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Abstract. This study presents the results from the Tropospheric Chemistry Reanalysis version 2 (TCR-2) for
the period 2005–2018 at 1.1◦ horizontal resolution obtained from the assimilation of multiple updated satellite
measurements of ozone, CO, NO2, HNO3, and SO2 from the OMI, SCIAMACHY, GOME-2, TES, MLS, and
MOPITT satellite instruments. The reanalysis calculation was conducted using a global chemical transport model
MIROC-CHASER and an ensemble Kalman filter technique that optimizes both chemical concentrations of var-
ious species and emissions of several precursors, which was efficient for the correction of the entire tropospheric
profile of various species and its year-to-year variations. Comparisons against independent aircraft, satellite, and
ozonesonde observations demonstrate the quality of the reanalysis fields for numerous key species on regional
and global scales, as well as for seasonal, yearly, and decadal scales, from the surface to the lower stratosphere.
The multi-constituent data assimilation brought the model vertical profiles and interhemispheric gradient of OH
closer to observational estimates, which was important in improving the description of the oxidation capacity of
the atmosphere and thus vertical profiles of various species. The evaluation results demonstrate the capability of
the chemical reanalysis to improve understanding of the processes controlling variations in atmospheric compo-
sition, including long-term changes in near-surface air quality and emissions. The estimated emissions can be
employed for the elucidation of detailed distributions of the anthropogenic and biomass burning emissions of
co-emitted species (NOx , CO, SO2) in all major regions, as well as their seasonal and decadal variabilities. The
data sets are available at https://doi.org/10.25966/9qgv-fe81 (Miyazaki et al., 2019a).
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1 Introduction

As a consequence of rapid global economic development,
along with governmental regulations, air pollutant emis-
sions have been changing dramatically in many regions (e.g.,
Zhang et al., 2016; Mi et al., 2017; Zheng et al., 2018).
These emission changes have led to substantial variations in
air quality and climate over the past decades. A long-term
record of atmospheric composition is essential to compre-
hend the impact of human activity and natural processes on
the atmospheric environment and its effect on air quality, hu-
man health, ecosystems, and climate. Various measurements
have been employed for assessing geographical, vertical, and
temporal variations in atmospheric composition. However,
the present in situ observing network (e.g., Schultz et al.,
2017) is primarily clustered in the US, Europe, and East Asia
and therefore insufficient for global air quality assessment.
Satellite measurements have immense potential for comple-
menting in situ measurements in providing data on the global
and regional distributions of air pollutants in the atmosphere;
however, they address complex vertical sensitivities for many
key species. The evaluation of global atmospheric composi-
tion fields with a suite of satellite measurements is challeng-
ing because of different vertical sensitivity profiles, various
overpass times, and mismatches in spatial and temporal cov-
erage between the instruments (Boersma et al., 2016).

Among many species that degrade air quality and con-
tribute to climate change, tropospheric ozone is one of the
most important air pollutants and greenhouse gases in the at-
mosphere (e.g., Stevenson et al., 2013; Myhre et al., 2013).
Tropospheric ozone also plays a crucial role in the oxidative
capacity through the production of hydroxyl radicals (OH)
(e.g., Logan et al., 1981; Thompson, 1992). However, ozone
is not emitted directly but formed through secondary pho-
tochemical production from precursors, including hydrocar-
bons or carbon monoxide (CO), in the presence of nitrogen
oxides (NOx). These ozone precursors are largely controlled
by anthropogenic and natural emissions, e.g., transportation,
industry, lightning, biogenic and biomass burning sources.
Analyses of co-emitted species have been used to explain
emission and ozone production processes (e.g., Mauzerall et
al., 1998; Ryerson et al., 1998).

Emission inventories have been developed to assess the
impact of human and natural activities on the atmospheric en-
vironment. Bottom-up inventories have struggled to account
for these changes, leading to substantial errors in emission
factors and activity rates especially in developing countries.
Using satellite data, previous studies have shown increases
in NOx emissions between 2005 and 2010 and a rapid re-
duction after 2011 in China (Qu et al., 2017; Miyazaki et al.,
2017; Zheng et al., 2018), decreasing CO emissions from the

US and China between 2001 and 2015 (Jiang et al., 2017),
a drastic SO2 emission decrease since 2007 for China (Li
et al., 2017), and a slowdown in the US NOx emissions
in recent years (2011–2015) (Jiang et al., 2018). An im-
portant outcome of these studies is the realization of the
importance of background chemical conditions (i.e., ambi-
ent ozone, NOx , and volatile organic compounds, VOCs) to
accurately quantify the emissions-to-concentration relation-
ship. Consequently, it is critical to incorporate multiple con-
stituents to accurately represent these conditions.

Chemical data assimilation can help mitigate the limita-
tions of current observing systems using models to propa-
gate observational information in time and space from a lim-
ited number of observed species to a wide range of chemical
components, including surface concentrations and emissions
(e.g., Lahoz and Schneider, 2014). Reanalysis is a systematic
approach to create a long-term data record consistent with
model processes and observations, using data assimilation.
To improve the understanding of emission variability and the
processes controlling the atmospheric composition, chemical
reanalysis products have been generated by integrating vari-
ous satellite measurements. Using an ensemble Kalman filter
(EnKF) data assimilation technique, Miyazaki et al. (2015)
simultaneously estimated concentrations and emissions of
various species for an 8-year tropospheric chemistry reanal-
ysis (TCR-1) for the years 2005–2012. The TCR-1 frame-
work based on the AGCM-CHASER (Sudo et al., 2002) and
MIROC-CHASER (Watanabe et al., 2011) models has been
used to provide comprehensive information on atmospheric
composition and emission variability (Miyazaki et al., 2012a,
2014, 2017; Miyazaki and Eskes, 2013; Ding et al., 2017).
Apart from the TCR systems, employing the ECMWF’s In-
tegrated Forecasting System (IFS), three recent reanalyses
have also been released: the MACC reanalysis for the years
2003–2012 (Inness et al., 2013), the CAMS-Interim reanal-
ysis for the years 2003–2018 (Flemming et al., 2017), and
recently the CAMS reanalysis for the years 2003 to 2019 (In-
ness et al., 2019). A decadal reanalysis of CO was conducted
at NCAR (Gaubert et al., 2016).

Miyazaki et al. (2020) developed a multi-constituent
multi-model chemical data assimilation (MOMO-Chem)
framework that directly accounts for model error in transport
and chemistry by integrating a portfolio of forward chemical
transport models into an EnKF system. The MOMO-Chem
framework generates an ensemble of data assimilation anal-
yses to provide integrated unique information on the tropo-
spheric chemistry system including precursor emissions and
their uncertainty ranges due to model errors. In spite of sub-
stantial model forecast differences, the multi-constituent as-
similation was sufficient to reduce the multi-model spread
for many key species. Harnessing assimilation increments
in both NOx and ozone in MOMO-Chem, Miyazaki et al.
(2020) also demonstrated fundamental differences in the rep-
resentation of fast chemical and dynamical processes among
the models.
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Recently, an updated chemical reanalysis (TCR-2) has
been developed based on an improved EnKF data as-
similation system (Miyazaki et al., 2019a) and evaluated
against independent observations for limited time periods in
the KORUS-AQ aircraft campaign during April–May 2016
(Miyazaki et al., 2019b; Thompson et al., 2019) and over
remote oceans using shipborne measurements for the years
2012–2017 (Kanaya et al., 2019). The TCR-2 performance
for 2007 has also been extensively evaluated against various
independent observations within the MOMO-Chem frame-
work (Miyazaki et al., 2020). Huijnen et al. (2020) quantita-
tively compared the TCR-2 with operational CAMS reanaly-
ses (Flemming et al., 2017; Inness et al., 2019) but for ozone
only. In this study, we present the detailed evaluation results
of the TCR-2 performance for the years 2005–2018 for many
chemically reactive species and aerosols in the troposphere,
from the surface to the lower stratosphere, at daily to decadal
scales.

2 Data assimilation system

This section provides the details of the TCR-2 approach for
2005–2018. Table 1 compares the configurations of TCR-1
and TCR-2 systems. The major updates in TCR-2 from TCR-
1 are a change in the chemistry transport model, increased
model resolution, and updated retrievals used in the assimi-
lation.

2.1 Forecast model

The forecast model, MIROC-CHASER (Watanabe et al.,
2011), contains detailed photochemistry in the troposphere
and stratosphere by simulating tracer transport, wet and dry
deposition, and emissions. The model calculates the con-
centrations of 92 chemical species and 262 chemical reac-
tions (58 photolytic, 183 kinetic, and 21 heterogeneous reac-
tions). Its tropospheric chemistry considers the fundamental
chemical cycle of Ox-NOx-HOx-CH4-CO along with oxida-
tion of non-methane volatile organic compounds (NMVOCs)
to properly represent ozone chemistry in the troposphere.
MIROC-CHASER has a T106 horizontal resolution (1.1◦×
1.1◦) with 32 vertical levels from the surface to 4.4 hPa.
This is coupled to the atmospheric general circulation model
MIROC-AGCM version 4 (Watanabe et al., 2011). The simu-
lated meteorological fields were nudged toward the 6-hourly
ERA-Interim (Dee et al., 2011).

The a priori surface emissions of NOx , CO, and SO2
were obtained from bottom-up emission inventories. Anthro-
pogenic NOx , CO, and SO2 emissions were obtained from
the HTAP version 2 for 2010 (Janssens-Maenhout et al.,
2015), which combines regional inventories of the European
Monitoring and Evaluation Programme (EMEP), Environ-
mental Protection Agency (EPA), Greenhouse Gas-Air Pol-
lution Interactions and Synergies (GAINS), and Regional
Emission Inventory in Asia (REAS). For biomass burning

emissions, we employed the monthly Global Fire Emis-
sions Database (GFED) version 4 (Randerson et al., 2018).
Emissions from soils were based on monthly mean Global
Emissions Inventory Activity (GEIA) (Graedel et al., 1993).
Lightning NOx sources were simulated using the convec-
tion scheme of MIROC-AGCM and the relationship between
lightning activity and cloud top height (Price and Rind,
1992). Methane concentrations were scaled on the basis of
present-day values with reference to the surface concentra-
tion.

2.2 Data assimilation method

Data assimilation applied here is based upon on an EnKF
approach, the Local Ensemble Transform Kalman Filter
(LETKF) (Hunt et al., 2007). The EnKF uses an ensemble
forecast to estimate the background error covariance matrix
and generates an analysis ensemble mean and covariance that
satisfy the Kalman filter equations. In the forecast step, a
background ensemble, xb

i (i = 1, . . .,k), is obtained from the
evolution of an ensemble model forecast, where x represents
the model variable, b is the background state, and k is the
ensemble size (i.e., 32 in this study). The observation opera-
tor H is applied to the background ensemble to convert them
into the observation space, yb

i =H (xb
i ), which is composed

of a spatial interpolation operator and a satellite retrieval op-
erator. The satellite retrieval operator uses an a priori profile
and an averaging kernel of individual measurements (e.g.,
Eskes and Boersma, 2003; Jones et al., 2003). Using the co-
variance matrices of observation and background error as es-
timated from ensemble model forecasts, the data assimilation
determines the relative weights given to the observation and
the background and then transforms a background ensemble
into an analysis ensemble, xa

i (i = 1, . . .,k). The control vec-
tor, z= Dx, is a subset of the state vector (x) to be adjusted
during assimilation, where D is a mapping matrix. The con-
trol vector z is updated at every analysis step by observations
and then mapped back to the state vector x. Some variables
in the state vector x are not parts of the control vector z for
theoretical and practical reasons, as discussed below in this
section. Then background error covariance is obtained from
an ensemble forecast with the updated analysis ensemble,
whereas the observation error is obtained from the satellite
retrieval uncertainty information (see Sect. 3.1).

In the data assimilation analysis, a covariance localiza-
tion and inflation was applied. The covariance localization
was used to neglect the covariance among unrelated or
weakly related variables, which results in removing the in-
fluence of spurious correlations resulting from the limited
ensemble size. The optimization of the variable localiza-
tion was based on a comparison against independent satel-
lite and aircraft data, as described in Miyazaki et al. (2015).
The analysis increments through the NO2 assimilation were
limited to adjusting only the surface emissions of NOx ,
LNOx sources, and concentrations of NOy species (= NOx+
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Table 1. Comparisons of TCR-1 and TCR-2.

