Supplement). The final results depend on the informa-
tion from the global soil datasets and also on the characteris-
tics of the empirical models. Recent studies have shown the
advantage of convolutional neural networks, in comparison
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Figure 5. Spatial distribution of ecosystem turnover times. Panel (a) shows spatial distribution of turnover times, and panel (b) shows the
relative uncertainty (calculated as a ratio of interquartile range / mean). The range of color bar in (a) approximately spans between the 1st
and the 99th percentiles of the data, and the one in (b) spans between the 1st and 90th percentiles.

Figure 6. The sources of τ uncertainty. The contribution of different sources of soil (at full soil depth), vegetation and GPP data to the
uncertainty in turnover time. The green color indicates the regions where the uncertainty is dominated by GPP, red by soil carbon and blue
by vegetation carbon. Soil, vegetation and GPP dominate 64.8 %, 32.4 % and 2.7 % of land area in the uncertainty of τ .
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Figure 7. (a) The zonal distribution of τ . (b) Second-degree polynomial fit to the zonal distribution of τ . (c) Zonal rate of changes in τ
with latitude (calculated as the first derivative of the polynomial function). Solid lines represent the mean τ for different soil depths (1 m,
green; 2 m, red; full depth, purple), and dashed lines in the corresponding colors are the interquartile range. The polynomial function is fitted
independently for the Northern Hemisphere and Southern Hemisphere. The latitude that divides the Northern Hemisphere and Southern
Hemisphere is located at 2◦ S where there is a local maximum of zonal τ in (a).

to random forest approaches (Hengl et al., 2017; Wheeler et
al., 2018), for more robust predictions of soil organic car-
bon (SOC) with depth (Wadoux et al., 2019; Padarian et al.,
2019), which could improve the geographical representation
of SOC with depth, although random forest approaches al-
ready tend to provide unbiased estimates. Overall, the ex-
trapolation provides insights into the carbon storage vertical
distribution in deeper soil layers globally, showing that there
is approximately 18 % of carbon stored below 2 m globally
and over 20 % of carbon stored below 2 m in the circumpolar
regions. This results from the fact that, in contrast to the non-
circumpolar regions, the circumpolar Csoil does not have a
decreasing trend up to 4 m of soil depth (Fig. S1 in the Sup-
plement), which indicates that there is a significant amount
of carbon stored in deep soil and emphasizes the perspective
that deep soil turnover is a key aspect of the global carbon
cycle still poorly understood (Todd-Brown et al., 2013).

5.2 Consistency in vegetation carbon stocks estimations

Compared to soil carbon, the higher level of consistency in
the Cveg estimates indicates the stronger agreement on the
current estimations in the aboveground carbon components.
We show that due to much lower uncertainties in the Cveg
estimates, the effect of vegetation on the global τ estimates
is minor regardless of which soil depth is used (Table S3).
Although the contribution of vegetation to the uncertainties
in global τ estimates is less than 2 %, our results show that,
locally, vegetation can be the major factor that causes the dif-

ference in τ estimates. As shown in Fig. S10 in the Supple-
ment, vegetation dominates the uncertainties of τ in part of
the tropics and part of the temperate region in Southeast Asia
which in total account for 7 % of the global land area if only
1 m of Csoil is used to estimate τ . The land area where τ
uncertainties are dominated by vegetation carbon stocks de-
creases to 3 % and 1 %, respectively, when Csoil of 2 m and
full soil depths is considered. Although our results indicate
that vegetation plays a minor role in the global estimates of
τ , it is an important factor that can largely affect local pat-
terns of the distribution of τ .

