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Abstract. Station-based serially complete datasets (SCDs) of precipitation and temperature observations are
important for hydrometeorological studies. Motivated by the lack of serially complete station observations for
North America, this study seeks to develop an SCD from 1979 to 2018 from station data. The new SCD for North
America (SCDNA) includes daily precipitation, minimum temperature (Tmin), and maximum temperature (Tmax)
data for 27 276 stations. Raw meteorological station data were obtained from the Global Historical Climate
Network Daily (GHCN-D), the Global Surface Summary of the Day (GSOD), Environment and Climate Change
Canada (ECCC), and a compiled station database in Mexico. Stations with at least 8-year-long records were
selected, which underwent location correction and were subjected to strict quality control. Outputs from three
reanalysis products (ERA5, JRA-55, and MERRA-2) provided auxiliary information to estimate station records.
Infilling during the observation period and reconstruction beyond the observation period were accomplished
by combining estimates from 16 strategies (variants of quantile mapping, spatial interpolation, and machine
learning). A sensitivity experiment was conducted by assuming that 30 % of observations from stations were
missing – this enabled independent validation and provided a reference for reconstruction. Quantile mapping
and mean value corrections were applied to the final estimates. The median Kling–Gupta efficiency (KGE′)
values of the final SCDNA for all stations are 0.90, 0.98, and 0.99 for precipitation, Tmin, and Tmax, respectively.
The SCDNA is closer to station observations than the four benchmark gridded products and can be used in
applications that require either quality-controlled meteorological station observations or reconstructed long-term
estimates for analysis and modeling. The dataset is available at https://doi.org/10.5281/zenodo.3735533 (Tang et
al., 2020).
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1 Introduction

Station-based serially complete datasets (SCDs; see Ta-
ble A1 for all acronyms) are important for meteorologi-
cal, climatological, and hydrological studies (Kanda et al.,
2018; Ramos-Calzado et al., 2008), such as producing ret-
rospective gridded products (Di Luzio et al., 2008; Kenawy
et al., 2013; Newman et al., 2019; Serrano-Notivoli et al.,
2019), trend analyses (Knowles et al., 2006; Anderson et al.,
2009; Papalexiou and Montanari, 2019), and climatologic in-
dex calculations (Alexander et al., 2006; Papalexiou et al.,
2018). These SCDs are useful because station-based obser-
vational datasets often contain missing values due to fac-
tors such as observer absence, instrument failures, and inter-
rupted communication (Hasanpour Kashani and Dinpashoh,
2012). Moreover, station observations failing quality control
tests such as outlier and homogeneity checks may not be re-
liable (Menne et al., 2012), and many stations are only main-
tained over a relatively short period of time or portions of
the year resulting in data gaps that could affect the analy-
sis of climate variability or long-term trends (Rubin, 1976;
Stooksbury et al., 1999). Serial completeness is also a critical
requirement for real-time station-based applications, which
regularly contend with missing data values due to latencies
in station reporting, quality control, and processing (Tang et
al., 2009).

Many methods have been developed to estimate miss-
ing observations and reconstruct time series of meteorologi-
cal stations that provide point-scale regular observations of
atmospheric conditions (Longman et al., 2020). They can
be classified as self-contained infilling, spatial interpolation,
quantile mapping, and machine learning methods.

1. Self-contained infilling only uses records from the tar-
get station to estimate its own missing values. Typical
methods include interpolation based on data from the
previous and subsequent days or replacing missing val-
ues by the long-term mean (Kemp et al., 1983; Pap-
pas et al., 2014). Self-contained infilling, however, only
performs well for variables with high temporal auto-
correlation such as temperature and is problematic for
daily precipitation (Simolo et al., 2010; Teegavarapu
and Chandramouli, 2005) and in covering lengthy data
gaps.

2. Spatial interpolation uses neighboring stations (identi-
fied based on spatial distance or statistical similarity) to
estimate data at the target station. Spatial interpolation
methods can be divided into two types: the first uses
information only from neighboring stations, and com-
mon methods include linear interpolation and inverse
distance weighting (IDW; Shepard, 1968). The second
method needs information from both neighboring and
target stations. Typical examples include the revised
normal ratio (NR; Young, 1992) and the single best
estimator (Eischeid et al., 1995, 2000), both of which

use correlation coefficients (CCs) between target and
neighboring stations to estimate merging weights. This
second type of spatial interpolation also includes more
sophisticated methods (e.g., multiple linear regression,
optimal interpolation, and kriging) that build a func-
tional relationship between neighboring and target sta-
tions (Simolo et al., 2010). Previous studies have shown
that multiple linear regression based on the least ab-
solute deviation (MLAD) criteria performs better than
many interpolation methods such as IDW, NR, and op-
timal interpolation in infilling/reconstruction (Eischeid
et al., 2000; Kanda et al., 2018).

3. Quantile mapping (QM) is widely used to correct biases
in meteorological data (Maraun, 2013; Cannon et al.,
2015), and it performs well in estimating missing station
data (Simolo et al., 2010; Newman et al., 2015, 2019;
Devi et al., 2019). In QM-based estimations, the cu-
mulative distribution functions (CDFs) of observations
from neighboring and target stations are derived, and the
record at the target station is estimated as the inverse of
its CDF using concurrent CDF probability information
from neighboring stations. QM can avoid the problem of
overestimating wet days in precipitation series and pre-
serve the frequency distribution of time series, which
is useful for estimating extreme events (Cannon et al.,
2015).

4. Machine learning techniques have been successfully
applied to infill station record gaps (Dastorani et al.,
2010; Wambua et al., 2016). For example, Coulibaly
and Evora (2007) estimated missing daily precipita-
tion and temperature in northeastern Canada using six
types of artificial neural networks (ANNs). Ustaoglu
et al. (2008) estimated daily temperature using three
ANN methods in Geyve and the Sakarya basin, Turkey.
Gene expression programming was applied in the es-
timation of missing monthly rainfall data in Malaysia
(Che Ghani et al., 2014). Sattari et al. (2017) recom-
mended that a decision tree algorithm can be used to
estimate monthly precipitation due to its simplicity and
high accuracy. Serrano-Notivoli et al. (2019) applied the
k nearest neighbors regression to reconstruct minimum
temperature (Tmin) and maximum temperature (Tmax)
observations in Spain to form a gridded dataset.

Previous SCDs have been developed using multiple infill-
ing and reconstruction methods. For instance, Eischeid et
al. (2000) produced a daily SCD from 1951 to 1991 for
the western United States (US), including 2962 precipita-
tion stations and 2034 temperature stations; Vicente-Serrano
et al. (2003) produced a daily SCD from 1901 to 2002 for
northeast Spain using 3106 precipitation stations; Di Piazza
et al. (2011) built a monthly SCD from 1921 to 2004 for
Sicily, Italy, using 247 precipitation stations; and Woldesen-
bet et al. (2017) produced a daily SCD of precipitation and
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temperature from 1980 to 2013 for the upper Blue Nile basin
using six stations. There is currently no SCD for North Amer-
ica; this means that researchers often must collect station
data from different databases, which is time consuming and
may cause inconsistencies between studies based on different
methods.

Responding to this need, we develop a retrospective 40-
year daily SCD for North America (SCDNA) of precipita-
tion, Tmin, and Tmax from 1979 to 2018. Central America
and the Caribbean are also covered by SCDNA. The three
variables are selected because (1) most stations measure pre-
cipitation and temperature, while other variables, such as hu-
midity and wind speed, are measured at fewer stations, and
(2) precipitation and temperature data are fundamental inputs
for hydrological modeling. Station observations are collected
from four global and regional databases and undergo strict
quality control to eliminate dubious records. Since the per-
formance of infilling and reconstruction methods differs in
space and time, the results from 16 strategies are merged to
produce a single deterministic estimate. Finally, the SCDNA
is compared to four gridded products to demonstrate its per-
formance and areas for improvement. The SCDNA is ex-
pected to have a wide variety of applications in North Amer-
ica, and the methodology can be used to produce SCDs in
other regions of the world.

2 Datasets

2.1 Meteorological station data

This study uses precipitation, Tmin, and Tmax sta-
tion data from four databases: the Global His-
torical Climate Network Daily (GHCN-D; https:
//www.ncdc.noaa.gov/ghcnd-data-access, last access:
18 October 2019; Menne et al., 2012), the Global Sur-
face Summary of the Day (GSOD; https://catalog.data.
gov/dataset/global-surface-summary-of-the-day-gsod,
last access: 15 October 2019), Environment and Climate
Change Canada (ECCC; https://climate.weather.gc.ca/
historical_data/search_historic_data_e.html, last access:
22 December 2019), and the Mexico database from Servicio
Meteorológico Nacional under the Comisión Nacional del
Agua (Livneh et al., 2015). This study uses daily precipi-
tation totals from each dataset. Only stations with at least
8-year-long precipitation or Tmin and Tmax records between
1979 to 2018 are utilized. The requirement for minimum
recording length is different among studies (e.g., Eischeid
et al., 2000; Newman et al., 2015). We adopted a relatively
short time limitation because (1) 8-year-long records are
sufficient for providing basic support for missing value esti-
mation (Fig. S1 in the Supplement) and (2) the open-access
dataset and codes enable users to design customized data
selection criteria according to their research requirements.