TCR-1 (Miyazaki et al., 2015) TCR-2 (This study)

Forecast model AGCM-CHASER MIROC-CHASER
47 species, 113 reactions 92 species, 262 reactions

Meteorological data nudged to NCEP/DOE-II nudged to ERA-Interim

Emissions of surface NOx and CO, and lightning NOx TCR-1 + SO2 emissions
State vector Chemical concentration of 35 species

(NOx , HNO3, HNO4, PAN, MPAN, N2O5, and ozone in the control vector)

Assimilated data OMI NO2 (DOMINO2), OMI NO2 (QA4ECV v1.1),
SCIAMACHY, GOME-2 NO2 (TM4NO2A v2.3), SCIAMACHY, GOME-2 NO2 (QA4ECV v1.1),
TES ozone (v5), MOPITT CO (v6 TIR), TES O3 (v6), MOPITT CO (v7 TIR/NIR),
MLS ozone, HNO3 (v3.3) MLS ozone, HNO3 (v4.2), OMI SO2 (PCA)

A priori emissions EDGAR v4.2, GFED v3.1, GEIA HTAP v2, GFED v4, GEIA

Period 2005–2012 2005–2018

Resolution 2.8◦× 2.8◦, 32 layers to 4 hPa 1.1◦× 1.1◦, 32 layers to 4 hPa

HNO3+HNO4+PAN+MPAN+N2O5). The MOPPIT CO
and OMI SO2 measurements were used for constraining sur-
face CO and SO2 emissions only, respectively. Even in the
short assimilation window (i.e., 2 h), data assimilation incre-
ments can be used to measure systematic model biases in
emissions that could affect long-term model errors. For the
LNOx sources, covariances with MOPITT CO data were ne-
glected. Concentrations of NOy species and ozone were op-
timized from TES ozone, OMI, SCIAMACHY, and GOME-
2 NO2 and MLS ozone and HNO3 observations. For NOx ,
concentration adjustments are quickly lost in the lower at-
mosphere due to the short lifetime, while emission adjust-
ments are more efficient to store the information over longer
time periods (Miyazaki and Eskes, 2013; Miyazaki et al.,
2017). Although the concentrations of VOCs are included
in the state vector, they were not included in the control
vector and thus were not optimized in the current setting
because the current assimilated data sets did not improve
their fields obviously. Consequently, the control vector in
this study includes the concentration of NOx , HNO3, HNO4,
PAN, MPAN, N2O5, and ozone, as well as the NOx , SO2,
and CO emission sources.

The covariance localization was also applied to avoid the
influence of remote observations that may cause sampling
errors. The covariance inflation was employed to inflate the
forecast error covariance, in order to prevent underestimation
of background error covariance and filter divergence caused
by sampling errors associated with the limited ensemble size
and by model errors. The cut-off radius was set to 1643 km
for NOx emissions and 2019 km for CO emissions, light-
ning sources, and chemical concentrations based on sensi-
tivity calculations. However, the optimal localization length
may depend on the location, season, and species, reflecting
meteorological conditions and the chemical lifetime.

The state vector includes several emission sources: surface
emissions of NOx , CO and SO2, and lightning NOx (LNOx)
sources, as well as the concentrations of 35 chemical species
(see Fig. 3 in Miyazaki et al., 2012b). As described above,
limited variables were included in the control vector and op-
timized by applying covariance localization in the reanalysis
calculations. The emissions include both anthropogenic and
natural (i.e., soil and biomass burning) sources, except for
chemical productions of CO by the oxidation of methane and
biogenic non-methane hydrocarbons (NMHCs). The emis-
sion estimation is based on a state augmentation technique, in
which the background error correlations determine the rela-
tionship between the concentrations and emissions of related
species for each grid point. We employed a scheme to correct
diurnal emission variability from the simultaneous assimila-
tion of multiple satellite measurements obtained at different
overpass times (Miyazaki et al., 2017). The simultaneous as-
similation of multiple-species data and the simultaneous op-
timization of the concentrations and emission fields are im-
portant to propagate the observational information between
various species and modulate the chemical lifetimes of many
species, as demonstrated in our previous studies (Miyazaki
et al., 2012b, 2015, 2019b).

3 Observations

3.1 Assimilated data sets

An observation operator is applied to assimilate individ-
ual measurements to map the model fields into the retrieval
space. The operator includes the spatial interpolation opera-
tor, a priori profile for the satellite retrievals, and averaging
kernel. See Miyazaki et al. (2020) for more details.
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3.1.1 OMI, GOME-2, SCIAMACHY NO2

The tropospheric NO2 column retrievals used were the
QA4ECV version 1.1 level 2 (L2) product for OMI (Boersma
et al., 2017a), GOME-2 (Boersma et al., 2017b), and SCIA-
MACHY (Boersma et al., 2017c). The ground pixel sizes
of the OMI, GOME-2, and SCIAMACHY retrievals are
13km× 24km, 80 km× 40km, and 60km× 30km, with lo-
cal Equator overpass times of 13:45, 09:30, and 10:00 LT, re-
spectively. Since December 2009, approximately half of the
pixels of the OMI measurements have been compromised
by the so-called row anomaly, which were excluded before
data assimilation. The GOME-2 measurements were assim-
ilated after January 2007, whereas the SCIAMACHY re-
trievals were assimilated before February 2012. Low-quality
data were excluded by applying the provided quality flag. A
super-observation approach was employed to generate rep-
resentative data with a horizontal resolution of the forecast
model for OMI, GOME-2, and SCIAMACHY observations,
following the approach of Miyazaki et al. (2012a). Super-
observations were generated by averaging all data located
within a super-observation grid cell. The retrieval uncertainty
of individual pixels was calculated based on error propaga-
tion in the retrieval. The detailed error characteristics and val-
idation results of the NO2 products are described by Boersma
et al. (2018).

3.1.2 TES ozone

The Tropospheric Emission Spectrometer (TES) ozone re-
trievals used are the version 6 level 2 nadir data obtained
from the global survey mode (Bowman et al., 2006; Herman
and Kulawik, 2013) (https://tes.jpl.nasa.gov/data/products/
level-2, last access: 1 December 2019). This data set consists
of 16 daily orbits with 5× 8km footprints spaced approxi-
mately 200 km apart along the orbit track, with the Equator
crossing of 13:40 and 02:29 LT. Low-quality data were ex-
cluded using the quality flag information. The availability of
TES measurements is strongly reduced after 2010, which can
affect the reanalysis performance (Miyazaki et al., 2015). Su-
per observations were not generated for the TES retrievals
because of relatively large spatial representativeness of the
vertically integrated information primarily within the free
troposphere.

3.1.3 MOPITT CO

The MOPITT total column CO data used were the version
7 L2 TIR/NIR product (Deeter et al., 2017). The TIR/NIR
product provides the greatest sensitivity to CO in the lower
troposphere and increases sensitivity to near-surface CO
compared to the TIR-only product. We excluded MOPITT
data in polar regions (> 65◦ latitude), where the quality de-
teriorates and the information content lowers because of po-
tential problems related to cloud detection and icy surfaces.
We also excluded the nighttime data using a filter based on

solar zenith angle, because daytime conditions typically pro-
vide better thermal contrast conditions for the retrievals. The
total column averaging kernel was used in the observation
operator. The reported retrieval error was used in the observa-
tion error. The super-observation approach was also applied
to MOPITT observations.

3.1.4 MLS ozone and HNO3

The Microwave Limb Sounder (MLS) data used were the
version 4.2 ozone and HNO3 L2 products (Livesey et al.,
2011, 2018). We used MLS data for pressures of lower than
215 hPa for ozone and 150 hPa for HNO3, while excluding
tropical-cloud-induced outliers. The provided accuracy and
precision of the measurement error were used in the observa-
tion error.

3.1.5 OMI SO2

The OMI SO2 data used were the planetary boundary layer
vertical column SO2 L2 product obtained with the princi-
pal component analysis algorithm (PCA) (Krotkov et al.,
2016). Only clear-sky OMI SO2 data (cloud radiance fraction
< 20 %) with solar zenith angles less than 70◦ were used,
following the procedure of Fioletov et al. (2016, 2017). Be-
cause of the lack of information regarding the observation
error, we assumed the OMI SO2 error to be a constant value
of 0.25 DU, which is about half of the standard deviation of
the retrieved columns over remote regions (Li et al., 2013).
The super-observation approach was applied to OMI SO2 ob-
servations.

3.2 Validation data sets

3.2.1 TES PAN

We use version 7 TES PAN retrievals (Payne et al., 2014;
TES Science Team, 2016; Payne et al., 2017) to evalu-
ate tropospheric profiles of PAN for the years 2005–2009.
TES PAN data have provided information on the long-range
transport of NOx at low temperatures and ozone production
in warmer regions of the remote troposphere (Jiang et al.,
2016). Low-quality data were excluded using the provided
quality flag and information. Payne et al. (2014) showed that
the detection limit for a single TES measurement is depen-
dent on atmospheric and surface conditions and the instru-
ment noise. For observations where the cloud optical depth
is less than 0.5, the TES detection limit for PAN is within the
region of 200 to 300 pptv.
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3.2.2 AIRS/OMI ozone

We used the joint AIRS/OMI version 1 L2 tropospheric
ozone profile product (Fu et al., 2018) for 2006–2010 and
2015–2018 to evaluate decadal changes in tropospheric
ozone. The ozone profile retrievals were performed by apply-
ing the JPL MUlti-SpEctra, MUlti-SpEcies, Multi-Sensors
(MUSES) algorithm to both AIRS and OMI level 1B (L1B)
spectral radiances (Fu et al., 2018). The AIRS/OMI ozone
profile products have been produced with a spatial sampling
and the retrieval characteristics of ozone profiles equivalent
to TES L2 standard data product, demonstrating the feasi-
bility of extending the TES L2 data record by a multiple
spectral retrieval approach. The retrievals show reasonable
agreement with WOUDC global ozonesonde measurements
(Fu et al., 2018). The AIRS/OMI data have been successfully
assimilated to improve the tropospheric ozone analysis over
East Asia during the KORUS-AQ campaign (Miyazaki et al.,
2019b) and could be used to improve decadal ozone reanaly-
ses.

3.2.3 WOUDC ozonesonde data

We used ozonesonde observations taken from the World
Ozone and Ultraviolet Radiation Data Center (WOUDC)
database (available at http://www.woudc.org, last access:
1 December 2019) to validate the vertical ozone profiles. All
available data from the WOUDC database were used (a to-
tal of 39 959 profiles for 149 stations during 2005–2018).
To compare ozonesonde measurements with the reanalysis
fields, the reanalysis and model fields were linearly interpo-
lated to the time and location of each measurement using the
2-hourly output data, with a bin of 25 hPa.

3.2.4 WDCGG CO data

The CO concentration observations were obtained from the
World Data Centre for Greenhouse Gases (WDCGG) op-
erated by the World Meteorological Organization (WMO)
Global Atmospheric Watch program (http://ds.data.jma.go.
jp/gmd/wdcgg/, last access: 1 December 2019). Hourly and
event observations from 59 stations for 2005–2014 were used
to validate the surface CO concentrations.

3.2.5 HIPPO aircraft data

HIAPER Pole-to-Pole Observation (HIPPO) aircraft mea-
surements provide global information on vertical profiles of
various species over the Pacific (Wofsy et al., 2012). Latitu-
dinal and vertical variations in ozone and CO obtained from
the five HIPPO campaigns (HIPPO I-V) were used to vali-
date the assimilated profiles.

For comparison with aircraft observations (Sect. 3.2.5,
3.2.6, and 3.2.7), all observed profiles were binned on a com-
mon pressure grid with an interval of 30 hPa and mapped

with a horizontal resolution of 0.5◦× 0.5◦. The character-
istics of the aircraft measurements vary significantly among
different profiles, e.g., between rural and urban and between
in-cloud and clear sky observations. Case-dependent evalu-
ations would provide deeper insights into the processes and
reanalysis performance in possible future studies.

3.2.6 NASA aircraft campaign data

Vertical profiles of nine key gases (O3, CO, NO2, PAN, OH,
HO2, HNO3, CH2O, and SO2) were used, obtained from the
following eight aircraft campaigns.

The DC-8 measurements obtained during the Interconti-
nental Chemical Transport Experiment Phase B (INTEX-B)
campaign over the Gulf of Mexico (Singh et al., 2009) were
used for the comparison for March 2006. Data collected over
highly polluted areas (over Mexico City and Houston) were
removed from the comparison, as they could cause signifi-
cant errors in the representativeness (Hains et al., 2010).

The Arctic Research of the Composition of the Tro-
posphere from Aircraft and Satellites (ARCTAS) mission
(Jacob et al., 2010) was executed during two 3-week de-
ployments based in Alaska (April 2008, ARCTAS-A) and
western Canada (June–July 2008, ARCTAS-B). During
ARCTAS-A, most of the measurements were collected be-
tween 60 and 90◦ N, whereas during ARCTAS-B, the mea-
surements were mainly recorded in the subarctic between 50
and 70◦ N.