5.3 Differences in global GPP fluxes

The contribution of vegetation and GPP to the uncertainties
in global τ is modest compared to the contributions from
soil carbon stocks. However, we note that the regional dif-
ferences in the products can significantly affect the spatial
distribution and uncertainty of τ (Figs. 3 and 4). Alternate
GPP estimates are likely to impact τ estimates, although
marginally. For example, on global scales, the estimate of
a GPP of 123 PgCyr−1 by Zhang et al. (2017) would lead to
a reduction in τ of∼ 10% compared to our current estimates
(43 yr). However, the difference is well within the range of
our estimated uncertainty in τ (∼ 20%) using all the ensem-
ble members. Given the robustness in spatial patterns in GPP
estimate from Zhang et al. (2017) compared to the FLUX-
COM estimates (r ≥ 0.9, p < 0.01; Fig. S8 in the Supple-
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Figure 8. Correlation between zonal τ and mean annual temperature (T ) and between τ and mean annual precipitation (P ). Panels (a)
and (d) are colored according to different soil depth (1 m, green; 2 m, red; full soil depth, blue) with shaded areas being the interquartile
range. Panels (b) and (e) are colored according to different soil sources. Panels (c) and (f) are colored according to different GPP products of
different forcing (remote sensing only and remote sensing plus meteorology). The correlations are consistent across the different latitudinal
span widths considered (see Sect. 3.5) and hence are not shown here.

ment), the spatial variability in τ shows a high correlation
(r ≥ 0.92, p < 0.01) (See Fig. S9 in the Supplement).

5.4 Terrestrial carbon turnover times and associated
uncertainties

The current global estimates of τ are substantially larger than
previously (60 %), although the global patterns are compara-
ble to previous estimates. Our results show an overall agree-
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ment of r = 0.95 between the current estimation and the pre-
vious estimation of the latitudinal gradient of τ (Carvalhais
et al., 2014). The patterns in the latitudinal correlations be-
tween climate and τ are also qualitatively similar to the pre-
vious patterns found with some particular exceptions in the
strength of correlations between τ and temperature in north-
ern temperate systems and changes in τ–precipitation cor-
relations, especially in the tropics. A further investigation
on the causes behind these differences between the previous
and current studies reflects that Csoil has a substantial con-
tribution to these changes in the correlation between τ and
climate, while GPP has only a modest role in altering the
τ–temperature correlation changes in northern temperate re-
gions (see Fig. S6 in the Supplement). This is consistent with
the assessment of the largest differences in the spatial distri-
bution of Csoil between the three soil datasets used in this
study and the HWSD soil dataset used before (Fig. 1).

The uncertainty analysis showed that our current estima-
tion of τ has a considerable spread which is derived from
state-of-the-art observations of carbon stocks in soils and
vegetation and of carbon fluxes. The uncertainty mainly
stems from the soil carbon stocks (84 %) and GPP fluxes
(15 %), in which the former dominates the vast areas in the
circumpolar regions and the tropical peatland, while the latter
dominates the semiarid and arid regions (Fig. 6). Although
GPP shows a strong agreement in global spatial patterns, lo-
cal differences between estimates can lead to significant dif-
ferences in the estimation of τ . This result is consistent with
previous observations and model-based studies that also re-
fer to the biases in estimated primary productivity in affect-
ing the carbon turnover estimations to a large extent (Todd-
Brown et al., 2013).

In contrast to global modeling approaches, previous stud-
ies have shown that the global soil carbon stocks across
observation-based datasets are much less divergent than the
ESM simulations included in CMIP5 (Carvalhais et al.,
2014). The CMIP5 results show that the simulated carbon
storage ranges from 500 to 3000 PgC, implying a 3-fold vari-
ation in τ across models (Todd-Brown et al. 2013; Carvalhais
et al., 2014). Our current results show that the total amount of
carbon in terrestrial ecosystems is substantially higher than
the estimation by ESMs, in which even the lowest estimation
of total carbon storage (in the Sanderman dataset) is about
300 PgC higher than the highest ESM estimation (MPI-ESM-
LR; Todd-Brown et al., 2013). The spatial distribution of
carbon stocks among ESMs shows a large variation across
models (Carvalhais et al., 2014), while the observation-based
datasets are more consistent in the non-circumpolar regions.
However, the uncertainty analysis shows that our current es-
timation of τ has a considerable spread resulting mainly from
the spread in state-of-the-art estimates of soil carbon stocks,
followed by the spread in estimates of GPP. The estimation
of τ is dependent on the assumption of a maximum soil depth
used to estimate soil C stocks that particularly in the cir-
cumpolar regions contribute 54 % to the overall uncertainty,