The numbers of stations with at least 8-year-long records
are 33 026, 4619, 3634, and 4049 for GHCN-D, GSOD,

ECCC, and the Mexico database, respectively (Table 1).
Their spatial distributions are shown in Fig. S2 in the Sup-
plement. GHCN-D has compiled a large amount of data from
many sources including the Mexico database and ECCC. For
identical stations from different sources, we keep the one
with the longer observation history, resulting in the exclu-
sion of ∼ 95 % of stations from the Mexico database and
the adoption of ∼ 91 % of the stations from ECCC. Stations
with more than 30 % missing values in the observation period
are excluded because they could be seasonal stations or suf-
fer serious instrumentation problems. Stations overlapping
in space (same latitude and longitude) and without sufficient
metadata for discrimination are merged (see Sect. 3.2). The
above screening reduces the available stations from 45 328 to
31 772 (Table 1), yet more stations are discarded due to qual-
ity control procedures (Sect. 3.1). The final SCDNA includes
24 615 precipitation, 19 604 Tmin, and 19 611 Tmax stations;
note that the numbers of Tmin and Tmax stations differ as qual-
ity controls can result in excluding the one and reserving the
other in some stations.

Most stations are located in the contiguous United States
(CONUS), southern Canada, and Mexico, while few sta-
tions are located in high-latitude regions such as the Arc-
tic Archipelago (Fig. 1b and c). The spatial distributions of
precipitation and temperature stations are similar except in
eastern CONUS where precipitation stations have a higher
density.

In North America, more station observations occur in the
US than in Canada and Mexico (Fig. 2). The number of sam-
ples in the US increases from 1979 to 2018, and there are
more precipitation samples than temperature samples. For
Canada, the numbers of precipitation and temperature sam-
ples are similar and show a decrease from 1988 to 2018; the
sample number in 2018 is only 61.76 % of that in 1988. Mex-
ico has more meteorological samples than Canada, yet this
number decreases after 1983. The decreasing trend is espe-
cially sharp after 2012, which may be due to the delay in data
collection or termination of some stations.

Figure 3 shows the fractions of missing values for all sta-
tions during the observation period (referred to as ratio-1)
and during the entire period from 1979 to 2018 (referred to as
ratio-2). For temperature, ∼ 20 % of the stations have more
than 20 % missing values in the observation period (ratio-
1), and ∼ 20 % of the stations have more than 70 % miss-
ing values in the entire period (ratio-2). For precipitation,
the fraction of missing values is larger. The fractions show
strong spatial variations (Fig. S3 in the Supplement). Ratio-
2 is smaller for precipitation stations in the western US and
temperature stations in central US but is larger in Canada
and Alaska. Most stations in Mexico have a higher ratio-1
than other regions in North America, indicating that those
stations have notable fractions of missing values during the
observation period.

In summary, the curves of ratio-1 indicate that a small
number of missing values need infilling during the observa-

https://doi.org/10.5194/essd-12-2381-2020 Earth Syst. Sci. Data, 12, 2381–2409, 2020

https://www.ncdc.noaa.gov/ghcnd-data-access
https://www.ncdc.noaa.gov/ghcnd-data-access
https://catalog.data.gov/dataset/global-surface-summary-of-the-day-gsod
https://catalog.data.gov/dataset/global-surface-summary-of-the-day-gsod
https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
https://climate.weather.gc.ca/historical_data/search_historic_data_e.html


2384 G. Tang et al.: SCDNA

Table 1. Numbers of stations with at least 8-year-long records from 1979 to 2018.

Station numbers GHCN-D GSOD ECCC Mexico Merge Total

Original numbers 33 026 4619 3634 4049 0 45 328
SCDNA input 24 765 4331 3100 187 207 31 772
SCDNA output: precipitation 19 255 2551 2440 170 199 24 615
SCDNA output: Tmin 13 394 3631 2219 166 194 19 604
SCDNA output: Tmax 13 402 3632 2217 166 194 19 611

Note that “merge” is derived from stations with overlapping locations from all the other data sources (Sect. 3.1.1).

Figure 1. (a) Digital elevation model (DEM; Sect. 2.3) of North America. (b, c) The densities of stations at the 0.5◦× 0.5◦ resolution for
precipitation and temperature, respectively. Tmin and Tmax stations are highly consistent, and thus Tmin is used to represent temperature
in (c). The nested black boxes show examples of DEM and station densities.

tion period, while the curves of ratio-2 indicate that extensive
reconstruction is needed over the entire period.

Many types of precipitation and temperature measure-
ment instruments are used at stations from different sources.
For example, the Type B rain gauge has been used by En-
vironment Canada since the 1970s for most weather sta-
tions (Devine and Mekis, 2008; Wang et al., 2017), while
tipping bucket and weighing rain gauges are also used in
some stations (Metcalfe et al., 1997). Nipher-shielded snow
gauges have been used by some synoptic stations, while ruler
measurements are still used by more stations (Mekis and
Brown, 2010). Station data in the US are from many orga-
nizations or programs with different instrument configura-

tions. For instance, the standard rain gauge is used by the
Cooperative Observer Program, while snow telemetry uses
storage-type gauges or tipping buckets. A better understand-
ing of instrument specifications and historical changes is im-
portant for climate studies (Pielke et al., 2007; Whitfield,
2014; Ma et al., 2019). A detailed summary of station in-
struments is provided in the documentation of the dataset
(https://doi.org/10.5281/zenodo.3735533).

2.2 Reanalysis products

We use reanalysis precipitation, Tmin, and Tmax from the fifth
generation of European Centre for Medium-Range Weather
Forecasts (ECMWF) atmospheric reanalyses of the global
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Figure 2. Sample numbers of stations for each year from 1979 to
2018. CA represents Canada, US represents United States, and MX
represents Mexico. Tmax stations are highly consistent with Tmin
stations, and thus Tmin is used to represent temperature. The num-
bers of samples could be a better indicator than the numbers of sta-
tions because many stations have notable missing values.

Figure 3. The fraction of missing values for stations with at least
8-year-long records. Ratio-1 is the degree of missingness during the
observation period, and ratio-2 is the degree of missingness during
the entire period of interest (1979 to 2018). Tmin is used to represent
temperature because Tmax shows curves almost overlapping with
Tmin.

climate (ERA5; Copernicus Climate Change Service (C3S),
2017), the Japanese 55-year Reanalysis (JRA-55; Kobayashi
et al., 2015), and the Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2; Gelaro et
al., 2017) (see Table 2). The three products are chosen be-

cause they are representative products from different inter-
national organizations, and they or their predecessors (ERA-
Interim, JRA-25, and MERRA) have been widely used by
researchers. ERA5 and JRA-55 do not provide daily out-
puts; thus, daily precipitation is accumulated from sub-daily
estimates, while daily Tmin and Tmax are estimated by the
sub-daily minimum and maximum temperature values. Grid-
ded reanalysis precipitation is linearly interpolated to match
point-scale station data, and Tmin and Tmax are downscaled
using temperature lapse rate (TLR; see Sect. 3.1).

2.3 Auxiliary data

The Multi-Error-Removed Improved-Terrain digital eleva-
tion model (MERIT DEM) at a 3 s (∼ 90 m at the Equator)
resolution (Yamazaki et al., 2017) is used in this study. To
enable temperature downscaling, the high-resolution DEM
is spatially averaged to the original resolutions of ERA5,
MERRA-2, and JRA-55 (Table 2). The MERIT DEM data
may be slightly different than the DEM data used in the three
reanalysis products, and this will have a limited impact on
missing data estimation (Sect. 3.3.2).

The Multi-Source Weighted-Ensemble Precipitation
(MSWEP) V2.2 dataset (Beck et al., 2017, 2019) is utilized
for the comparison with the SCDNA developed by this
study. MSWEP merges data from ground observations,
satellite products, and reanalysis models and performs better
than all products used for merging (Beck et al., 2019).
The comparison can show whether the SCDNA is a better
choice than MSWEP to fill in gaps in station precipitation
observations.