During the Deriving Information on Surface Conditions
from Column and Vertically Resolved Observations Relevant
to Air Quality (DISCOVER-AQ) campaign over Baltimore
in the US during July 2011, the NASA P-3B aircraft per-
formed extensive profiling of the optical, chemical, and mi-
crophysical properties of aerosols (Crumeyrolle et al., 2014).

The Deep Convective Clouds and Chemistry (DC3) ex-
periment field campaign investigated the impact of deep,
midlatitude continental convective clouds during May and
June 2012 over northeastern Colorado, western Texas to
central Oklahoma, and northern Alabama (Barth et al.,
2015). Observations obtained from the DC-8 (DC3-DC8)
and Gulfstream-V (DC3-GV) aircraft were used.

The Korea–United States Air Quality (KORUS-AQ) cam-
paign was conducted during the period May–June 2016 over
the Korean peninsula. We used DC-8 aircraft measurements
from 23 flights, as in our previous study (Miyazaki et al.,
2019b).

The Studies of Emissions and Atmospheric Composi-
tion, Clouds, and Climate Coupling by Regional Surveys
(SEAC4RS) campaign was conducted over North America
during August and September 2013. The DC-8 employed in
situ and remote sensing instruments for radiation, chemistry,
and microphysics in the southeastern US from the boundary
layer to the upper troposphere. All DC-8 data were used in
this study.
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3.2.7 ATom aircraft data

ATom-1 and ATom-2 flew transects through the Pacific,
Southern, Atlantic, and Arctic oceans with the NASA DC-
8 aircraft in August 2016 and February 2017, respectively.
The 11 flights for each campaign sampled air profiles by fre-
quently ascending and descending between 0.2 and 12 km.
The DC-8 carried a suite of instruments that measured over
100 different chemical constituents, aerosol particle proper-
ties, and chemical composition. We used the merged ATom-
1 and ATom-2 OH data (Wofsy et al., 2018). The same data
were used in Wolfe et al. (2019).

3.2.8 Surface aerosol measurements

We used the in situ surface observations of sulfate, nitrate,
and ammonium aerosols from the European Monitoring and
Evaluation Programme (EMEP; http://ebas.nilu.no, last ac-
cess: 1 December 2019) for Europe, the Clean Air Sta-
tus and Trends Network (CASTNet; https://www.epa.gov/
castnet, last access: 1 December 2019) for the US, and the
Acid Deposition Monitoring Network in East Asia (EANET;
https://www.eanet.asia, last access: 1 December 2019) for
East Asia. The observation data at 52, 51, and 30 monitoring
sites were obtained from the EMEP, CASTNet, and EANET
networks for 2005–2017, respectively.

4 Evaluation results

This section presents validation results of numerous species
using various independent observations. To confirm improve-
ments in the reanalysis, results from a model simulation with-
out any chemical data assimilation (i.e., a control run) are
likewise shown.

4.1 Ozone

4.1.1 Ozonesonde

Figures 1 and 2 compare the vertical profile and time series
of tropospheric ozone with the global ozonesonde observa-
tions taken from the WOUDC network. The validation of the
reanalysis and control run with global ozonesonde observa-
tions is summarized in Table 2. The model bias in the lower
and middle troposphere is negative except near the surface at
low and midlatitudes, whereas it is positive in the upper tro-
posphere and lower stratosphere (UTLS) for the globe. The
large positive biases in the extratropical UTLS could be asso-
ciated with errors in the stratosphere–troposphere exchange
(STE) processes and chemical processes such as halogen
chemistry, in addition to errors in the prescribed ozone con-
centrations above 70 hPa in the model.

The reanalysis shows improved agreement with the
ozonesonde observations over the globe. The data assimila-
tion generally decreased the ozone concentration in the ex-
tratropics UTLS (200–90 hPa) for the globe and in the mid-

dle and upper troposphere (500–200 hPa) at high latitudes
of both hemispheres throughout the year. In the lower tro-
posphere (850–500 hPa), the data assimilation increased the
ozone concentrations and removed most of the model bi-
ases for the globe. Consequently, the reanalysis mean bias
became nearly zero in the extratropical UTLS regions and
less than 15 % in the free troposphere for the globe. At high
latitudes, the tropospheric ozone is not directly constrained
by any measurements. Nevertheless, the reanalysis ozone
shows improved agreement with the ozonesonde measure-
ments through atmospheric transport from lower latitudes
and from the stratosphere. In the lower troposphere, the an-
nual mean reanalysis ozone bias is less than 1.2 ppbv, ex-
cept for the tropics (4.2 ppb), where it is 70 %–94 % smaller
than the bias in the control run. In the middle and upper
troposphere, the mean ozone bias is less than 5.7 ppbv for
the Southern Hemisphere (SH) high latitudes and 3.1 ppbv
for other regions, which is 74 %–99 % lower than the bias
in the control run. The RMSE is also reduced by 6 %–50 %
for 850–500 hPa and 500–200 hPa, with large reductions for
the SH midlatitudes and high latitudes (42 %–50 %) for 500–
200 hPa, except for the tropical lower troposphere. The mean
bias (RMSEs) reductions in the UTLS regions are about
93 %–99 % (51 %–74 %) in the extratropics and 56 % (41 %)
in the tropics.

Both seasonal and interannual variations are well repro-
duced by the chemical reanalysis throughout the troposphere,
with temporal correlations greater than 0.90 at the midlati-
tudes of both hemispheres and greater than 0.85 at North-
ern Hemisphere (NH) high latitudes. The correlations in the
UTLS range from 0.88 to 0.99. The lower correlations in the
tropical lower troposphere (r = 0.73–0.77) with enhanced
biases in winter and at SH high latitude’s lower troposphere
(r = 0.75) could be attributed to the remaining model errors
and the lack of direct observational constraints at high lati-
tudes throughout the reanalysis period and in the tropical tro-
posphere after 2009 (see Sect. 7.1). During 2005–2009, the
mean ozone bias in the tropical troposphere did not change
significantly with year, which suggests that the TES mea-
surements provide constraints on making stable long-term
analysis of the free-tropospheric ozone. The observed trend
is positive at the NH midlatitudes in the lower troposphere
(+0.9 ppb yr−1), corresponding to increased concentrations
after 2012, but the significance of this trend is not very high.
The reanalysis (+0.4 ppb yr−1) shows better agreement with
the observed slope than the control run (−1.4 ppb yr−1). The
long-term trends will further be discussed in Sect. 6.

The mean ozone biases in TCR-2 are reduced from those
in TCR-1 for many regions, especially for the NH mid-
latitudes and high latitudes (e.g., from −3.9 to −1.2 ppb
and from −8.0 to −0.2 ppb at the NH high latitudes be-
tween 850 and 500 hPa and between 500 and 200 hPa, re-
spectively) and SH midlatitudes (from −1.0 to 0.4 ppb and
from −1.9 to −0.2 ppb between 850 and 500 hPa and be-
tween 500 and 200 hPa, respectively). An exception is the
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Figure 1. Comparison of the vertical ozone profiles between ozonesondes (black), control run (blue), and reanalysis (red) averaged for the
period 2005–2018. The upper row shows the mean profile; center and lower rows show the mean difference and the root-mean-square error
(RMSE) between the control run and the observations (blue) and between the reanalysis and the observations (red). From left to right, results
are shown for the Southern Hemisphere (SH) high latitudes (55–90◦ S), SH midlatitudes (15–55◦ S), the tropics (15◦ S–15◦ N), Northern
Hemisphere (NH) midlatitudes (15–55◦ N), and NH high latitudes (55–90◦ N).

Figure 2. Time series of the monthly mean ozone concentration obtained from ozonesondes (black), the control run (blue), and reanalysis
(red) averaged between 850–500 hPa (lower row), 500–200 hPa (center row), and 200–90 hPa (upper row). From left to right, the results are
shown for the SH high latitudes (55–90◦ S), SH midlatitudes (15–55◦ S), the tropics (15◦ S–15◦ N), NH midlatitudes (15–55◦ N), and NH
high latitudes (55–90◦ N).
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Table 2. Model and ozonesonde observation comparisons for the reanalysis and the control run (in brackets) for 2005–2018 (the units of the
RMSE and bias are parts per billion).

90–55◦ S 55–15◦ S 15◦ S–15◦ N 15–55◦ N 55–90◦ N

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

850– 0.9 4.1 −0.4 5.3 4.2 7.8 1.0 6.7 1.2 5.8
500 hPa (−4.0) (4.6) (−6.2) (6.8) (−4.3) (7.7) (−5.4) (7.5) (−4.1) (6.2)

WOUDC 500– 5.7 15.7 −0.2 13.0 3.1 9.0 0.9 17.0 −0.2 26.7
sonde 200 hPa (27.7) (31.8) (3.0) (22.3) (−11.9) (12.2) (2.6) (22.4) (27.0) (39.1)

200– 22.2 67.5 3.4 42.7 7.3 22.0 1.9 59.1 2.6 86.0
90 hPa (332.7) (261.6) (142.7) (126.9) (16.6) (37.0) (125.1) (120.9) (256.4) (211.3)

tropics, where the reduced number of ozonesonde observa-
tions for the most recent years used in the TCR-2 valida-
tion affected the evaluated performance. Huijnen et al. (2020)
and Christophe et al. (2019) compared tropospheric ozone re-
analysis products from CAMS, CAMS-Interim, TCR-1 and
TCR-2. The updated reanalyses (CAMS-Rean and TCR-2)
showed substantially improved agreements with independent
ground and ozonesonde observations over their predecessor
versions (CAMS-iRean and TCR-1) in diurnal, synoptical,
seasonal, and decadal variability. The improved performance
can be attributed to a mixture of various upgrades, such as
revisions in the chemical data assimilation, including the as-
similated measurements and the forecast model performance.
The updated chemical reanalyses agree well with each other
in most cases, which highlights the usefulness of the current
chemical reanalyses in a variety of studies.

4.1.2 AIRS/OMI satellite retrievals

Figure 3 compares the time series of ozone with the
AIRS/OMI retrievals over selected polluted areas between
700 and 500 hPa during 2005–2018. The AIRS/OMI data
were not available for some part of the time period (2005
and from 2011 to 2014) at the time of this study. To pro-
vide continuous decadal records of the control run and re-
analysis fields in the AIRS/OMI observation space, we ap-
plied the 2007 AIRS/OMI retrieval sampling and averag-
ing kernel to the control run and reanalysis fields for 2005
and 2011–2014. In the US and China, the control run gener-
ally underestimates the ozone concentration compared with
the AIRS/OMI observations especially in summer, and the
reanalysis shows improved agreement. The mean bias and
RMSEs over China are reduced by 80 % (to −1.1 ppb) and
63 % (to 4.3 ppb), respectively. Over India, the data assim-
ilation reduced the mean bias from −9.9 ppb in the control
run to 0.6 ppb, while showing larger concentrations (by about
3 ppb) after 2015 than before 2009, similar to the observa-
tions (by about 6 ppb). For tropical regions, the overall model
negative biases compared to the AIRS/OMI observations are
greatly reduced in the reanalysis (e.g., from −9.9 ppb in the
control run to 0.6 ppb over central Africa). The estimated
reanalysis errors are mostly within the AIRS/OMI retrieval

Figure 3. Time series of the monthly mean ozone concentration ob-
tained from the AIRS/OMI retrievals (black), control run (blue), and
reanalysis (red) averaged between 700–500 hPa over the US (28–
50◦ N, 127–70◦W), India (8–33◦ N, 68–89◦ E), China (30–40◦ N,
110–123◦ E), and Central Africa (20◦ S–0◦, 10–40◦ E).

uncertainty. These improved agreements in the reanalysis,
along with the good agreements between the reanalysis and
ozonesonde observations (see Sect. 4.1.1), demonstrate the
great potential of AIRS/OMI data to further improve decadal
ozone reanalysis, as will be discussed in Sect. 7.3.