while the data source contributes 25 %. Soil depth itself is
characterized by a large uncertainty given the difficulty in as-
sessing in situ measurement uncertainties in defining a depth
at which the soil becomes metabolically inactive and in de-
termining the role of vertical transport to a depth-dependent
concentration. The challenge in circumpolar regions relates
additionally to the influence of active layer dynamics on the
spatial and temporal variability in metabolic activity. From
an ESM perspective, it is difficult to avoid relying on a whole
soil, or ecosystem, estimate to compare it with observation-
based estimates given that these models abstract from depth-
dependent soil carbon decomposition dynamics or have not
reported the depth of the soil carbon stocks (Carvalhais et
al., 2014). In this aspect, an explicit consideration of soil
C stocks at depth in ESMs would be instrumental in under-
standing and evaluating the distribution of ecosystem carbon
stocks and turnover times against observations.

It is worth noting that here the estimation of τ is based on
the steady-state assumption, which is the assumption of a bal-
anced net exchange of carbon between terrestrial ecosystems
and the atmosphere. Here, the assumption is that integrating
at larger spatial scales, by averaging the local variations in
sink and source conditions, reduces the differences between
assimilation and outflux relative to the gross influx and that
the integration of stocks and fluxes for long-term spans re-
duces the effects of transient changes in climate and of inter-
annual variability in τ estimates. However, this assumption is
valid to a significantly lesser extent at smaller spatial scales
(site-level) and shorter time intervals since the ecosystem–
atmosphere exchange of carbon is most of the time not in
balance, and forced steady-state assumptions can lead to bi-
ases in estimates of turnover times and other ecosystem pa-
rameters (Ge et al., 2018; Carvalhais et al., 2008).

5.5 Robust associations of τ and climate

Despite the large uncertainty in the τ estimations, we iden-
tified robust patterns in the τ–climate relationship that can
be instrumental in addressing the large uncertainties in mod-
eling the sensitivity of terrestrial carbon to climate, which
are reflected in the spread of τ estimates by the different
ESMs (Tod-Brown et al., 2013). The zonal distribution of τ is
a robust feature that changes little across different datasets,
which indicates that the current state-of-the-art datasets all
agree on the latitudinal gradient of the carbon turnover time
(Fig. 7). In addition, the latitudinal change rate of τ is robust
against any considered soil depth (Fig. 7), which reflects pat-
tern comparability between assumptions of τ gradients up
to 1 m (Koven et al. 2017; Wang et al., 2018) or to full soil
depth (Carvalhais et al., 2014). The robustness of the latitu-
dinal patterns in the ensemble is likely to emerge from the
latitudinal gradient in temperature, shaping the zonal distri-
bution of τ that increases towards the poles as mean annual
temperatures substantially decrease.
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This study addresses the robustness of the τ–climate as-
sociation by investigating the zonal correlations between τ
and temperature and between τ and precipitation. The τ–
temperature correlation varies with latitude in which high
correlations are found at higher latitudes and low to moderate
correlations are found closer to the tropics (Fig. 8). The lati-
tudinal gradient in the τ–T relationship is similar when com-
pared with previous results (Carvalhais et al., 2014), although
the strength of the correlations can vary marginally by chang-
ing GPP products but more substantially when exchanging
the Csoil datasets (Fig. S6 in the Supplement). However, these
relationships show strong robustness across state-of-the-art
datasets (Fig. 8). On the other hand, the zonal patterns of τ–
precipitation are more challenging to converge across differ-
ent Csoil sources (Fig. 8e) when compared with uncertainties
stemming from GPP (Fig. 8f) regardless of the depth con-
sidered (Fig. S11 in the Supplement). Overall, the correla-
tion between turnover times and precipitation in the tropics
is higher than that with temperature, as shown in Fig. 8d, in-
dicating a potentially more dominant role of precipitation in
the tropics (Wang et al., 2018).