3 Methodology

The methodology to produce the SCDNA includes three pri-
mary steps (Fig. 4): (1) preparing a unified precipitation
and temperature database from multiple sources (Sects. 2.1
and 3.1); (2) downscaling reanalysis estimates (Sects. 2.2
and 3.2) that are used in QM-based and machine-learning-
based data estimation (Sect. 3.3) and in comparison with the
SCDNA (Sect. 4.5); and (3) producing the SCDNA from
1979 to 2018 based on 16 strategies (Sect. 3.3). The fol-
lowing subsections summarize the work in each step of the
methodology (Sect. 3.1, 3.2, and 3.3), as well as the approach
used to evaluate the performance of the method (Sect. 3.4).

In this study, infilling refers to the estimation of missing
values during the observation period, while reconstruction
refers to estimating values outside of the observation period
when no station record is available (Fig. 5). Station records
that fail quality control are treated as missing values.
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Table 2. Information on the three reanalysis products.

Products Spatial resolution Temporal resolution Period Agency

ERA5 0.25◦× 0.25◦ 1 h 1979–present European Centre for Medium-Range Weather Forecasts
JRA-55 ∼ 55km 3 h 1958–present Japan Meteorological Agency
MERRA-2* 0.5◦× 0.625◦ Daily 1980–present NASA’s Global Modeling and Assimilation Office

* MERRA-2 provides outputs in temporal resolutions from 1 h to 1 month; here we use daily values.

Figure 4. Flowchart of the production of the SCDNA, including station data preparation, reanalysis product processing, and missing data
infilling and reconstruction.

3.1 Prepare a unified precipitation and temperature
database

3.1.1 Merging of stations based on location

Stations are merged if their latitude and longitude match
other stations. The problems of overlapping locations are
caused by the identification alteration of one station for dif-
ferent periods, recording/rounding bias of station location
information, inconsistent naming rules of different sources,
and other factors. Although it is possible that multiple sta-
tions are deployed in the same location for experimental
aims, location merging is done to preserve internal consis-

tencies as inconsistent records at the same location are self-
contradictory.

The method for location merging includes several steps.
First, overlapping stations are extracted and grouped. Sta-
tions within the same group that have nonoverlapping record-
ing periods are simply merged into one time series. Other-
wise, the Spearman’s rank CC (SCC) between precipitation
series from all station pairs in the group is calculated. For
SCC< 0.7, the station group is discarded due to large dis-
crepancies; for 0.7< SCC< 0.9, the discrepancy is consid-
ered tolerable, and the station with the longest record is kept;
for SCC> 0.9, stations are considered highly correlated, and
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their data are merged into one time series, while for overlap-
ping periods, the station with the longest record is used.

Overall, 1240 stations are involved in location merging,
stratified in 586 station groups. Around 10 % of the groups
contain more than two stations, and the largest group con-
tains five stations. After location merging, only 207 groups
are kept and merged into unified times series (Table 1). De-
spite the steps taken above, the merged series could contain
inhomogeneities due to the combination of records from mul-
tiple stations.

3.1.2 Quality control

To ensure station observations undergo strict and comprehen-
sive quality control, we adopted the methods used to produce
previous station-based datasets. For Tmin and Tmax, we fol-
lowed the method designed by Durre et al. (2010) which is
adopted by GHCN-D (Menne et al., 2012). The procedures
include five types of checks: integrity checks, outlier checks,
internal and temporal consistency checks, spatial consistency
checks, and extreme mega consistency checks. A few of the
procedures in Durre et al. (2010) require other variables such
as snowfall and thus are not adopted in this study. In addition,
the quality flags in this study are partly different from those
of GHCN-D because of the different sources, numbers, and
temporal periods of stations.

For precipitation, quality control procedures consist of
three parts. The first part is similar to that for temperature.
The second part (four types of checks) follows procedures
designed by Hamada et al. (2011) which have been adopted
by the Asian Precipitation – Highly-Resolved Observational
Data Integration Towards Evaluation (APHRODITE; Yata-
gai et al., 2012). The third part (two types of checks) adopts
strategies by Beck et al. (2019) used in the production of
MSWEP. Note that although Durre et al. (2010) and Hamada
et al. (2011) share some common traits for precipitation, both
of them are adopted to ensure quality control reliability. The
details of quality checks are in Appendix B.

3.2 Downscale reanalysis data

The reanalysis temperature estimates are downscaled to
match point-scale station observations using temperature
lapse rate (TLR) according to the following:

Ts = TR+TLR×1h, (1)

where TR is 2 m reanalysis air temperature, Ts is downscaled
temperature,1h is the height difference between station ele-
vation and reanalysis grid elevation. TLR shows notable spa-
tiotemporal variations (Minder et al., 2010), and estimating
TLR based on ground observations over a large domain is
difficult due to the sparsity of stations. Yet recent studies
show that reanalysis outputs offer an alternative to estimat-
ing gridded TLR (e.g., Gao et al., 2012). The gradient of air
temperature at different pressure levels above the ground can

be used to approximate near-surface TLR (Gao et al., 2012,
2018; Gruber, 2012). Tang et al. (2018b) compared eight
temperature downscaling methods in CONUS and found that
methods based on reanalysis-derived TLR can achieve higher
accuracy compared to fixed TLR (e.g.,−6.5 ◦Ckm−1) or sta-
tistical interpolation downscaling methods. Hence, this study
uses the linear regression slope between MERRA-2 air tem-
perature and geopotential heights from 300 to 1000 hPa pres-
sure levels to represent TLR for each month at a resolution
of 0.5◦× 0.625◦ (Table 2). MERRA-2 is used because it di-
rectly provides monthly data and masks temperature data
if the pressure level is below the land surface. The choice
of pressure levels needs further investigation because rela-
tionships between vertical and near-surface temperature vary
with regions. Complicated TLR phenomena such as inverse
lapse rate are not considered for simplicity. The climatologi-
cal mean of TLR (Fig. S4 in the Supplement) decreases from
−4.8 ◦Ckm−1 in the northeast continent (i.e., Canadian Arc-
tic Archipelago) to −7.2 ◦Ckm−1 in the southwest continent
(i.e., Rocky Mountains in CONUS). The smaller TLR mag-
nitude at high latitudes is consistent with previous studies
(e.g., Gardner et al., 2009; Marshall et al., 2007).

3.3 Produce the serially complete dataset

To produce the high-quality SCDNA for North America, we
use 16 strategies: four based on quantile mapping with neigh-
boring stations (QMN; e.g., Longman et al., 2019; Newman
et al., 2015, 2019), four on quantile mapping with concur-
rent reanalysis estimates (QMR), four using spatial interpo-
lation methods (INT; e.g., Eischeid et al., 2000; Kanda et al.,
2018; Woldesenbet et al., 2017), two using machine learn-
ing methods (MAL; e.g., Dastorani et al., 2010; Wambua et
al., 2016), and two multi-strategy merging (MRG) methods.
Merging multiple infilling/reconstruction methods can pro-
vide a better estimation than individual methods, as shown
by previous data merging and gap infilling studies (e.g., Eis-
cheid et al., 2000; Beck et al., 2017, 2019; Ma et al., 2018).

We generate estimates for every station and every day from
1979 to 2018 (Fig. 5). The estimates from these 16 strategies
and the SCDNA are evaluated using station observations, and
the performance of the SCDNA is compared to four bench-
mark gridded products. Then, the estimates of the SCDNA
are corrected for further accuracy improvement. Finally, es-
timates are replaced by station observations when observa-
tions exist and pass quality control checks. The variance and
spatial correlation analyses are performed to compare the sta-
tistical properties of station observations and estimates (see
Sect. 4).

Only stations with at least 3000 valid values are included
in the infilling and reconstruction effort. The nine steps
(termed Step-1 to Step-9) of SCDNA production are de-
scribed below. Unless otherwise stated, the steps are imple-
mented for each target station (s), each variable (precipita-

https://doi.org/10.5194/essd-12-2381-2020 Earth Syst. Sci. Data, 12, 2381–2409, 2020



2388 G. Tang et al.: SCDNA

Figure 5. Diagram of the infilling and reconstruction for a specific station (referred to as A). The entire period from 1979 to 2018 is divided
into the observation period and the reconstruction period. The data flows of variance and spatial correlation analyses are shown in the nested
yellow boxes. Station B is a nearby station to A.

tion, Tmin, and Tmax), and each day of the year (DOY, i.e.,
1–366).

3.3.1 Data extraction

– Step-1. Spatiotemporally concurrent reanalysis esti-
mates (ERA5, JRA-55, and MERRA-2) are extracted,
including precipitation, Tmin, Tmax, and TLR. Precipita-
tion is linearly interpolated from gridded reanalysis es-
timates, and temperature is downscaled (i.e., corrected
for the elevation difference between the reanalysis grid
cell and the station elevation) based on TLR (Sect. 3.1).

– Step-2. Neighboring stations (at least 1 and at most 30)
with at least an 8-year overlapping period with station
s are found within the search radius of 200 km. These
stations are ranked from closest to farthest according to
their CC with the target station. The SCC is used for pre-
cipitation, and Pearson CC (PCC) is used for Tmin and
Tmax. CC is calculated using data within a 31 d window
centered around the current DOY from all years.