4.1.3 Aircraft

The reanalysis captured the observed latitudinal vertical dis-
tributions by the HIPPO aircraft measurements over the Pa-
cific (Fig. S1 and Table S1 in the Supplement). On average,
the control run shows negative biases in the lower tropo-
sphere (850–500 hPa) from the SH high latitudes to NH high
latitudes (−4.6 to −3.6 ppb), whereas the model bias is pos-
itive in the middle and upper troposphere (19.6 to 42.6 ppb
between 500–200 hPa) except in the tropics (−2.6 ppb). The
negative model biases in the lower troposphere are greatly
reduced by data assimilation (by 33 %–80 %). Data assimila-
tion introduced a slight positive bias in the NH lower tropo-
sphere, probably associated with corrections made to precur-
sors’ emissions over East Asia and the stratospheric concen-
trations. The positive model biases in the middle and upper
troposphere (500–200 hPa) are also reduced by 44 %–92 %
except for the tropics and SH low latitudes, as commonly
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suggested by comparisons to the ozonesonde measurements
(see Sect. 4.1.2). These results demonstrate that the assimila-
tion of multiple-species data sets is a powerful way to glob-
ally constrain the entire tropospheric ozone profile, including
that over remote oceans.

The comparison with the NASA aircraft data (Fig. 4)
shows that the control run generally underestimates ozone
in the free troposphere, with the largest biases (up to about
15 ppb) for the DC3-GV over the US and KORUS-AQ pro-
files over South Korea. In turn, it is overestimated in the
lower stratosphere for the ARCTAS-A and -B profiles over
the Arctic. Near the surface, the control run overestimates
ozone for the DISCOVER-AQ profile by 15 ppb and for
the KORUS-AQ profile by 7 ppb, which could partly be at-
tributed to the model representative error. Data assimilation
mostly removed the model biases throughout the troposphere
and lower stratosphere, even for the profiles without the di-
rect tropospheric ozone constraints by the TES measure-
ments (after 2009). Miyazaki et al. (2019b) demonstrated that
strong corrections for the entire tropospheric ozone profile
during the KORUS-AQ were mainly obtained from the com-
bined assimilation of UTLS O3 (MLS) and tropospheric NO2
column (OMI and GOME-2) retrievals.

4.2 NO2

4.2.1 Satellite retrievals

Figure 5 compares the global maps of tropospheric NO2
columns between the satellite measurements, control run and
chemical reanalysis. The control run generally underesti-
mated tropospheric NO2 columns over most polluted areas,
with large negative biases over industrial areas (e.g., eastern
China, Europe, eastern US, and South Africa) and over large
biomass burning areas (e.g., central Africa). As an exception,
positive model biases appeared over parts of China, mainly
over southeastern China, after 2015 (Fig. 6) associated with
the use of the 2010 HTAP v2 inventories and because emis-
sion reductions after 2012 are not described by the invento-
ries. Compared to the control run in TCR-1, the control run
in TCR-2 shows reduced annual mean model biases in tro-
pospheric NO2 columns against the satellite measurements
for the same time periods by up to 90 % over China, by 13 %
over the western US, and by 37 % over South Africa, mainly
attributed to the increased horizontal resolution (Sekiya et al.,
2018). The different model bias against the three retrievals
can be attributed to the overpass time difference and diur-
nal variations in chemical processes and emissions, as the
three products are generated using the same retrieval ap-
proach (Boersma et al., 2018).

The negative model bias over these regions is greatly re-
duced in the reanalysis, decreasing the global mean neg-
ative bias by about 84 %–93 % as compared to the three
satellite retrievals to −0.03–0.02× 1015 molec.cm−2 (Ta-
ble 3). Data assimilation improvement is also observed in

Table 3. Comparisons of global tropospheric NO2 columns be-
tween the control run and the satellite retrievals in brackets and be-
tween the reanalysis run and the satellite retrievals: OMI for 2005–
2018, SCIAMACHY for 2005–2011, and GOME-2 for 2007–2018.
Shown are the global spatial correlation (S-Corr), the mean bias
(Bias: the data assimilation minus the satellite retrievals), and the
root-mean-square error (RMSE) in 1015 molec.cm−2.

OMI SCIAMACHY GOME-2

S-Corr 0.98 0.98 0.97
(0.95) (0.96) (0.95)

Bias −0.03 0.01 0.02
(−0.19) (−0.15) (−0.20)

RMSE 0.17 0.27 0.24
(0.30) (0.38) (0.38)

the reduced global RMSE from 0.30–0.38 to 0.17–0.27×
1015 molec.cm−2 and in the increased spatial correlation
from 0.95–0.96 to 0.97–0.98. The remaining errors in the re-
analysis are considerably smaller for most polluted regions
in TCR-2 than in TCR-1 (the global mean biases are −0.18
to −0.05× 1015 molec.cm−2, the RMSEs are 0.38–0.95×
1015 molec.cm−2, and the spatial correlations are 0.92–0.97
in TCR-1). The improvements from TCR-1 can be associated
with various reasons: increased model resolution; improved
assimilated retrievals, including reduced uncertainty for pol-
luted regions; and improved data assimilation setting, in-
cluding the use of the diurnal emission variability correction
scheme. The remaining negative biases could be associated
with errors in the model chemical equilibrium states, plane-
tary boundary layer (PBL) mixing, and diurnal variations of
chemical processes and emissions. Meanwhile, Sekiya et al.
(2020) demonstrated that increasing model resolution from
1.1 to 0.56◦ reduced the analysis errors of tropospheric NO2
by 5 %–24 %.

Figure 6 shows the time series of regional mean tro-
pospheric NO2 concentrations. The regional error statis-
tics compared to the OMI retrievals are summarized in Ta-
ble 4. Over eastern China, the model negative bias is rela-
tively large in winter, particularly in comparison with SCIA-
MACHY and OMI during 2010–2014 when the observed
NO2 concentrations are relatively high. In contrast, the model
bias against OMI and GOME-2 is negative during 2015–
2018, when the observed concentrations are relatively low.
The reanalysis captures the observed decadal changes (r =
0.99 for OMI using monthly mean concentrations), through
corrections made to NOx emissions. Slight negative biases
remain during the 2010–2014 winters compared with OMI
and SCIAMACHY.

Over Europe, the negative model bias is persistent against
the three retrievals throughout the reanalysis period. The data
assimilation reduced about 30 %–60 % of the model negative
bias compared with OMI (by 54 % for mean) and most of the
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Figure 4. Mean vertical profiles of O3 (ppb), CO (ppb), NO2 (ppt), PAN (ppt), OH (ppt), HO2 (ppt), HNO3 (ppt), CH2O (ppt), and SO2
(ppt) obtained from aircraft measurements (black), the control run (blue), and reanalysis (red), for the INTEX-B profile (first row), ARCTAS-
A profile (second row), ARCTAS-B profile (third row), DISCOVER-AQ profile (fourth row), DC3–DC8 profile (fifth row), DC3-GV profile
(sixth row), SEAC4RC profile (seventh row), and KORUS-AQ profile (eighth row). Error bars represent the standard deviation of all data
within one bin (with an interval of 30 hPa).

biases against SCIAMACHY. In contrast, the reanalysis re-
veals excessively high NO2 compared with GOME-2 during
summer. The observed negative trend by OMI (−1.2 % yr−1)
is efficiently captured by the reanalysis (−1.2 % yr−1, r =
0.95).

Over the US, the observed NO2 concentrations decreased
rapidly during 2005–2009 and subsequently show weaker re-
ductions, as discussed by Jiang et al. (2018). The observed
negative trends (−2.3 % yr−1) during 2005-2018 are better
represented by the reanalysis (−2.1 % yr−1) than by the con-
trol run (0.6 % yr−1). The model negative biases compared
with the OMI measurements partially remain in late win-

ter and spring. Data assimilation also increased the temporal
correlation with OMI from 0.54 to 0.88.

Over India, the model negative bias increased with year
because of the lack of the emission increases in the a pri-
ori emissions. The a posteriori NOx emissions in 2018 are
up to 90 % larger than the a priori emissions over polluted
areas at grid scale, whereas the remaining negative NO2 bi-
ases suggest that the NOx emission analysis increments are
insufficient. We applied a covariance inflation to the emis-
sion factors to prevent covariance underestimation caused
by the application of a persistent forecast model, by inflat-
ing the spread to a minimum predefined value (i.e., 30 % of
the initial standard deviation = 40 %) at each analysis step.
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Figure 5. Global distributions of the tropospheric NO2 columns (in 1015 molec.cm−2). The results are shown for OMI (a, b, c) for 2005–
2018, SCIAMACHY (d, e, f) for 2005–2011, and GOME-2 (g, h, i) for 2007–2018. Panels (a), (d), and (g) show the tropospheric NO2
columns obtained from the satellite retrievals (OBS). Panels (b), (e), and (h) show the difference between the model simulation and the
satellite retrievals (Model-OBS). Panels (c), (f), and (i) show the difference between the data assimilation and the satellite retrievals (Assim-
OBS).

The inflation was essential to maintain emission variability
and continue to increase the emissions. The remaining model
biases suggest requirements for a stronger covariance infla-
tion, although too large inflation can cause unstable analy-
sis increments. The reanalysis shows positive trends over the
14 years (+1.3 % yr−1) consistent with the OMI observations
(+1.6 % yr−1), with high temporal correlations with respect
to all the retrievals (r = 0.96 for OMI). The mean bias was
reduced by about 80 % compared to OMI.

Over northern and central Africa and South America, the
control run largely underestimated the NO2 concentrations in
the biomass burning off-seasons, while the interannual vari-
ability in the active seasons for biomass burning are not effi-
ciently captured. The data assimilation removed most of the
model negative bias throughout the year, except for reduced
concentrations over South America in 2005, 2007, and 2010.
The reanalysis period mean biases against OMI are reduced
by more than 90 % over northern Africa, central Africa, and
over South America, with increased temporal correlations
from 0.92–0.97 to 0.98–0.99. Data assimilation reduced the
seasonal amplitude by about 20 %–30 % over northern and
central Africa.

Over southeastern Asia and Australia, the control run un-
derestimated the NO2 concentrations throughout the year

with respect to all the retrievals. The data assimilation re-
moved most of the negative biases and reproduced inter-
annual variability such as high concentrations in 2010 and
2013–2016 over Southeast Asia and in 2006–2007 and 2012–
2013 over Australia.

Over Southern Africa, the control run underestimated the
NO2 concentrations by a factor of about 2 throughout the
year, while about 50 % of the model negative bias is removed
by data assimilation. The remaining model errors can be par-
tially attributed to the limitations in assimilated measure-
ments (e.g., coverage and uncertainty) and persistent model
errors, such as too-short lifetime of NOx , through processes
such as NO2 + OH reactions and the reactive uptake of
HO2 and N2O5 by aerosols (e.g., Lin et al., 2012; Stavrakou
et al., 2013). Further, any errors in the location of individ-
ual sources such as power plants in the bottom-up invento-
ries could prevent data assimilation improvements in our ap-
proach.

4.2.2 Aircraft

Compared with the vertical NO2 profiles from the aircraft
measurements, the simulated NO2 concentration in the free
troposphere is generally too low, whereas the model biases
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Figure 6. Time series of regional monthly mean tropospheric NO2 columns (in 1015 molec.cm−2) averaged over China (110–123◦ E, 30–
40◦ N), Europe (10◦W–30◦ E, 35–60◦ N), the US (70–125◦W, 28–50◦ N), India (68–89◦ E, 8–33◦ N), South America (50–70◦W, 20◦ S–
Equator), northern Africa (20◦W–40◦ E, Equator–20◦ N), central Africa (10–40◦ E, Equator–20◦ S), southern Africa (25–34◦ E, 22–31◦ S),
southeastern Asia (96–105◦ E, 10–20◦ N), and Australia (113–155◦ E, 11–44◦ S) obtained from the satellite retrievals (black), the control
run (blue), and data assimilation (red). Results are shown for the OMI retrievals (left column), SCIAMACHY retrievals (center column), and
GOME-2 retrievals (right column).
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Table 4. The monthly mean bias and temporal correlation of re-
gional mean tropospheric NO2 columns: the data assimilation mi-
nus the satellite retrievals from OMI for the period 2005–2018 in
1015 molec.cm−2. The results of the model simulation (without
data assimilation) are also shown in brackets.