Overall, the τ–P correlations, although varying in
strength, are robust across the data ensemble except when
controlling for Csoil source (Fig. 8e). The role of Csoil in
the τ–P relationships is independent of depth (Fig. S11 in
the Supplement) and explains most of the differences found
in the patterns of previous results (Carvalhais et al., 2014),
which are mainly caused by the differences in the soil car-
bon stock (Fig. S6 in the Supplement). Given that the data
and methodological support are substantially shared across
the different approaches (see Sect. 2.1) and given the poten-
tial limitations in representing contributions of soil moisture
to τ at deeper layers, even shallower than 2 m, these results
highlight the relevance of better understanding and diagnos-
ing the effects of the hydrological cycle on τ . The limitation
may be linked to the realization that methods based on ran-
dom forests tend to show high correlations between predicted
top soil and deeper soil estimates of Csoil, as well as lower
correlations to deeper Csoil geographic variability (Wadoux
et al., 2019; Padarian et al., 2019).

Ultimately, given the recognition that the sensitivity of the
terrestrial carbon to climate is a major uncertainty reflected in
the spread of τ across different ESMs, the reliable estimation
of τ and identification of robust patterns in τ–climate associ-
ations is key to provide robust constraints to improve the per-
formance of the current ESMs. Notwithstanding, the intimate
interaction of energy and water along with other factors such
as land use change all affect τ but on different spatial and
temporal scales. Further research directions would gain by
exploring the contribution of addition potential factors that
may influence the spatial distribution of τ , such as mortal-
ity and disturbance regimes, human impact via management
regimes or land cover change dynamics, and the vertical dis-
tribution of the hydrological cycles.

6 Data availability

The dataset of the entire ecosystem turnover times of car-
bon presented in this study can be downloaded from the Data
Portal of the Max Planck Institute for Biogeochemistry at
https://doi.org/10.17871/bgitau.201911 (Fan et al., 2019).

7 Conclusions

A full assessment of the global turnover times of carbon
is provided using an observation-based ensemble of cur-
rent state-of-the-art datasets of soil carbon stocks, vegetation
biomass and GPP. On the global scale, the uncertainties in
τ estimates are dominated by the large uncertainties in soil
carbon stocks. The uncertainty of carbon stocks and τ esti-
mation in the circumpolar regions is significantly higher than
that in the non-circumpolar regions. Our results show that
there is a consistent vertical distribution of soil carbon across
datasets, and it is estimated that soils below 2 m comprise up
to 20 % of total soil carbon globally. A spatial analysis shows
that both soil carbon and GPP are the major contributors to
local uncertainties in τ estimation. The differences in soil
stocks between datasets dominate the uncertainties of τ in
the circumpolar regions, while the spread in GPP dominates
the uncertainty in semiarid and arid regions. The difference
in vegetation data has a minor contribution to the uncertainty.

Despite the differences, we identified several robust pat-
terns that change only marginally across different ensemble
members of τ that derived from different datasets or differ-
ent soil depths. First, we found a consistent latitudinal pat-
tern in τ that can be described by a second-degree polyno-
mial function. The changing rate of τ with latitude can be
described equally well for all ensemble members, and the
changing rate of τ with latitude is highly consistent across
different datasets and does not change with soil depth. The
same zonal correlations between τ and climate showed there
is a robust association of τ with temperature and with precip-
itation. However, we note that the association between tem-
perature and precipitation and τ change with latitude. Specif-
ically, temperature mainly affects the τ variation in middle
to high latitudes beyond 20◦ N and 20◦ S, while precipitation
affects τ not only in temperate zones but also in the tropical
regions. Overall, this study synthesizes the current state-of-
the-art data on global carbon turnover estimation and argues
that the zonal distribution of τ and its covariation with cli-
mate is robust across the diverse observation-based ensemble
considered here. These results build on previous efforts and
support exercises for benchmarking ESMs.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-12-2517-2020-supplement.
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