– Step-3. The empirical CDFs of s, neighboring stations,
and reanalysis estimates are obtained using data within
the same 31 d window.

3.3.2 Infilling and reconstruction

– Step-4. For each day (d) corresponding to the DOY, the
estimated data are acquired based on 16 strategies which
are divided into five groups.

Group 1: quantile mapping with neighboring stations
(QMN)

– QMN-1. For all neighboring stations with valid records,
the station with the highest CC in Step-2 is selected. The
estimated data for s and d are obtained using Eq. (2):

Xs = F
−1
s (Fi(Xi)) , (2)

where Xi is precipitation or temperature for d from the
selected neighboring station i, Fi is the empirical CDF
of i corresponding to the DOY, F−1

s is the inverse CDF
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of s corresponding to the DOY, and Xs is the estimated
data.

– QMN-2. For all neighboring stations with observations,
estimated values are obtained using Eq. (2) which are
merged based on Eq. (3):

Xs =

∑n
iWiF

−1
s (Fi(Xi))∑n
iWi

, (3)

Wi = CC2
i , (4)

where n is the number of neighboring stations,
F−1
s (Fi(Xi)) is the QM-based estimate from i, and Wi

is the weight calculated using Eq. (4). CCi is the CC
(SCC or PCC) between data from s and i corresponding
to the DOY. Wi is assigned 0 if CCi is negative.

– QMN-3. Similar to QMN-2 but the weight is calculated
according to the distance (Di) between s and i based on
Eq. (5). Although the exponent of distance (k) varies in
different studies, −2 is the most common choice (Tee-
gavarapu and Chandramouli, 2005):

Wi =D
k
i . (5)

– QMN-4. The median of QMN-1 to QMN-3 is used as
the estimated data. The strategy of using median values
is the same with Eischeid et al. (2000), which could be
closer to actual observations than QMN-1 to QMN-3.

Group 2: quantile mapping with reanalysis products
(QMR)

Reanalysis products provide useful information for SCDNA
production as (1) remote regions may not have enough neigh-
boring stations and (2) neighboring stations also have miss-
ing values which could result in gaps of estimates at the target
station.

– QMR-1–QMR-3. They are similar to QMN-1, but the
neighboring station is replaced by concurrent ERA5,
JRA-55, and MERRA-2 estimates, respectively.

– QMR-4. The median of QMR-1 to QMN-3 is used as
the estimated data.

Group 3: interpolation (INT)

The three interpolation methods used in this study are MLAD
(referred to as INT-1), NR (referred to as INT-2), and inverse
distance weighting (IDW; referred to as INT-3). They are de-
scribed below. Following Eischeid et al. (2000), neighboring
stations with a CC lower than 0.35 are excluded. The remain-
ing stations are ranked from high CC to low CC. A maximum
of four neighboring stations are used in the interpolation.

For Tmin and Tmax, direct interpolation from neighboring sta-
tions to s could be biased due to the elevation differences be-
tween stations. Temperature data from neighboring stations
are downscaled to the elevation of s based on Eq. (1).

– INT-1. MLAD minimizes the sum of absolute errors. It
is more robust than regression based on least squares
because, while least square estimation is effective when
the errors are normally distributed and independent,
environmental variables, especially precipitation, often
violate the assumption of normality (Eischeid et al.,
2000). MLAD has been well documented with better
performance in gap infilling than other interpolation
methods (Eischeid et al., 1995, 2000; Kanda et al., 2018;
Young, 1992). The formula is shown in Eq. (6):

Xs = c0+
∑n

i
ciXi, (6)

where ci (i = 0, 1, . . . , n) is regression coefficients es-
timated using data within a 31 d window for each DOY.
Different d values corresponding to the same DOY
could have different combinations of neighboring sta-
tions due to the limitation of observation availability.
MLAD is performed for each combination to ensure that
effective estimates are available for all days.

– INT-2. NR is an interpolation method proposed by Paul-
hus and Kohler (1952) and modified by Young (1992).
The modified version is adopted in this study, which
combines information from neighboring stations by re-
placing F−1

s (Fi(Xi)) with Xi in Eq. (3). The weight is
calculated using Eq. (7):

Wi = CC2
i

Ni − 2

1−CC2
i

, (7)

where Ni is the number of samples used to calculate
CCi between s and i. The SCC is used for precipitation,
and the PCC is used for temperature.

– INT-3. IDW is one of the most common interpolation
methods. It is implemented similar to NR in that the
inverse squared distance, as shown in Eq. (5), is used
as the weight.

– INT-4. The median of INT-1, INT-2, and INT-3 is used
as the estimated data.

Group 4: machine learning (MAL)

The two MAL methods used in this study are ANN (referred
to as MAL-1) and random forest (RF; referred to as MAL-
2; Breiman, 2001). Unlike QMN, QMR, and INT that are
carried out for each DOY, MAL uses complete observation
records of s to ensure that ANN and RF are trained with
enough values. MAL models are trained using the first 70 %
of observations and tested using the remaining 30 % of ob-
servations. The MAL models’ validation based on the 30 %
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of observations can indicate their performance in the recon-
struction period.

The input data are from neighboring stations and concur-
rent reanalysis estimates. For each s, neighboring stations are
determined in a way similar to Step-2, but the CC is calcu-
lated using data from the entire observation period. Neigh-
boring stations with a CC lower than all reanalysis products
(ERA5, JRA-55, and MERRA-2) are excluded. The remain-
ing neighboring stations and three reanalysis products form a
complete repository of input features. Then, for each day that
s has no observation, the input features are extracted from the
repository in three steps: (1) neighboring stations without ob-
servations for the day are excluded, (2) the remaining neigh-
boring stations and reanalysis products are ranked according
to their CC with s, and (3) at most five stations/reanalysis
products with the highest CC are selected. In this way, s will
have multiple combinations of input features to ensure that
all days with missing values have estimates. All combina-
tions are used to train and test the ANN and RF models, re-
sulting in multiple estimated series for s. The final estimates
of s are generated in three steps: (1) the Kling–Gupta effi-
ciency (KGE′; Kling et al., 2012) of all estimated series is
calculated using all observations of s and ranked from high
to low KGE′ (see Sect. 3.4 for definition of KGE′), (2) the se-
ries with a higher KGE′ is used to constitute the estimates of
s in sequence, and (3) the second step is repeated until there
are no missing values for s. This approach ensures that the
“best” and complete estimates are provided for s.

– MAL-1. A four-layer ANN is used. The input layer has a
maximum of five nodes (depending on the number of in-
put features), the two hidden layers both have 20 nodes,
and the output layer has one node for generating precip-
itation or temperature estimates. The transfer functions
are hyperbolic tangent sigmoid for hidden layers and
linear for the output layer. The training function is re-
silient backpropagation. The model is trained using the
first 50 % of data, validated using the subsequent 20 %
of data, and tested using the final 30 % of data.

– MAL-2. An RF model with 50 trees is built with 70 %
training data and 30 % testing data. The minimum num-
ber of samples per tree leaf is five. The input nodes de-
pend on the number of input features like MAL-1.

Group 5: multi-strategy merging (MRG)

– MRG-1. KGE′ is used to rank the performance of the
11 strategies (QMN-1 to QMN-3, QMR-1 to QMN-3,
INT-1 to INT-3, and MAL-1 to MAL-2) as a CC cannot
reflect the magnitude difference (e.g., bias) between tar-
get and reference series. The first three cases of the 11
strategies are merged using squared KGE′ as the weight.
The individual weight is assigned 0 if KGE′ is negative.

– MRG-2. The median of the three selected strategies in
MRG-1 is used as the estimated data.

3.3.3 Generating serially complete records

– Step-5. In this step, Step-3 and Step-4 are repeated
based on 70 % of data of s from the observation period.
Then, the KGE′ of estimates from all strategies is calcu-
lated using the remaining 30 % of observations. MAL-1
and MAL-2 are not repeated because they are trained on
70 % of observations. Although the evaluation samples
are different among stations, the results are reliable and
stable as shown in the results section. This step is imple-
mented because QMN-1 to QMN-4, QMR-1 to QMR-4,
and INT-1 in Step-4 use all data of s from the observa-
tion period to select stations, estimate empirical CDFs,
and carry out regression. This potential overfitting prob-
lem could lead to the better performance of these strate-
gies in the observation period but worse performance
in the reconstruction period. KGE′ calculated in Step-4
can represent the accuracy of estimates in the observa-
tion period, while KGE′ calculated in Step-5 can rep-
resent the accuracy of estimates in the reconstruction
period.