Bias T -Corr

China −0.43 0.99
(−0.34) (0.92)

Europe −0.23 0.95
(−0.50) (0.83)

US −0.12 0.88
(−0.26) (0.54)

South America −0.01 0.98
(−0.30) (0.92)

Northern Africa 0.02 0.98
(−0.24) (0.93)

Central Africa −0.01 0.99
(−0.23) (0.97)

Southern Africa −0.42 0.98
(−0.80) (0.94)

Southeastern Asia −0.13 0.96
(−0.60) (0.88)

Australia −0.03 0.85
(−0.22) (0.85)

India −0.04 0.96
(−0.22) (0.68)

within the boundary layer vary among campaigns (Fig. 4).
The relatively coarse resolution of the model could cause
large differences near the surface, especially at urban sites.
For the ARCTAS profiles, the control run failed to repro-
duce the enhanced concentrations in the boundary layer, and
data assimilation only has small impacts throughout the tro-
posphere. In the lower stratosphere, the MLS O3 and HNO3
data assimilation effectively corrects the amount of NO2 for
the ARCTAS-A profile. The insufficient corrections at high
latitudes in the troposphere are associated with limited in-
fluences of surface NOx emissions on the NO2 profiles. For
the DISCOVER-AQ profile, the control run overestimated
rapid NO2 increases toward the surface, whereas the reanal-
ysis shows improved agreements. Compared with the two
DC3 profiles, both the control run and reanalysis show close
agreement with observations from the surface to middle tro-
posphere, while underestimating the NO2 concentrations in
the upper troposphere. For SEAC4RS, the data assimilation
leads to an underestimation within the boundary later. In con-
trast, for KORUS-AQ, the negative model bias (up to about
40 %) in the boundary layer is mostly removed by data as-
similation.

4.3 CO

4.3.1 Surface

We used the World Data Centre for Greenhouse Gases (WD-
CGG) in situ measurements in 59 stations to evaluate the re-
analysis CO concentrations. The comparison results are sum-
marized in Table 5 and shown in Fig. 7 for selected sites.
The control run underestimated the mean CO concentrations
by 9.4 and 19.8 ppbv at NH midlatitudes and high latitudes,
with the largest negative biases in winter. The model CO un-
derestimations in the NH are commonly reported in many
models (e.g., Stein et al., 2014). The model bias is positive
in the tropics and SH by about 13–14 ppbv. After data assim-
ilation, the model biases are greatly reduced in the SH, the
tropics, and NH midlatitudes (by 66 %–88 %), while repro-
ducing the observed seasonal and interannual variations for
many sites. In contrast, at NH high latitudes, the reanalysis
CO in TCR-2 reveals small corrections. For instance, over
Barrow, Heimaey, and Cold Bay, most of the negative model
biases remain. This is different from the substantial improve-
ments found for the entire globe in TCR-1 (Miyazaki et al.,
2015). There are several potential reasons for the remaining
negative biases, as will be discussed in Sect. 7.4.

4.3.2 Aircraft

Both the control run and reanalysis captured latitudinal vari-
ations in CO over the Pacific acquired by HIPPO observa-
tions, including maximum gradients around the Equator and
the subtropical jet (Fig. S2). As summarized in Table S2, the
control run underestimates CO concentrations in the NH and
overestimates them in the tropics and SH almost for the entire
troposphere over the Pacific. The assimilation decreased CO
concentrations and removed the model positive bias by about
63 %–79 % in the lower troposphere and by 56 %–67 % in the
middle and upper troposphere in the tropics and SH. In the
NH, data assimilation improvements are small, which can be
attributed to remaining errors in the surface emissions, chem-
ical productions and losses (i.e., OH), long-range transport
from the Eurasian continent, and stratosphere–troposphere
exchange (STE) (see Sect. 7.4).

The control run generally captured the observed profiles
for most NASA aircraft flights, except for an up to 50–
130 ppb underestimation in the lower and middle troposphere
for the ARCTAS-A, ARCTAS-B, and KORUS-AQ profiles
(Fig. 4). Substantial reductions in the model negative bias are
found for the KORUS-AQ profile because of increased local
and remote (mainly China) CO emissions (Miyazaki et al.,
2019b). In contrast, the bias reduction is small for the ARC-
TAS profiles. MOPITT data are assimilated equatorward of
65◦, which limits improvements at high latitudes. Mean-
while, the along-track measurements could not be represen-
tative of the concentrations within the large domain of the
western Arctic during ARCTAS-B (Bian et al., 2013), which
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Table 5. Same as Table 2 but for surface CO concentrations. The unit is ppb. Observations used are the WDCGG observations during
2005–2014.

90–55◦ S 55–15◦ S 15◦ S–15◦ N 15–55◦ N 55–90◦ N

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

2.1 9.5 4.7 2.0 −3.6 29.5 1.2 58.4 −9.4 36.3
(13.2) (18.6) (14.1) (24.3) (13.8) (34.2) (−9.4) (50.2) (−19.8) (33.2)

Figure 7. Time series of monthly mean surface CO concentrations obtained from the WDCGG ground measurements (black), the control
run (blue), and reanalysis (red).

may also explain the large negative bias for the ARCTAS-B
profile.

4.4 SO2

Compared with the aircraft measurements (Fig. 4), the
control run mostly overestimates SO2 concentrations in
the lower troposphere by a factor of 2–5 for the DC-3,
SEAC4RS, and KORUS-AQ profiles. The data assimilation
greatly reduced the positive model biases and reproduced the
observed profiles, with mean bias reductions of up to 90 %,

mainly because of reduced surface SO2 emissions. The near-
surface SO2 concentrations became too low (by about 20 %)
after data assimilation for the SEAC4RS and KORUS-AQ
profiles, which could be associated with the large uncertainty
and assumptions made (e.g., constant observation errors; see
Sect. 3.1.5) in the assimilated OMI SO2 retrievals and possi-
ble overestimation of an atmospheric sink of SO2 within the
boundary layer in the model. Any errors in the assimilated re-
trievals and model processes could introduce biases in the es-
timated emissions (see Sect. 5.3). For the ARCTAS profiles,
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both the control run and reanalysis show excessively low SO2
concentrations throughout the troposphere, likely associated
with the lack of observational constraints and large uncer-
tainty in the model processes.

4.5 PAN

4.5.1 Aircraft

Comparisons with the aircraft measurements (Fig. 4) re-
vealed that the control run tends to underestimate PAN in
the free troposphere during INTEX-B by about 50 %–70 %,
during ARCTAS-B by about 10 %–30 %, during SEAC4RC
and KORUS-AQ by up to about 30 %, and for the DC3–DC8
profile by up to about 10 %. Data assimilation mostly re-
moved the negative model biases in the free troposphere. In
the lower troposphere, the reanalysis reveals improved agree-
ments for the KORUS-AQ, SEAC4RS, and DISCOVER-AQ
profiles. These improvements demonstrate that information
obtained from the NO2 retrievals was propagated efficiently
to the NOy budget for many regions. In contrast, for the
INTEX-B, ARCTAS-A, and ARCTAS-B profiles, the reanal-
ysis shows poor agreement likely due to model errors in the
boundary layer chemical production and loss processes of
PAN as well as spatial representativeness errors.

4.5.2 Satellite retrievals

The TES PAN retrievals allow evaluation of the conversion
process from NOx to PAN and its long-range transport across
both polluted and remote regions. Because of the TES single-
footprint detection limit of 200–300 pptv (Payne et al., 2014),
we focus on regions over and downstream of highly pol-
luted areas only. Figure 8 shows the seasonal variations of
tropospheric PAN averaged over the years 2005–2009 be-
tween 800–400 hPa. The observed PAN concentrations are
the largest in boreal spring (MAM) over most of the polluted
regions of the NH extratropics, including North America, and
northern and eastern parts of the Eurasian continent, while
the enhanced concentrations over the northern Pacific sug-
gest long-range transports. The springtime maximum over
the Arctic can be attributed to the transport of pollution and
fires from Russia and China (Fischer et al., 2014). During
summer, the strong contrast between source and remote areas
could reflect the short lifetime of PAN due to thermal decom-
position. The observed PAN concentrations in the tropics are
high over northern Africa in DJF and over central Africa in
JJA, corresponding to the biomass burning season. The en-
hanced concentrations over the Atlantic in SON are likely
associated with lightning NOx sources, as well as strong
biomass burning emissions over the Amazon and long-range
transport along westerly jets.

The control run captured the observed spatial and tempo-
ral variability well, including the enhanced concentrations
over polluted areas with a maximum in spring in the sub-
tropics and extratropics of both hemispheres and the signals

of intercontinental transports across the northern Pacific and
Atlantic. The overall good agreement demonstrates the ca-
pability of the model in representing the global nitrogen cy-
cles, as shown in the GEOS-Chem simulations (Jiang et al.,
2016). Despite the good agreements, the control run is lower
than the TES retrievals over eastern China and North Amer-
ica in SON and DJF, South America in MAM and JJA, and
the Middle East in JJA and is higher over Europe and over
East Asia in JJA.

Data assimilation generally increased PAN over and down-
stream of major polluted areas throughout the year, corre-
sponding to the increased surface and lightning NOx emis-
sions. The increases are large over northern and central
Africa, South America, and the tropical Atlantic in SON;
Southeast Asia in MAM; and at the NH midlatitudes over
land in MAM and JJA. The increased concentrations reduced
the model negative bias against the TES retrievals over East
Asia and North America in SON and over Southeast Asia in
DJF. These corrections led an about 4 % global RMSE re-
duction in DJF and MAM, while the spatial pattern is rea-
sonably captured by the reanalysis (r = 0.52–0.84). In con-
trast, the data assimilation adjustment increased the positive
model bias in JJA over most of the NH midlatitudes and over
northern and central Africa throughout the year. The remain-
ing discrepancies can be attributed to unconstrained model
processes, such as overestimated conversions from NOx to
PAN and underestimated thermal decompositions, as well as
the TES retrieval errors. Fischer et al. (2014) suggested that
PAN is generally more sensitive to NMVOC emissions than
NOx emissions. Fu et al. (2008) and Fischer et al. (2014)
also suggested that underestimations in Asian outflow can
be attributed to emissions of aromatic species and missing
NMVOC emissions in China. Thus, adding constraints in the
reanalysis framework, especially on VOCs emissions, would
benefit improving PAN and chemically related species in-
cluding ozone. Further investigation on the detailed PAN dis-
tributions using aircraft and satellite measurements would be
helpful to comprehend the possible mechanisms and error
sources in the reanalysis PAN fields.

4.6 OH

OH is directly linked to the concentrations of species de-
termining the primary production (O3 and H2O), removal
(CO and methane), and regeneration of OH (NOx). Because
of the multi-constituent constraints for many key species, a
positive impact is expected on global OH fields, given that
the reactions are reasonably well described by the model.
As shown in Fig. 9, the global tropospheric OH distribu-
tion is substantially modified in the reanalysis. Data assim-
ilation mostly increased OH, with the largest increases in
the SH tropics. The mean OH concentration in the SH trop-
ics is increased over the reanalysis period by 20 %–25 % at
700 hPa and 30 %–45 % at 500 hPa. In the NH extratropics,
the OH increases are about 15 %–20 % at 700 hPa and 20 %–
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Figure 8. Global distributions of the PAN concentrations (in ppt) averaged between 800 and 400 hPa during 2005–2009. The results are
shown for the TES retrievals (left column), model simulation (second column), reanalysis (third column), and the reanalysis minus model
(right column) for DJF (top row), MAM (second row), JJA (third row), and SON (bottom row).

30 % at 500 hPa. These increases are found throughout the
reanalysis period, with the largest increases during spring–
summer in both hemispheres. Both the concentration assim-
ilation and the emission optimization were important in in-
troducing these OH changes. The 14-year mean NH/SH OH
ratio in the chemical reanalysis is 1.19± 0.015 (1σ interan-
nual variability), in contrast to 1.30 in the control run, which
is closer to the estimates of 0.97±0.12 based on methyl chlo-
roform observations (Patra et al., 2014). The NH/SH ratio is
maximum in 2016 (1.23), reflecting relatively high OH con-
centrations over East Asia and low concentrations over South
America (Figs. S3 and S4). The interannual variability can be
associated with both human and natural activities, through
changes in climate condition including lightning and in an-
thropogenic emissions, as discussed in Murray et al. (2013)
and Rowlinson et al. (2019).

The tropospheric mean OH concentrations av-
eraged during the reanalysis periods are estimated
at 8.7× 105 molec.cm−3 for the control run and
11.5× 105 molec.cm−3 for the reanalysis. By applying
the obtained tropospheric OH burden to the ACCMIP
multi-model mean estimates of tropospheric chemi-
cal methane lifetime (τOH(chemical)) from Voulgarakis

et al. (2013) for 2000, with the mean OH concentra-
tions of (11.7± 1.0)× 105 molec cm−3, τOH(chemical) of
9.3± 1.6 years, and total lifetime (τOH(total))) of 8.6 years,
we estimated τOH(chemical) for 2005–2018 at 12.5 years
for the control run and 9.5 years for the reanalysis. The large
changes in methane lifetime have a strong implication for
the methane budget estimate including emission inversions.

The model bias against the aircraft profiles varies largely
among the campaigns. For the INTEX-B profile, the con-
trol run captured the observed profile well, whereas the data
assimilation puts too high OH throughout the troposphere,
likely corresponding to increased ozone. For the ARCTAS-
A, ARCTAS-B, and KORUS-AQ profiles, the model neg-
ative bias is strongly reduced by data assimilation in the
free troposphere, mainly due to the increased NOx emissions
and resultant increased ozone. The large negative bias near
the surface remains for the ARCTAS-B profiles. Remain-
ing large errors in HO2 could influence the performance of
the simulation of OH for some profiles, including ARCTAS-
B. Observed OH concentrations are also largely uncertain
(e.g., Heard and Pilling, 2003; Stone et al., 2012). Brune and
Thames (2019) estimated the absolute accuracy for aircraft
HOx measurements to be ±32 % at 2σ confidence.
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Figure 9. Latitude–pressure cross section of the mean OH concentration (b, d, f) averaged during 2005–2018 and time–latitude cross
section of the monthly mean OH concentration averaged between the surface and 300 hPa (a, c, e). The mean OH concentrations from the
control run (a, b), reanalysis (c, d) and the difference between the reanalysis and the model simulations (e, f) are shown. Units are 104

moleculescm−3.

The ATom measurements provide great data to evaluate re-
mote tropospheric OH, for instance, those derived from OMI
CH2O measurements (Wolfe et al., 2019). Compared with
all the profiles during the ATom-1 and ATom-2, the RMSE
is reduced by up to 30 % above about 600 hPa in the reanal-
ysis than in the control run (Fig. 10a). Improved agreements
can be found for many profiles throughout the troposphere
(Fig. S5), whereas a few profiles (e.g., on 6 August 2018,
2 February 2017, and 5 February 2017) led to a degrada-
tion in the agreements in the lower troposphere. The ATom
measurements provide comprehensive pictures of interhemi-
spheric ratios of OH and its seasonal changes over remote
oceans (Fig. 10b, c). The observed interhemispheric ratio is
about 2 near the surface and exceeds 7 in the middle tro-
posphere in boreal summer (ATom-1), whereas it is 0.4–0.8
throughout the troposphere in boreal winter (ATom-2). The
control run mostly overestimated the ratios by a factor of up
to 2.5 for ATom-1 and by up to 1.6 for ATom-2, with the

largest overestimation in the lower troposphere. Data assim-
ilation decreased the ratio and shows improved agreements
from the surface to the upper troposphere. Because the chem-
ical lifetimes of many species are affected by the amount
of OH, the improved representation of OH profiles and its
global distributions suggests that multi-constituent assimila-
tion improves the simulation of concentrations and emissions
of various species. Decadal changes in the tropospheric OH
derived from the reanalysis will be discussed in Sect. 6.

4.7 Aerosols

Although no aerosol observations were assimilated, im-
proved representations of aerosol fields can be expected
through corrections made to trace gas concentrations, such
as NOx and SO2, that affect the formation of secondary
aerosols. Figure 11 shows the scatter plots of ammonium
(NH4), nitrate (NO3), and sulfate (SO4) aerosols from in
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Figure 10. Vertical profiles of (a) OH RMSEs compared with the
ATom-1 and ATom-2 aircraft observations (in pptv) and interhemi-
spheric gradients of OH for (b) ATom-1 and (c) ATom-2 from the
observations (black), control run (blue), and reanalysis (red).

situ observations, control run, and reanalysis. The control
run overestimates ammonium and sulfate aerosol concentra-
tions and underestimates the nitrate aerosol concentrations
for most of the CASTNET (the US), EANET (East Asia),
and EMEP (Europe) sites, while the estimated mean biases
(Table 6) are dominated by large biases for a few stations.
The median biases are lower than the mean biases for many
cases. The multi-constituent data assimilation substantially
modified the aerosol concentrations. The RMSE is decreased
by 7 %–61 % for ammonium aerosols, 2 %–11 % for nitrate
aerosols, and by 5 %–38 % for sulfate aerosols, while the cor-
relation improved for many cases, for instance, from 0.27
to 0.42 for ammonium aerosols compared to the EMEP ob-
servations. The median bias also became smaller (by up to
75 %) for most cases. For urban stations, the model repre-
sentativeness errors may prevent data assimilation improve-
ments, which may have caused degradation for some cases.
An assessment of global particulate nitrate and ammonium
aerosols in the MIROC-CHASER simulation is also given in
Bian et al. (2017).

Substantial changes in the aerosol concentrations suggest
considerable potential of trace gas data assimilation for con-
straining secondary aerosol formation processes. Among nu-
merous factors, optimizations of NOx and SO2 emissions are
considered to be essential to improve secondary aerosol for-
mation in our framework. Our comparisons show improved
agreements against various aircraft measurements for many
key species relevant to aerosol formations, such as NO2,
HNO3, and SO2 (see Sect. 4.8). Meanwhile, assimilation of
aerosol optical depth (AOD) and aerosol concentration ob-
servations are required to further improve the representation
of primary aerosol emissions and concentrations (e.g., Yu-
mimoto et al., 2017). Simultaneous assimilation of trace gas
and aerosol observations would be a powerful approach to
fully represent aerosol–gas interactions in the data assimi-
lation framework, which would improve both trace gas and
aerosol data assimilation analysis.

4.8 Other reactive species

As shown in Fig. 4, the observed main structures of HNO3
are generally captured well by the control run, with increas-
ing errors toward the surface for some profiles. The increase
in HNO3 toward the surface is driven mainly by the oxida-
tion of NOx in polluted areas for most profiles except for the
ARCTAS-A. The control run overestimated the lower tro-
pospheric HNO3 concentrations by a factor of more than 2
for the INTEX-B, DISCOVER-AQ, and KORUS-AQ pro-
files, whereas it mostly underestimated HNO3 concentrations
throughout the troposphere for the ARCTAS-B, DC3–DC8,
DC3-GV, and SEAC4RS profiles. For ARCTAS-A, the con-
trol run largely overestimated HNO3 above about 600 hPa.
The data assimilation mostly increases the HNO3 concentra-
tions throughout the troposphere except for the ARCTAS-A
and DISCOVER-AQ profiles, which is primarily attributed
to the increased NOx emissions and NO2 concentrations. The
data assimilation increase largely reduced the negative model
biases in the free troposphere and lower stratosphere for the
ARCTAS-A and DC3–DC8 and DC3-GV profiles. In con-
trast, it increased the positive model bias in the lower tropo-
sphere for INTEX-B and KORUS-AQ. For DISCOVER-AQ,
the positive model bias in the lower troposphere is greatly
reduced. To improve the lower tropospheric HNO3 concen-
trations, corrections for its removal processes including de-
position and direct assimilation of tropospheric HNO3 mea-
surements could be important. In the UTLS region, the MLS
HNO3 data assimilation mostly removed the positive model
bias in HNO3 for the ARCTAS-AQ profile.

The tropospheric HO2 profiles mainly reflect variations in
water vapor. The control run generally overestimates HO2
throughout the troposphere except for the ARCTAS-B pro-
file. The control run overestimates the tropospheric HO2
concentrations. As an exception, the model negative bias
is found in the lower troposphere for the ARCTAS-B and
in the upper troposphere for KORUS-AQ. Data assimila-
tion slightly increases HO2 in the lower troposphere and de-
creases it in the upper troposphere for most cases. The in-
creased HO2 in the lower troposphere could be associated
with increased CO through the reaction of OH with CO that
converts OH into HO2. The remaining errors could be associ-
ated with model errors for instance in the heterogeneous loss
of HO2 on cloud droplets.

Both the control run and reanalysis capture the tropo-
spheric CH2O profiles well for most campaigns, except for
the ARCTAS-A where CH2O concentrations are underesti-
mated by a factor of 2 throughout the troposphere. The data
assimilation influences on CH2O concentrations are small
because of the lack of assimilation of direct measurements.
Interspecies correlations with CH2O in the state vector were
neglected for all the assimilated measurements, which also
prevented data assimilation adjustments to CH2O.
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Figure 11. Comparisons of monthly mean surface aerosol concentrations between the control run (blue) and reanalysis (red) with the
EMEP (a, b, c), EANET (d, e, f), and EMEP (g, h, i) observations for ammonium (a, d, g), nitrate (b, e, h), and sulfate (c, f, i) aerosols for
2005–2017.

5 Emission sources

In this section, we briefly describe the estimated emissions
from the TCR-2 calculations. Further detailed analyses of
the 14-year variations in the estimated emission sources and
its influences on global air quality and health impacts will
be discussed in a separate study. The global distribution of
a priori and a posteriori emissions and their time series are
shown in Figs. 12 and 13 and summarized in Table 7. The
estimated linear trends are shown in Fig. 14. The regional
total emission statistics for surface emissions and lightning
NOx sources are summarized in Tables 8 and 9, respectively.

5.1 Surface NOx emissions

The multi-constituent data assimilation framework has
been used to improve estimates of global NOx emissions
(Miyazaki and Eskes, 2013; Miyazaki et al., 2014, 2015,
2017, 2019b). In this framework, the simultaneous optimiza-
tion of concentrations and emissions of many species reduces
the model-observation mismatches that arise from model er-
rors other than those related to emissions. Meanwhile, the si-
multaneous assimilation of multiple satellite measurements
obtained at different overpass times was employed to con-
strain diurnal emission variability (Miyazaki et al., 2017).
Thus, the estimated emissions in TCR-2 can be expected to
provide unique information on decadal changes in anthro-
pogenic and natural emission sources.
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Figure 12. Global distributions of surface NOx emissions (in 10−13 kgNm−2 s−1) (left column), surface CO emissions (in
10−10 kgCOm−2 s−1) (second column), surface SO2 emissions (in 10−13 kgSm−2 s−1) (third column), and lighting NOx sources (in
10−14 kgNm−2 s−1) (right column) averaged over 2005–2018. The a priori emissions (upper row), a posteriori emissions (middle row),
and analysis increment (lower row), i.e., the difference between the a posteriori and the a priori emissions, are shown for each panel.

Figure 13. Time series of monthly total global and regional surface NOx emissions (in TgNyr−1), surface CO emissions (in TgCOyr−1),
surface SO2 emissions (in TgSyr−1), LNOx emissions (in TgNyr−1), and obtained from the reanalysis (solid lines) and the emission
inventories or the control run (dashed lines) over the globe (90◦ S–90◦ N), NH (20–90◦ N), tropics (TR, 20◦ S–20◦ N), and SH (90–20◦ S).
The mean emissions values obtained from the reanalysis run and the emission inventories (in bracket) averaged over the years 2005–2018
are shown on the right-hand side.
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Table 6. Comparisons of surface aerosol concentrations between the control run and the in situ observations in brackets, and between the
reanalysis run and the in situ observations for 2005–2017. Shown are the linear regression slope and intercept, the correlation (Corr), the
mean and median biases, and RMSE in µgm−3 for the EMEP, CASTNET, and EANET stations.

Slope + intercept Corr Bias (mean) Bias (median) RMSE

EMEP 0.47x+ 0.40 0.42 −0.26 0.03 1.17
Ammonium (0.49x+ 0.43) (0.27) (−0.22) (0.09) (1.26)

CASTNET 1.38x− 0.10 0.93 0.19 0.14 0.30
Ammonium (2.14x− 0.30) (0.93) (0.57) (0.57) (0.77)

EANET 0.75x+ 0.41 0.62 0.12 0.16 0.78
Ammonium (0.98x+ 0.51) (0.72) (0.49) (0.46) (0.87)

EMEP 0.26x+ 0.60 0.22 −1.84 −0.50 4.74
Nitrate (0.23x+ 0.55) (0.20) (−2.00) (−0.59) (4.81)

CASTNET 1.89x− 0.12 0.73 0.63 0.41 1.01
Nitrate (1.96x− 0.21) (0.71) (0.60) (0.31) (1.03)

EANET 0.70x+ 0.29 0.53 −0.25 −0.17 1.61
Nitrate (0.62x+ 0.02) (0.43) (−0.66) (−0.53) (1.82)

EMEP 0.54x+ 0.34 0.44 −0.65 −0.37 1.40
Sulfate (0.73x+ 0.18) (0.30) (−0.42) (−0.17) (1.47)

CASTNET 0.92x− 0.10 0.85 −0.43 −0.68 0.65
Sulfate (2.12x− 0.21) (0.86) (1.02) (1.16) (1.61)

EANET 0.88x+ 0.29 0.74 −1.68 −1.42 1.65
Sulfate (1.00x+ 0.51) (0.80) (−0.17) (0.08) (2.66)

Table 7. The global and regional mean surface NOx (in TgNyr−1), CO (in TgCOyr−1), and SO2 emissions (in TgSyr−1) and lightning
NOx sources (in TgNyr−1) obtained from the a priori emissions (in brackets) and a posteriori emissions for the period 2005–2018. The
results are shown for the Northern Hemisphere (NH, 20–90◦ N), the tropics (TR, 20◦ S–20◦ N), the Southern Hemisphere (SH, 90–20◦ S),
and the globe (GL, 90◦ S–90◦ N).