– Step-6. In the observation period, the strategy with the
highest KGE′ in Step-4 is selected to contribute the ex-
tension/reconstruction to the SCDNA. In the reconstruc-
tion period, first, the strategy with the highest KGE′

in Step-5 is determined; then, the estimates from the
corresponding strategy in Step-4 are used to constitute
the SCDNA because the empirical CDF and regression
based on all observations in Step-4 could be more rep-
resentative than the 70 % of observations in Step-5.

– Step-7. Estimates in Step-6 are corrected for certain cli-
matological biases using station data from the observa-
tion period. Precipitation estimates are often subjected
to wet-day bias. Two methods are implemented to ad-
dress this problem. First, QM is performed based on the
CDF of s in Step-3. However, QM may reduce the accu-
racy of estimated precipitation in some cases, for which
the method used in Beck et al. (2019) is adopted. This
method subtracts a tiny value (0.01 mm) from the origi-
nal precipitation series and rescales the series to restore
the original mean value. This operation is repeated until
the estimated series shows an equal number of wet days
(> 0.5mmd−1) with observations of s. In addition to
wet-day bias correction, mean value correction is imple-
mented. The ratio between the mean values of precipi-
tation estimates and observations is calculated for the
observation period, which is used to rescale estimated
series in both observation and reconstruction periods.
For Tmin and Tmax, QM correction and mean value cor-
rection are also implemented.
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– Step-8. The accuracy of the SCDNA is evaluated and
compared to benchmark datasets based on actual ob-
servations (Fig. 5). Then, the estimates are replaced
by observations whenever possible to generate the fi-
nal SCDNA. Very occasionally, estimated Tmin could
be larger than estimated Tmax, for which Tmax is re-
placed by the maximum Tmax and Tmin is replaced by
the minimumTmin of the estimates from the 16 strate-
gies.

– Step-9. The serially complete data of SCDNA is quality
controlled again using methods introduced in Sect. 3.1.2
to exclude stations with unreliable estimates.

3.4 Evaluate the precipitation and temperature
estimates

KGE′, which was proposed by Gupta et al. (2009) and mod-
ified by Kling et al. (2012), is used to support the merging
of different strategies (Sect. 3.3) and the evaluation of the
estimated precipitation and temperature:

KGE′ = 1−
√

(r − 1)2
+ (β − 1)2

+ (γ − 1)2

β =
µe

µ0

γ =
CVe
CVo
=
σe/µe

σo/µo

, (8)

where r is the PCC, β is the bias ratio, γ is the variability
ratio, µ is the mean value, and σ is the standard deviation
(SD). The subscripts e and o represent estimated and refer-
ence time series, respectively. KGE′ ranges from negative in-
finity to 1. If two series exactly match, the KGE′ is 1. A β or
γ value smaller/larger than 1 indicates that the mean value or
variability of observations is underestimated/overestimated.

In Sect. 4, the evaluation during the observation period
is based on the complete station observations (i.e., Step-4
in Sect. 3.3.2), while the evaluation during the reconstruc-
tion period is realized using 30 % of independent station
observations (i.e., Step-5 in Sect. 3.3.3). Unless otherwise
stated, SCDNA estimates in Sect. 4 are after correction (Step-
7 in Sect. 3.3.3). In Sect. 4.5, SCDNA estimates are com-
pared with gridded products (ERA5, JRA-55, MERRA-2,
and MSWEP). In addition to the three SCDNA variables
(precipitation, Tmin, and Tmax), mean temperature (Tmean, the
mean of Tmin and Tmax) and daily temperature range (Trange,
the difference between Tmax and Tmin) are also included. The
involvement of Trange can contribute to a more objective com-
parison between SCDNA and reanalysis products because
the TLR-based downscaling of reanalysis temperature con-
tains uncertainties which could affect the evaluation of Tmin,
Tmax, and Tmean. Although there exist differences between
the TLRs of Tmin and Tmax, Trange can reduce the effect of
scale mismatch between gridded reanalysis temperature and
point station temperature on evaluation results.

4 Results

4.1 Comparison of infilling and reconstruction strategies

The value of a given infilling/reconstruction strategy can be
quantified by the extent that a strategy is selected for use
in the final SCDNA dataset. In this sense, the contribution
ratios define the proportion of estimates that come from a
specific strategy. Figure 6 shows that the contribution ratios
of QMN, QMR, and INT to missing value estimation are
generally smaller than 20 % in North America. Please note
that QMN refers to all strategies within this group unless the
strategy number is specified right after QMN. This also ap-
plies to other groups. QMR shows the smallest contribution
ratios for almost all stations among the five groups. Com-
pared to other regions in North America, contribution ratios
of QMR are higher for precipitation stations in the western
US and temperature stations in Mexico. INT shows lower
contribution ratios in the Rocky Mountains compared to the
western US, indicating that statistical interpolation without
considering topographic effect is subjected to substantial un-
certainties in complex terrain. MAL shows notably higher
contribution ratios than QMN, QMR, and INT, particularly
for Tmin and Tmax. The ratios of MAL are higher than 20 %
for ∼ 30 % of precipitation stations, ∼ 65 % of Tmin stations,
and ∼ 68 % of Tmax stations. MRG has the highest contribu-
tion ratios throughout North America. The average contribu-
tion ratios of MRG are 59.88 %, 41.59 %, and 40.56 % for
precipitation, Tmin, and Tmax, respectively. For precipitation,
MRG is particularly effective in high-latitude regions (north-
ern Canada and Alaska), the western US, and Mexico.

Figure 7 shows the KGE′ and contribution ratios of 16
strategies. The KGE′ of estimated precipitation is lower than
that of estimated Tmin and Tmax due to the stronger spatial and
temporal homogeneity of temperature (Fig. 7). The median
KGE′ values of Tmin and Tmax are generally above 0.9, and
the accuracy of estimated Tmax is higher than that of Tmin.
The KGE′ during the reconstruction period is smaller than
that during the observation period, which is particularly obvi-
ous for QMN, QMR, and INT-1 compared to other strategies,
because QMN and QMR transfer CDF during the observa-
tion period to other periods, and INT-1 transfers the regres-
sion relationship during the observation period to other peri-
ods. MAL suffers a slight degradation in the reconstruction
period, and the better performance of MAL-2 than MAL-1
shows that RF could be a better choice than ANN to estimate
missing data. For MRG, the differences of KGE′ between
the two periods are relatively small. For example, the median
KGE′ values of MRG-1 for Tmax are 0.99 and 0.98 for the
observation and reconstruction periods, respectively. MRG
also shows higher KGE′ and a narrower quantile range than
other strategies, particularly for precipitation, as it benefits
from merging estimates from multiple strategies.

Regarding contribution ratios (Fig. 7), strategies with
higher KGE′ often have larger contributions to the estimated
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Figure 6. The contribution ratios of estimates from five infilling/reconstruction groups to the missing values of all stations from 1979 to
2018. The three columns from left to right represent precipitation, Tmin, and Tmax, respectively. The five rows from top to bottom represent
Group-1 (QMN), Group-2 (QMR), Group-3 (INT), Group-4 (MAL), and Group-5 (MRG), respectively. The maps are at a resolution of 0.5◦.
The ratio for each grid cell is the mean value of all stations within this grid cell.
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series. However, this is not always true because the selection
of strategies is performed for each DOY. Note that the contri-
bution ratios of MAL-2 are even higher than MRG-1 during
the observation period for Tmin and Tmax, although MRG-1
achieves higher KGE′ than MAL-2 for most stations. This is
because MAL-2 could be the best choice for more DOY than
MRG-1 even though MRG-1 may achieve the best overall
performance. An example using Tmin data from one station
is shown in Fig. S5 in the Supplement.

In the reconstruction period when observations are ab-
sent, the contribution ratios of MAL-2 decrease drastically
compared to the observation period, contributing to the in-
creased ratios of other strategies (particularly MRG-1). Al-
though QMR shows the lowest contribution ratios, reanalysis
products have implicit contributions to other strategies (e.g.,
MAL and MRG). Overall, MRG-1 shows much higher con-
tribution ratios than all the other strategies (including MRG-
2) during the reconstruction periods, indicating that it is the
most important strategy in missing value estimation. Hence,
combining information from multiple strategies is more re-
liable, and KGE′-based merging is more effective than the
median-value-based estimation.