Globe NH TR SH

Surface NOx 49.2± 2.8 29.0± 2.6 16.8± 2.1 3.5± 0.5
41.9 25.9 13.7 2.7

Surface CO 1103.8± 223.2 591.7± 90.9 472.1± 195.5 34.0± 18.7
(876.7) (439.9) (400.4) (36.3)

Surface SO2 35.1± 3.0 24.2± 3.1 7.5± 0.7 3.4± 0.3
(50.9) (38.6) (8.6) (3.8)

Lightning NOx 7.5± 0.8 2.5± 1.2 4.1± 0.5 0.9± 0.4
(5.7) (2.0) (3.0) (0.6)

The global surface NOx emissions averaged over the
14 years are estimated at 49.2 TgN yr−1 from the data as-
similation, which is 17.4 % larger than the a priori emis-
sions (41.9 TgN). The mean total emissions are estimated
at 29.0 TgN (12.0 % larger than the a priori emissions) for
the NH (20–90◦N), 16.8 TgN (22.6 % larger) for the tropics
(20◦ S–20◦ N), and 3.5 TgN (29.6 % larger) for the SH (20–
90◦ S), as summarized in Table 7.

Data assimilation largely increased surface NOx emissions
over major polluted areas such as most parts of China, South-

east Asia, and Europe (Fig. 12). The increments vary from
year-to-year over these regions. For instance, they decreased
in more recent years over China. This is associated with
the assumptions applied to the a priori emissions, such as
the use of 2010 anthropogenic emissions in the estimations
for 2011–2018. The complex spatial structure of the incre-
ments over India and eastern China suggests that the emis-
sions evolved differently among the grid points while the
bottom-up inventories exhibited large uncertainty. The sea-
sonal variations are also largely modified for many regions.

Earth Syst. Sci. Data, 12, 2223–2259, 2020 https://doi.org/10.5194/essd-12-2223-2020



K. Miyazaki et al.: Tropospheric chemistry reanalysis 2245

The bottom-up inventories did not consider seasonal variabil-
ity for anthropogenic emissions, such as emissions from win-
tertime heating. Over agriculture and desert areas such as the
western and central US, Sahara, western China, and southern
Europe, the summertime large positive increments can be at-
tributed to underestimated soil emissions, as commonly sug-
gested by Oikawa et al. (2015) and Visser et al. (2019). By
applying the ratio of different emission categories within the
a priori emissions for each grid point, the global total a pos-
teriori NOx emissions by soils is estimated at 8.7 TgN, which
is about 58 % larger than the a priori emissions (5.5 TgN) and
closer to other recent estimates of around 10 TgN (Steinkamp
and Lawrence, 2011; Hudman et al., 2012; Vinken et al.,
2014). The large positive increments over north and central
Africa, South America, and Southeast Asia suggest general
underestimations in biomass burning emissions in the GFED
v4 inventories.

Figure 15 depicts the decadal trend of the estimated NOx
emissions over major polluted regions, updated from our pre-
vious estimates (Miyazaki et al., 2017). The detailed spatial
maps of the NOx emissions for an individual year are shown
in Fig. S6, and the regional yearly emission values are sum-
marized in Table S3. For China, the estimated emissions in-
creased from 2005 to 2011 by 30 % and decreased rapidly
after 2013. Since 2016, the Chinese country-total emissions
started to increase again, while exhibiting substantial spa-
tial differences in the estimated trends. For India, the emis-
sions show a continuous increase by 30 % over 14 years.
The Middle East also exhibits an emissions increase from
2005 to 2014 of 24 %. After 2014, it exhibits a flattened
or a slight negative trend, however with substantial spatial
variations. For the US, the emissions show a reduction of
25 % from 2005 to 2010. The emission reduction is slowed
down afterwards, as suggested by Jiang et al. (2018) using
our previous emission estimates based on the TCR-1 system
(Miyazaki et al., 2017). The estimated emissions for Europe
show a negative trend during 2005–2014 (by 13 %), followed
by a flattened trend. Our estimates also reveal substantial
emission increases for most parts of southeastern and south-
ern Asia and Mexico after 2014. In spite of the substantial
changes for many regions reflecting a combination of effects
of environmental policies and economic activities, the global
total emissions did not change obviously over 2005–2018
(49.2± 2.8 TgN).

5.2 Surface CO emissions

The 14-year mean of global total emissions of CO is in-
creased by 26 % by data assimilation (1104 Tg CO yr−1 vs.
877 Tg CO yr−1), which is attributable to a 35 % increase in
the NH and 18 % increase in the tropics. The large posi-
tive increments are found over eastern and southern China,
northern parts of southeastern Asia, India, and central Africa
(Fig. 12). The emissions increase in the NH is large in the bo-
real late winter–spring period, especially over polluted areas

at NH midlatitudes, which enhanced the seasonal amplitude
for industrialized countries.

The estimated emissions show strong negative trends over
most parts of China (by −0.6 % yr−1), Japan (−2.2 % yr−1),
Europe (−0.8 % yr−1), and the US (−1.8 % yr−1) and pos-
itive trends over India (1.5 % yr−1) during 2005–2018
(Fig. 14). As seen in the underestimated decreasing trends of
surface CO concentration for the NH in the current estimates
(see Sect. 4.3), the obtained CO emissions could underesti-
mate a long-term decreasing trend in CO emissions in NH
as compared with other estimates (e.g., Jiang et al., 2017).
For biomass burning areas, such as Southeast Asia, Ama-
zon, and central and north Africa, the estimated emissions
exhibit a strong year-to-year variability, such as enhanced
emissions over southeastern Asia in 2006–2007 and 2015
and over South America in 2007 and 2010 (Fig. S7). The
regional total surface CO emission values are summarized in
Table S4.

In the multi-constituent data assimilation framework,
the assimilation of non-CO observations influences various
chemical species including OH, which provides additional
constraints on the CO emission estimation. As suggested in
Sect. 4.6, possible underestimations in OH in the control run
could lead to underestimations in the estimated CO emis-
sions for many regions. Assimilation of ozone and NO2 mea-
surements exerts a substantial influence on OH and thus on
CO emission estimates. Nevertheless, insufficient corrections
for the NH extratropical CO suggest requirements for further
improving CO emission estimates, as will be discussed in
Sect. 7.4.

5.3 Surface SO2 emissions

The 14-year mean global total surface SO2 emissions are
decreased by about 30 % by data assimilation from 50.9
to 35.1 TgS, with large reductions in the NH (by 37 %).
The negative data assimilation increments are also large
over China (by −50 %), India (−64 %), and Southeast Asia
(−75 %), suggesting overestimated emissions in the bottom-
up inventories for most industrialized areas. In contrast, the
mean increments are positive over western Europe and the
western US (by up to 50 %). These large adjustments suggest
large uncertainties in the current inventories, as suggested by
Koukouli et al. (2018) and Miyazaki et al. (2019b). The in-
crements changed greatly during the 14 years for many re-
gions, according to substantially temporal changes in the ob-
served SO2 columns.

The a posteriori SO2 emissions show substantial re-
ductions during the years 2005–2018 over China (by
−6.1 % yr−1 for the country total), some parts of Europe
(by up to −6 % yr−1 at grid scale), the eastern US (up to
−3 % yr−1)„ and Japan (up to −8 % yr−1), whereas it shows
strong increase over India (up to 5 % yr−1), the Middle East
(up to 4 % yr−1), and Mexico (about 4 % around Mexico
city). The negative trends are particularly large over central
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Figure 14. Global distribution of linear trend of the a posteriori surface NOx emissions (in 10−13 kgNm−2 s−1 per year), surface CO
emissions (in 10−11 kgCOm−2 s−1 per year), and surface SO2 emissions (in 10−14 kgSm−2 s−1 per year), and standard deviation of the
a posteriori lightning NOx emissions (in 10−14 kgNm−2 s−1 per year) for the period 2005–2018. The red (blue) color indicates positive
(negative) trends.

Figure 15. Time series of the difference (in %) of the annual mean
a posteriori surface NOx emissions relative to the 2005 emissions
in the period 2005–2018 for India (orange), China (blue), Europe
(light blue), the Middle East (red), and the US (green).

and southwestern China, which is due to strong emission re-
ductions after 2010 (Fig. S8), as reported by Li et al. (2017)
and Koukouli et al. (2018). In contrast, the reductions are
smaller for northwestern China, which could be attributed to
the exceptional positive trend in this region after 2010 (Ling
et al., 2017). The obtained strong emission changes (sum-
marized in Table S5), along with changes in NOx emissions,

have strong implications into the secondary aerosol forma-
tion processes for many polluted regions.

The a posteriori SO2 emissions seem excessively high in
2011 for many regions (see Fig. S8), which seems unreal-
istic and could be due to potential problems in data assim-
ilation setting or assimilated retrievals. Volcanic eruptions
also affected a temporal increase in the estimated emissions,
as shown by Carn et al. (2017) using the OMI SO2 mea-
surements. This requires additional careful verification be-
fore used in detailed trend analysis. The estimated emissions
should have a large uncertainty associated with large retrieval
uncertainty (e.g., random noise of ∼ 0.5 DU for remote ar-
eas, as described in Li et al., 2013) and the assumed constant
retrieval errors and air mass factor. Because the optimized
emission factors were applied to the a priori emissions, any
missing sources in a priori inventories (e.g., Liu et al., 2018)
could also lead to systematic biases in the estimated emis-
sions.

5.4 Lightning NOx sources

The multi-constituent data assimilation with different verti-
cal sensitivities provides strong constraints to distinguish be-
tween surface and lightning NOx sources and to correct the
vertical profiles of lightning NOx sources. The a posteriori
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global total lightning NOx source is 7.5 TgN, which is about
32 % higher than in the control run (5.7 TgN). The estimated
global total emission is about 17 % larger than our previous
estimates (6.4 TgN) based on the TCR-1 system (Miyazaki
et al., 2014). The differences between two estimates can pri-
marily be attributed to change in the forecast model and
its resolution. The resolution improvement affected the rep-
resentation of cumulus convection and lightning frequency
distributions. Nevertheless, both estimates suggest common
problems of the lightning parameterizations, such as the re-
quirements of modifying the C-shape assumption and land–
ocean contrasts.

The long-term trends of lightning NOx are mostly insignif-
icant and dominated by multi-year-scale variability rather
than linear increase or decrease (Fig. S9 and Table S6). The
interannual variability of lightning NOx during 2005–2018 is
large over southeastern and southern Asia, central and south-
ern Africa, central America, and the Amazon (Fig. 14). Over
central Africa, the lightning NOx sources are large in 2006
and 2008 and small in 2016. The lightning NOx sources also
show strong interannual variations over the Amazon, with
a maximum in 2009 and minimum in 2015. These changes
are considered to be connected with climate variability such
as El Niño–Southern Oscillation (ENSO) (Rowlinson et al.,
2019), associated with variations in convective activity, thun-
derstorm type, and cloud distributions. The lack of TES
ozone measurements after 2010 introduced artificial changes,
whereas the variations are considered to be consistent dur-
ing 2005–2009 and 2010–2018 in the reanalysis when the
observation density is nearly constant. Further detailed anal-
yses are required to understand the possible causal mecha-
nisms of the multi-year variability, which would provide im-
portant implications into chemistry–climate interaction pro-
cesses. The regional total values of the estimated lightning
NOx sources for major source regions.

6 Trend diagnostics

The reanalysis reveals substantial changes in concentrations
of various species, which provides an important framework
to comprehend the roles of natural and human activities
on atmospheric composition. We evaluated long-term atmo-
spheric composition variations using two data sets: the stan-
dard reanalysis products and a reanalysis without TES mea-
surements (noTES reanalysis). The two data sets are iden-
tical after 2010, whereas in the standard reanalysis correc-
tions made by the TES measurements for 2005–2009 could
lead to artificial decadal trends during the reanalysis. The
noTES reanalysis is meant to provide a consistent long-term
record. As shown in Figs. 16, S10 and S11, the noTES re-
analysis reveals positive trends for the surface ozone over
many regions, with strong positive trends over India (up to
0.25 ppb yr−1), Southeast Asia (up to 0.4 ppb yr−1), and over
the northern Pacific (up to 0.3 ppb yr−1). Positive trends for

surface ozone are also found throughout the SH. In contrast,
strong reductions appear over the US (up to −0.2 ppb yr−1)
and Europe (up to −0.15 ppb yr−1). At 500 hPa (Figs. 16,
S12 and S13), the linear ozone trends are overall positive
except around the Equator. The positive trend at 500 hPa
reaches 0.3–0.4 ppb yr−1 over the SH tropics, the tropical At-
lantic, and the Middle East in the noTES reanalysis, which
were mostly attributable to changes in anthropogenic NOx
emissions. The strong increasing surface ozone trends indi-
cate strong impacts of human activity on air quality, human
health, and climate over the past decade. The increases in the
extratropical UTLS region can be driven by changes in STEs.
The standard reanalysis products exhibit large positive trends
at low latitudes and negative trends over most of the extrat-
ropics, associated with systematic biases between the model
and TES measurements during 2005–2009.