4.2 Impact of reconstruction on spatial correlation and
series variance

All infilling/reconstruction strategies except QMR rely on
information from neighboring stations; this could affect the
spatial correlation structure and the variance of SCDNA se-
ries. Space–time correlations and other properties (e.g., inter-
mittency of precipitation) are important considerations be-
cause they can influence the performance of follow-on ap-
plications that use the SCDNA as input. Theoretically, QMN
strategies could significantly inflate the spatial correlation but
retain variance of station observations. The spatial correla-
tion inflation in INT strategies could be lower, but the vari-
ance would be underestimated due to smoothing. QMR-1 is
used as an example to demonstrate the effect of QM on the
spatial correlation and series variance (Fig. S6 in the Sup-
plement) because QMN uses different station combinations
for every DOY, which would mask the effect of QM on final
estimates. If the ERA5 used by QMR-1 is replaced by sta-
tion observations, the results should be generally consistent.
According to Fig. S6, the spatial correlation is substantially
inflated by QMR-1, particularly for Tmin and Tmax, while the
SD of QMR-1 estimates is very close to that of observations.
This supports the design of estimating missing data using
neighboring stations for each DOY as otherwise the inflation
of CCs could be very substantial for the entire period.

The spatial correlation based on station observations
(Fig. 8a, d, and g) shows obvious seasonal variations with
CCs lower in the warm season and higher in the cold season.
The seasonality of CCs for Tmax is weaker compared to that
for precipitation and Tmin. The SCDNA estimates capture the
seasonal patterns but underestimates the variation (Fig. 8b, e,

and h) because the inflation of spatial CCs is larger in the
warm season than cold season (Fig. 8c, f, and i). Moreover,
the inflation is larger for neighboring stations with a lower
correlation with the target station. We tested selected neigh-
boring stations according to their distance from the target
station, and similar results were acquired. For precipitation,
the median CC differences of all stations are close to 0.1 in
the cold season and range between 0.1 and 0.15 in the warm
season. For Tmin, the median CC differences are generally
between 0.05 and 0.15. The CC differences of Tmax are rela-
tively homogeneous for different seasons and generally fluc-
tuate between 0.05 and 0.1. The inflation of CC is because
(1) the estimates from the 10 neighboring stations and the
target station are generally derived using highly overlapped
information (Sect. 3.3.1) and (2) the estimation is realized for
each DOY for all strategies except MAL, meaning that cal-
culating CCs for each DOY shows the inflation to the largest
extent.

The final SCDNA replaces estimates by observations,
which can largely relieve the inflation of spatial correla-
tion (Fig. S7 in the Supplement) depending on the degree
to which observations are present in the record. For Tmin and
Tmax, the CC is very close to that based on observations; for
precipitation, the correlation in wintertime is even lower than
that based on observations.

Figures 9 and 10 show CCs between estimates at the tar-
get station and observations at the neighboring station. For
precipitation, most strategies exhibit a similar spatial cor-
relation structure with observations for most stations. QMR
largely underestimates CCs compared to observations, which
should be attributed to the differences between precipitation
of reanalysis products and stations. There are notable differ-
ences in different strategies within one group. For example,
QMN-1 shows larger inflation when observation-based CCs
are higher, which is not seen in QMN-2 to QMN-4. This
is probably because QMN-1 only uses information from the
one neighboring station with the highest correlation with the
target station for each DOY. The higher observation-based
CC in Fig. 9 means this neighboring station could be more
frequently used by QMN-1 to estimate data for the target
station, resulting in the larger inflation of the CC. Another
example is that INT-1 underestimates the CC for 68.75 %
of stations, whereas INT-2 to INT-4 overestimates the CC
for almost all stations. For SCD-1, the inflation of the CC is
observed for 76.60 % of stations, whereas the magnitude of
overestimation is smaller than that in Fig. 8. The mean val-
ues of observation-based and estimate-based CCs are 0.71
and 0.77, respectively. SCD-2 replaces estimates by obser-
vations and is the final dataset of this study. It reduces the
mean estimate-based CC to 0.70. The overall spatial cor-
relation structure of observations is generally preserved by
SCD-2. However, SCD-2 calculates the CC for the entire pe-
riod which is different from the period of observation-based
CCs, resulting in uncertainties such as the underestimation
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Figure 7. Boxplots of (a, c, e) KGE′ and (b, d, f) the contribution ratio of 16 strategies for all stations. Each strategy corresponds to two
boxes in each panel; the left one with the darker color represents the observation period, and the right one with the lighter color represents the
reconstruction period. The line within the box is the median. The upper and lower edges of the box represent the 25th and 75th percentiles,
respectively. Values more than 1.5 times the interquartile range away from the upper or lower edges are outliers (dots).

for some stations when observation-based CCs are larger
than 0.7.

The spatial correlation of Tmin is much stronger than that
of precipitation (Fig. 10). Most strategies overestimate the
CC for most stations, whereas the magnitude is quite small.
For example, SCD-1 inflates the CC for 96.96 % of stations,
while the mean CC values for observations (0.95) and SCD-
1 (0.96) are very close to each other. QMR still underesti-
mates CCs similar to Fig. 9 for precipitation. The CC based
on SCD-2 is generally consistent with that based on obser-
vations, while slight underestimation exists for some stations
when observation-based CCs are higher than 0.9. Tmax shows
similar spatial correlation patterns to Tmin (Fig. S8 in the
Supplement).

In summary, the inflation of the CC is inevitable partic-
ularly when estimates are obtained using information from
a sole data source such as one neighboring station or one
reanalysis product. The inflation is larger if each DOY is
treated separately (Fig. 8; Fig. S7 in the Supplement) but
smaller if the CC is calculated for all years (Figs. 9, 10;

Fig. S8 in the Supplement). Combining information from
multiple sources (stations and reanalysis) and combining
multiple strategies for each DOY are beneficial for estimat-
ing the overall spatial correlation structure. The spatial cor-
relation structures vary for different strategies, and further
studies are needed to clearly demonstrate how and why the
estimation-based CCs differ from observation-based CCs.

The variability of observations and of the corrected and
uncorrected SCDNA estimates (Step-7 in Sect. 3.3.3) is com-
pared using the SD of the observation period (Fig. 11). The
SD of uncorrected SCDNA precipitation is lower than that of
observations, while after correction the SD agrees very well
with observations. The mean values of SD are 7.36, 6.30, and
7.36 for observations, uncorrected SCDNA, and corrected
SCDNA, respectively. For Tmin and Tmax, corrected and un-
corrected SCDNA estimates both show consistent variability
to observations.
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Figure 8. CC between target and neighboring stations for all DOY using station observations (the first column), SCDNA estimates (second
column), and differences between SCDNA- and observation-based CCs (the third column). The CC is calculated for the observation period.
For each target station, 10 neighboring stations are selected according to the correlation between time series from target and neighboring
stations. Smaller numbers represent a higher correlation. For example, station 1 represents the neighbor with the highest CC in comparison
to the target station. Each curve represents the median CC of all stations.

4.3 The performance of the serially complete dataset

Uncorrected SCDNA estimates show high accuracy in North
America (Fig. 12). For precipitation, the median KGE′ of all
stations is 0.87, and the median values of r , β, and γ are
0.91, 0.92, and 0.96, respectively. The KGE′ for Mexican sta-
tions generally ranges between 0.6 and 0.8, which is smaller
than that in the US and southern Canada. Some stations in
the Rocky Mountains, the Caribbean, Alaska, and northern
Canada (regions with complex topography or climate) also
show lower KGE′ for precipitation estimates. The spatial dis-
tribution of r is similar to that of KGE′, while the magni-
tude is higher. According to γ , most stations underestimate

precipitation variability, which is consistent with Fig. 11; β
is generally lower than 1 in most regions of North Amer-
ica, particularly in the Rocky Mountains and Mexico where
SCDNA underestimates precipitation.

Estimated temperature shows much higher KGE′ com-
pared to precipitation. The median KGE′ and r of Tmin are
0.97 and 0.99, respectively. For Tmax, the median of KGE′

and r are 0.99 and 0.99, respectively. The median γ and β
are both between 0.99 and 1 for Tmin and Tmax with small
variations, particularly for Tmax (Fig. 12); the KGE′ of Tmin
and Tmax is lower in the Caribbean and Mexico. For Tmin, the
KGE′ for some stations around 45◦ N and the Rocky Moun-

https://doi.org/10.5194/essd-12-2381-2020 Earth Syst. Sci. Data, 12, 2381–2409, 2020



2396 G. Tang et al.: SCDNA

Figure 9. Scatter density plots of CCs between precipitation from the target station and neighboring stations. For each target station, the
neighboring station with the highest correlation with the target station is selected. The x axis represents the CC between observed precipitation
from target and neighboring stations. The y axis represents the CC between estimated precipitation from the target station and the observed
precipitation from the neighboring station. Each panel corresponds to one strategy in Sect. 3.3.2. SCD-1 represents SCD estimates after
correction, while SCD-2 replaces estimates with observations. The CC is calculated for the overlapping observation period between target
and neighboring stations, and the only exception is SCD-2 which calculates the CC using precipitation from target and neighboring stations
during the entire period.
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Figure 10. Similar to Fig. 9 but for Tmin.
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Figure 11. The SD of observations and SCDNA estimates before and after correction. Data from the observation period are used.

tains is lower than surrounding regions, although γ is spa-
tially homogeneous for the same region. This is because the
mean Tmin is close to 0 for some stations in this region, re-
sulting in the large magnitude of β and γ . In contrast, Tmax
exhibits homogeneous performance in the same region for all
metrics.

Corrected SCDNA estimates (see Step-7 in Sect. 3.3.3 and
Fig. S9 in the Supplement) have higher accuracy than uncor-
rected estimates (Fig. 12). For example, the median KGE′

for precipitation is improved from 0.87 to 0.90 after correc-
tion. The KGE′ for Tmin and Tmax is also improved but not as
significantly as precipitation. The value of β equals 1 for all
stations due to the mean value correction. For precipitation,
γ changes from negative to positive for all stations, whereas
the magnitude of the bias (deviation from 1) is smaller after
correction. As a result, the spatial distribution of metrics for
Tmin is also more homogeneous.

The distributions of KGE′ vary during the year (Fig. 13).
For precipitation, more stations show lower KGE′ during
summer (DOY 150 to 250) than at other times of the year,
which may be due to the variability of summertime convec-
tive precipitation. For Tmin, some stations show lower KGE′

from DOY 100 to 250. The seasonal variation of KGE′ for
Tmax is relatively weak, although KGE′ is slightly more con-
centrated at a higher level during spring and autumn than

winter and summer. The overall performance of Tmax is bet-
ter than Tmin and precipitation.

4.4 Comparison between the serially complete dataset
and gridded products

SCDNA precipitation and temperature are compared with
benchmark gridded products to demonstrate whether the
SCDNA is a good choice when station data are unavail-
able. Actual station observations are used as reference. Al-
though assessing gridded products using point-scale station
data contains uncertainties (Tang et al., 2018a), the objec-
tive of this section is to illustrate their agreement with station
observations in lieu of providing an exhaustive quantitative
assessment of their real-world accuracy.

Overall, the SCDNA achieves much higher KGE′ than re-
analysis products for all variables (Fig. 14). For precipita-
tion, the median KGE′ differences between the SCDNA and
ERA5, JRA-55, and MERRA-2 are 0.48, 0.57, and 0.54, re-
spectively. The corresponding KGE′ differences for Tmin are
0.46, 0.61, and 0.36, respectively. The improvement for Tmax
is smaller, particularly in the eastern US where the topog-
raphy is relatively flatter compared to the western US. The
KGE′ differences of Tmean are lower than Tmin but higher
than Tmax due to the offset effect. Trange suffers little from
the elevation differences between stations and reanalysis
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Figure 12. The spatial distributions of KGE′ and its three components (r is the CC, β is the bias ratio, and γ is the variability ratio) for
uncorrected SCDNA estimates over North America during the observation period. The maps are at a resolution of 0.5◦. The value for each
grid cell is the median value of all stations within this grid cell.
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Figure 13. The distribution of KGE′ for each day of the year for (a) precipitation, (b) Tmin, and (c) Tmax. Corrected SCDNA estimates are
used.

grids and is suitable to demonstrate the differences between
SCDNA and reanalysis products. The median KGE′ differ-
ences for Trange between the SCDNA and ERA5, JRA-55,
and MERRA-2 are 0.31, 0.48, and 0.31, respectively.

SCDNA and MSWEP precipitation is compared (Fig. 15).
Since MSWEP merges data from numerous stations, the
evaluation of MSWEP based on station data is not indepen-
dent, which could result in the overestimation of its KGE′.
Even so, SCDNA precipitation shows higher KGE′ than
MSWEP for 98.97 % of stations with a median KGE′ dif-
ference of 0.31. Figure 15 shows notable differences be-
tween MSWEP and SCDNA at the Canada–US border and
the US–Mexico border. This is because MSWEP infers
gauge reporting times by searching for the highest correla-
tion between gauge data and the temporally shifted reanaly-
sis/satellite estimates (Beck et al., 2019). The estimated tem-
poral shift could vary with countries, which results in dis-
tinct differences of station-based evaluation results along na-
tional boundaries. The accumulation periods of station and
MSWEP precipitation are inconsistent in some cases, which
could affect the evaluation of MSWEP (see Sect. 5.1).

Note that the evaluation does not indicate that the SCDNA
has higher accuracy than the gridded products; rather, the re-
sults show that SCDNA is a better substitute than gridded
products when station observations are unavailable.

5 Discussion

5.1 Observation time of stations

Meteorological stations in different countries usually have
different local observation times, and stations in the same
country may also experience changes in observation time
(Vincent et al., 2012). Most station databases including those
used in this study do not account for reporting time in-
consistencies due to lack of hourly observations and well-
documented station metadata. Vincent et al. (2009) examined
several methods to adjust the time of daily precipitation ob-
servations, which, however, often altered observed precipita-
tion intensity. Beck et al. (2019) inferred the reporting time
of daily precipitation observations by calculating the SCC
between the series of stations and gridded products, which is
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Figure 14. Spatial distributions of KGE′ differences between SCDNA estimates and three reanalysis products (ERA5, JRA-55, and MERRA-
2). The nested histograms show KGE′ differences between the SCDNA and reanalysis products. Corrected SCDNA estimates are used.
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Figure 15. Spatial distributions of KGE′ differences between
SCDNA and MSWEP precipitation. Corrected SCDNA estimates
are used.

useful to correct the bias of gridded products. A simple ex-
periment is carried out using the method of Beck et al. (2019)
to infer the lag day of station series. For precipitation, 6418
stations show a non-negligible time shift from the report-
ing date (Fig. S10 in the Supplement). However, this method
may be unsuitable for temperature because the estimated lag
day is mostly zero, and the inferred reporting time cannot be
directly applied to adjust station observations.

The inconsistent reporting time has different impacts on
precipitation, Tmin, and Tmax. For example, if a station
records data from 08:00 on 1 January to 08:00 on 2 January,
the station will probably use 2 January as the reporting time.
However, two-thirds of the 24 h time is on 1 January, indicat-
ing that the accumulated precipitation could mostly occur on
1 January. Tmax could also occur during the daytime on 1 Jan-
uary, but it is hard to determine on which day Tmin occurs,
which makes it challenging to adjust precipitation, Tmin, and
Tmax at the same time. The difference between universal and
local time makes this problem more complicated. Thus, the
reporting time of stations is not corrected here due to afore-
mentioned difficulties.

5.2 Homogenization

Inhomogeneities in station observations are defined as vari-
ations that are not caused by weather and climate factors.
Long-term station records are often subjected to inhomo-
geneities due to factors like station relocation, observation
time change, instrument change, and surrounding environ-
ment change (Venema et al., 2012). Many methods have been
developed to identify breakpoints and homogenize station se-
ries at annual, monthly, or even daily scales (e.g., Ma et al.,
2008; Vincent et al., 2002, 2012). Different methods could
generate different estimates of inhomogeneities as shown by

many comparison studies (e.g., Beaulieu et al., 2008; Reeves
et al., 2007; Venema et al., 2012). The four station databases
(Sect. 2.1) used in this study provide original station records
without homogenization. The SCDNA would inherit the po-
tential inhomogeneities contained in these databases, and the
infilling/reconstruction may also lead to discontinuities. The
homogenization of the SCDNA is challenging considering
that (1) the dataset covers a broad range of climate, topogra-
phy, and countries, (2) the number of stations is large and dif-
ferences between station periods (ranging from 8 to 40 years)
are substantial, and (3) the suitability of existing methods
for the homogenization of infilling/reconstruction estimates
needs exploration. Therefore, homogenization is not carried
out in this study, which, however, is an important direction
for future studies.

5.3 Limitations of the KGE′ statistic

We use KGE′ because it incorporates information about cor-
relation, bias, and variability and hence provides more in-
formation on methodological performance than an individual
metric. For example, the PCC between temperature estimates
and observations is usually close to 1 and cannot reflect the
bias term, while the mean square error is prone to the effect
of extreme values (or outliers). However, KGE′ also has limi-
tations. For example, the values of KGE′ depend on the units
of measurement (e.g., Santos et al., 2018) – in our case, the
β values for temperature are clearly always close to 1 if the
units of measurement for temperature are in Kelvin. Since
these statistics incorrectly indicate very small temperature
biases, we used degrees (◦) for all KGE′ calculations in this
study, ensuring that β has more leverage in the KGE′ statis-
tics. Moreover, and critical to our analysis, the normalization
used in the KGE′ formula (β and γ ) means that the KGE′ val-
ues are low when the denominators of β and γ are close to 0
(e.g., Santos et al., 2018). This problem is especially acute for
temperature – for instance, we found that KGE′ values were
very small for cases when µo is close to 0. Nevertheless, the
number of cases where µo is close to 0 is rather small, where
∼ 0.5 % of all cases (based on all stations and all DOY) show
absolute values of mean Tmin smaller than 0.1◦. For cases
with µo close to 0, the ranking based on KGE′ is similar to
the ranking based on mean absolute error, which means that
KGE′ can still function as a ranking indicator when its value
is low. Further work is needed to both comprehensively eval-
uate the alternative infilling strategies presented in this paper
and evaluate more advanced multi-method merging strate-
gies.

5.4 Potential improvement directions

Several steps could be taken to improve the SCDNA. First,
the optimal strategy could be different for each station as
shown in the results in this study. Therefore, the quality
of SCDNA may be further improved by using more infill-
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ing/reconstruction methods, which would yield diminishing
returns at some point. For example, the long short-term mem-
ory (LSTM) could be suitable for providing missing station
observations. Optimizing the configuration of various strate-
gies will be necessary to balance computation efficiency and
estimation accuracy, particularly when the number of sta-
tions is large. Second, some stations suffer from undercatch,
which depends on gauge type, precipitation phase, environ-
mental conditions, etc. The bias caused by undercatch can
be substantial for stations located at high latitudes and the
mountains (Yang et al., 2005; Scaff et al., 2015). Third, the
SCDNA does not distinguish between rainfall and snow-
fall. Considering that a large part of North America has
frequent snowfall in winter, precipitation phase classifica-
tion will be useful for hydrometeorological studies. Auxil-
iary data from reanalysis and satellite products could be used
to partition precipitation into rain and snow. Finally, although
the SCDNA agrees well with station observations, long-term
trends are difficult to reconstruct when actual observations
are unavailable, meaning the SCDNA may not be suitable
for climate trend analysis in the reconstruction period. Some
gridded datasets use only stations with long-term records
(e.g., Wood, 2008; Werner et al., 2019) to achieve tempo-
rally consistent estimates, whereas such stations are very few.
Reasonable trend estimation is challenging but meaningful
for SCD.

Furthermore, other variables such as wind and humidity
observed by stations also suffer from the same problems
faced by precipitation and temperature. Future studies should
explore whether the current methodology is applicable to
other variables. An SCD covering more variables would be
useful for research in various fields.

6 Data availability

The SCDNA dataset is available at
https://doi.org/10.5281/zenodo.3735533 (Tang et al.,
2020) in netCDF format. The basic variables are station
identification, latitude, longitude, elevation, date, and TLR
derived in Sect. 3.2. Stations that undergo location merging
(Sect. 3.1.1) are identified, and all relevant stations are
included in the data file. For precipitation, Tmin, and Tmax,
the variables in the netCDF4 file include original station
observations, quality flags provided by original station
databases, quality flags provided by this study, estimates
from 16 strategies, uncorrected SCDNA estimates, corrected
SCDNA estimates, the final SCDNA with estimates replaced
by observations, data source flags indicating the source of
each record in SCDNA (observations or 16 strategies), and
accuracy metrics (KGE′ and its three components) for all
estimates (16 strategies and SCDNA).

Scripts used to produce the SCDNA are available at https:
//github.com/tgq14/GapFill (last access: 21 July 2020). The
dataset will be regularly updated to cover the latest periods.

7 Conclusions

This study developed a daily SCD of precipitation, Tmin, and
Tmax for 27 276 stations from 1979 to 2018 over North Amer-
ica (SCDNA). The original station data are compiled from
multiple sources and undergo strict quality control. Many
stations have non-negligible fractions of missing values in
the observation and reconstruction periods. For each sta-
tion, the infilling and reconstruction are implemented using
16 strategies (quantile mapping, statistical interpolation, and
machine learning) based on information from neighboring
stations and concurrent reanalysis estimates (ERA5, JRA-
55, and MERRA-2). The final SCDNA combines estimates
from the 16 strategies and is corrected using station obser-
vations. The spatial correlation is preserved and might be
slightly inflated. The SCDNA estimates reproduce the vari-
ance of original station observations very well, particularly
for temperature. The median KGE′ of the final precipitation,
Tmin, and Tmax for all stations is 0.90, 0.98, and 0.99, respec-
tively. The comparison with four benchmark gridded prod-
ucts shows that the SCDNA has much better agreement with
station observations. The SCDNA will be useful for a variety
of hydrometeorological studies in North America.
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Appendix A

Table A1. Acronyms used in this paper.

Acronym Full name

ANN Artificial neural network
APHRODITE Asian Precipitation – Highly-Resolved Obser-

vational Data Integration Towards Evaluation
CC Correlation coefficient
CDF Cumulative distribution function
CONUS Contiguous United States
DEM Digital elevation model
DOY Day of year
ECCC Environment and Climate Change Canada
ERA5 The fifth generation of ECMWF atmospheric

reanalyses of the global climate
fD Fraction of days without precipitation
GHCN-D Global Historical Climate Network Daily
GSOD Global Surface Summary of the Day
IDW Inverse distance weighting
INT Interpolation
JRA-55 Japanese 55-year Reanalysis
KGE′ Kling–Gupta efficiency
LSTM Long short-term memory
MAL Machine learning
MLAD Multiple regression based on the least absolute

deviation criteria
MERIT DEM Multi-Error-Removed Improved-Terrain digital

elevation model
MERRA-2 Modern-Era Retrospective analysis for Re-

search and Applications, Version 2
MRG Multi-strategy merging
MSWEP Multi-Source Weighted-Ensemble Precipitation
NR Revised normal ratio
PCC Pearson correlation coefficient
QM Quantile mapping
QMN Quantile mapping using neighboring stations
QMR Quantile mapping with concurrent reanalysis

estimates
RF Random forest
SCC Spearman correlation coefficient
SCDs Serially complete datasets
TLR Temperature lapse rate
Tmax Maximum temperature
Tmean Mean temperature
Tmin Minimum temperature
Trange Daily temperature range
US United States
UTC Universal time coordinated

Appendix B

Five types of checks (Durre et al., 2010) are adopted for the
quality control of temperature.

1. Integrity checks. The first type of integrity check is a
duplication check to identify duplicated records for time
series in different time periods. The second type of in-
tegrity check includes the streak check to identify con-
secutive identical values and the frequent-value check to
identify close but not necessarily consecutive identical
values. The world record exceedance check sets lower
(−89.4 ◦C) and upper (57.7 ◦C) bounds of temperature.

2. Outlier checks. These include the gap check that exam-
ines the frequency distributions for all calendar months
and the climatological outlier check that is based on the
traditional z score (e.g., Hubbard and You, 2005).

3. Internal and temporal consistency checks, including the
iterative temperature consistency check. These ensure
some inherent relationships are abided (e.g., Tmin can-
not be larger than Tmax). The spike/dip check identifies
temperatures which deviate from previous and follow-
ing days by at least 25◦. The lagged temperature range
check identifies abnormally large differences between
Tmin and Tmax during a 3 d time window.

4. Spatial consistency checks, including the regression
check and the spatial corroboration check. The regres-
sion check builds regression relationships between tem-
perature at the target location and selected nearby sta-
tions to determine whether temperature at the target sta-
tion should be flagged according to regression residu-
als and standardized residuals. The spatial corrobora-
tion check flags temperature at the target station if the
value deviates far from the temperature at neighboring
stations.

5. Extreme mega consistency checks. These ensure that
certain relationships hold for the entire record of sta-
tions. For example, Tmax cannot be higher than the low-
est Tmin for the calendar month, and vice versa.

For precipitation, quality control strategies are from three
studies. The first part is similar to temperature but does
not include the third type of checks (internal and tempo-
ral consistency checks). The second part is from Hamada et
al. (2011).

1. Repetition checks. The nonzero check identifies con-
stant daily values (> 10mmd−1) that occur for more
than 4 d. The zero check compares the annual zero-
precipitation frequency with its climatological value to
spot unusual frequencies of zero.

2. Duplicated monthly or sub-monthly record check. The
temporal CC and the number of days with equal precip-
itation are used to identify whether 2 different months
have the same records caused by human errors.
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3. Z-score-based outlier check. Daily precipitation is
flagged if its difference with the mean value from pre-
cipitation within a 15 d window of all years is larger
than 9 SDs. This step is repeated until no outlier is iden-
tified.

4. Spatiotemporally isolated value check. Extremely large
precipitation is identified in both space and time based
on the percentiles of precipitation differences between
the target station and neighboring stations within a ra-
dius of 400 km.

The third part is from Beck et al. (2019).

1. The empirical criterion is based on the fraction of days
without precipitation (fD). This was designed to iden-
tify the long series of erroneous zero precipitation con-
tained in GSOD station records. However, we found that
this criterion misidentifies some acceptable records in
GHCN-D. Therefore, the fD-based check is only im-
plemented for GSOD.

2. Stations with fewer than 15 unique values or more than
99.5 % dry records (< 0.5 mm d−1) are discarded.
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