The estimated global tropospheric ozone burden in the
noTES reanalysis was 330.6± 5.8 Tg for 2005–2018, which
is comparable to the 15-model mean value of 337 Tg from
the Atmospheric Chemistry and Climate Model Intercom-
parison Project (ACCMIP) for 2000 (Young et al., 2013)
and is slightly larger than the estimates of 300 Tg from the
five satellite products for the years 2014–2016 (Gaudel et al.,
2018), which could be partly attributed to the limited sensi-
tivity of the satellite measurements to the lower troposphere
and polar regions. The noTES reanalysis revealed a slight in-
crease in global tropospheric ozone burden (+0.4 Tg yr−1)
during 2005–2018. Because of the corrections by TES mea-
surements, the global tropospheric ozone burden was 3.5 %
lower in the reanalysis (317.0 Tg) than in the noTES reanaly-
sis (328.7 Tg) for 2005–2009, which is closer to the satellite-
based estimates.

According to changes in concentrations of various species
including ozone, the reanalysis reveals a general positive
trend in OH during the reanalysis period (Figs. 17, S3 and
S4). The tropospheric OH from the noTES reanalysis ex-
hibits strong increases over the tropical western and east-
ern Pacific by up to +1.2 and 0.9–1.4 % yr−1 over south-
ern India, southern Vietnam, the west coast of Saudi Ara-
bia, and western Iran. Annual and zonal mean OH concen-
trations in the noTES reanalysis are increased over 10–20◦ N,
700–500 hPa by 0.5–0.6 % yr−1 and at the SH low and mid-
latitudes in the lower troposphere by 0.3–0.4 % yr−1. These
trends are commonly found in both data sets but with weaker
trends in the standard reanalysis. At the NH midlatitudes
in the free troposphere, only the noTES reanalysis reveals
substantial increases in OH by 0.5–0.7 % yr−1. Based on a
sensitivity calculation, these significant changes in OH were
found to be strongly driven by surface NOx emission vari-
ations, with strong increases from 2007 to 2012. These re-
sults highlight substantial impact of human activity on the
oxidation capacity of the atmosphere and chemical lifetime
of many species, such as methane (e.g., Rigby et al., 2017),
as previously suggested by Wang and Jacob (1998).
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Figure 16. Global distribution of linear trend of ozone concentrations (in parts per billion per year) at the surface (a, b) and 500 hPa (c, d)
obtained from the reanalysis (a, c, e) and noTES reanalysis (b, d, f) for the years 2005–2018. Panels (e) and (f) show latitude–pressure cross
sections of the linear trend (in % per year).

7 Discussions

7.1 Assimilated data biases and availability

Significant temporal changes in the reanalysis quality can
partly be attributed to discontinuities in the observing sys-
tems. As discussed in Sect. 6, the reduced number of assimi-
lated TES ozone retrievals after 2010 substantially influenced
the usability of the reanalysis products for trend analyses.
Meanwhile, changes in the NO2 observing system, includ-
ing the OMI row anomaly after December 2009 and the lim-
ited temporal coverage of SCIAMACHY and GOME-2, are
also considered to affect long-term consistency. The reanal-
ysis ozone bias against the ozonesonde measurements was
relatively large in the tropical lower and middle troposphere,
which could partly be attributed to the positive biases in the
assimilated TES measurements. Miyazaki et al. (2015) tested
a bias correction scheme for assimilation of TES ozone based
on evaluation results using ozonesonde measurements (Boxe
et al., 2010; Verstraeten et al., 2013); however, the results
were not always positive because of the difficulty in esti-
mating the detailed bias structure. The reanalysis ozone bias

can also be affected by biases in ozone precursors measure-
ments such as NO2 measurements. Nevertheless, we did not
apply any bias correction to any assimilated measurements
in the reanalysis because of the difficulty in estimating the
bias structure, including inter-measurement biases. To im-
prove the temporal consistency, a detailed assessment of bi-
ases in individual retrievals (e.g., Compernolle, 2020) and
between different retrieval products would be helpful, as al-
ready tested in the CAMS reanalysis (Inness et al., 2019).

The availability of the ozonesonde measurements for the
most recent years was also limited at the time of this re-
search, which limits the evaluation of the reanalysis perfor-
mance. The mean ozonesonde concentrations at SH midlat-
itudes show rapid changes after 2017, which were associ-
ated with the reduced number of available ozonesonde ob-
servations at the time of this research and consequent in-
creased representativeness errors of the ozonesonde network
for the large domain. The current ozonesonde network is also
too sparse to capture the regional and monthly representa-
tive ozone fields, especially in the tropics, which can lead
to substantial sampling biases in the reanalysis performance,
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Figure 17. Same as Fig. 16 but for tropospheric OH (in 104 moleculescm−3 per year, a, b) and the latitude–pressure cross-section of OH
trends (in % per year, c, d) for the years 2005–2018.

as discussed for evaluations of chemistry climate models
(Miyazaki and Bowman, 2017).

7.2 Impact of forecast model performance

Even though the assimilation of multi-species data influences
the representation of various chemical fields, including pre-
cursor emissions, the remaining model errors (such as chem-
ical reaction rates and deposition rates) and the limited rep-
resentation of atmospheric chemistry and meteorology limit
the data assimilation improvements. Miyazaki et al. (2020)
developed a MOMO-Chem framework using four global
chemical transport models (CTMs) and an EnKF data assim-
ilation that directly accounts for model error in transport and
chemistry. They demonstrated that the observational density
and accuracy was sufficient for the assimilation to reduce the
influence of model errors in data assimilation analysis; i.e.,
multi-model spread of ozone analysis is reduced by 20 %–
85 % in the free troposphere. Model negative biases in the
tropospheric NO2 column and surface CO in the NH are also
greatly reduced by more than 40 % in all models. MOMO-
Chem provides integrated unique information on the tropo-
spheric chemistry system and its uncertainty ranges, which
would benefit future development of chemical reanalysis.

Meanwhile, a strong reanalysis dependence on forecast
model performance was found on the near-surface concen-
trations and precursor emissions, associated with insufficient
observational constraints (Huijnen et al., 2020; Miyazaki
et al., 2020). The ozone response to precursor’s emissions
was also found to be strongly sensitive to the chemical mech-
anisms in the model, which varied by a factor of 2 for

end-member models, revealing fundamental differences in
the representation of fast chemical and dynamical processes
(Miyazaki et al., 2020). The emissions of ozone precursors
other than NOx and CO, such as VOCs, have a pronounced
influence on the tropospheric chemistry. Adjusting additional
model parameters such as VOC emissions, deposition, and/or
chemical reactions rates could help reduce model errors.
Furthermore, a simultaneous assimilation of trace gas and
aerosol measurements would also reduce systematic model
errors and provide more comprehensive information on var-
ious applications. Meanwhile, high-resolution modeling is
also essential for accurate modeling of nonlinear chemistry
and resolving rapid variations in air pollution and emissions
around cities (Valin et al., 2011; Sekiya et al., 2018), which
is also needed to improve the reanalysis performance.

7.3 Challenges with the next generation of satellite data

Next-generation satellite data products, which have im-
proved vertical sensitivity and accuracy and improved spa-
tial sampling, have great potential to further improve emis-
sions and surface ozone analyses. The exploitation of ex-
isting sounders and development of multispectral retrievals
is expected to add constraints on the reanalysis and to re-
move remaining model errors. For instance, as demonstrated
in Sect. 3.2.2, the multispectral AIRS/OMI ozone retrievals
provide decadal records of tropospheric ozone. Miyazaki
et al. (2019b) demonstrated that assimilation of AIRS/OMI
ozone data, together with precursors and stratospheric mea-
surements, improved the tropospheric ozone analysis over
East Asia during the KORUS-AQ campaign for any meteoro-
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logical conditions. This would provide important constraints
on the decadal ozone variations in the reanalysis.

Tropospheric PAN retrievals from TES were used to eval-
uate the reanalysis fields over both polluted and remote re-
gions (see Sect. 4.1.2). Cross-Track Infrared Sounder (CrIS)
on Suomi-NPP also provides tropospheric PAN retrievals
with improved coverage and accuracy compared with TES
(Payne et al., 2019). Assimilating PAN retrievals from TES
and CrIS can be expected to improve the representation of
the global nitrogen cycles, which would also benefit surface
and lightning NOx emission estimates combining with tropo-
spheric NO2 column measurements. Meanwhile, TROPOMI
provides global maps of the tropospheric NO2 column on a
daily basis with improved accuracy and higher spatial resolu-
tion compared with OMI (Griffin et al., 2019). Assimilating
TROPOMI NO2 has potential for improved evaluation of the
changing landscape of emissions on urban-to-regional and
regional-to-global scales (Lorente et al., 2019). Assimilation
of other retrievals such as OMI and TROPOMI CH2O; CrIS
Isoprene (Fu et al., 2019); and TES, CrIS, and IASI NH3
(Shephard and Cady-Pereira, 2015) would also help improve
the model chemistry and tropospheric ozone reanalysis.

7.4 Under-constrained CO emissions

The validation results of CO concentrations suggested under-
corrected surface emissions of CO, especially in the NH
extratropics (see Sect. 4.3). There are several reasons for
this. First, while our previous estimates in TCR-1 used MO-
PITT TIR-only CO profile data at 700 hPa, TCR-2 used
TIR/NIR total column retrievals. The truly optimal settings
of data assimilation parameters probably differ between the
two setups. The TCR-2 setting might require further op-
timization. Second, the chi-square and observation-minus-
forecast statistics suggested underestimated background er-
rors of CO for many regions. Considering different system-
atic model errors and the increased model resolution between
TCR-1 and TCR-2, background error inflation settings need
to be further optimized for TCR-2. Third, the data assimi-
lation window (2 h) used is clearly too short for CO emis-
sion estimates, considering its relatively long chemical life-
time and the coverage and limited near-surface sensitivity of
MOPITT measurements. A longer data assimilation window
for CO emission estimates, while keeping the short window
for short-lived species such as NOx and ozone, would be re-
quired. Finally, CO is produced by the oxidation of methane
and biogenic NMHCs (Duncan et al., 2007). These compo-
nents can account for part of the missing CO concentrations.
Adding more observational constraints, such as for CH2O
and methane, would help improve CO emission estimates
(e.g., Stein et al., 2014; Zheng et al., 2018). We have already
tested some of the developments and obtained improved es-
timates of CO concentrations and emissions, which will be
implemented in the next-generation chemical reanalysis.

7.5 Uncertainty estimation

Important information regarding the reanalysis product is
provided by the error covariance. Within the EnKF assimi-
lation framework, the analysis ensemble spread is estimated
from the standard deviation across the ensemble and pro-
vides a measure of the uncertainty of the reanalysis prod-
uct. The information on the analysis uncertainty is included
in the TCR-2 reanalysis products. For instance, as shown in
Fig. S14, the analysis spread for ozone is about 1–3 ppb in
the tropics and subtropics and 3–12 ppbv in the extratropics
before 2011. These variations may be related to spatial vari-
ations in observation errors, the number of assimilated mea-
surements, and model errors. After 2011, the spread mostly
becomes smaller than 3 ppb for the globe. The analysis un-
certainty after 2011 seems excessively small as compared
with the validation results against the ozonesonde measure-
ments (see Sect. 4.1.1), which is likely associated with the
stiff tropospheric chemical system and lack of observational
constraints. The obtained results indicate the requirements
for additional observational information and/or stronger co-
variance inflation for measuring the analysis spread corre-
sponding to actual analysis uncertainty. At 200 hPa, the anal-
ysis spread is about 1–4 ppb in the tropical upper tropo-
sphere and about 20–80 ppb in the extratropical lower strato-
sphere. The relative value (compared to the analysis ozone)
is smaller in the extratropics because of the high accuracy
of the MLS measurements. For other species, further inves-
tigations would be required to clarify the usefulness of the
estimated uncertainty (i.e., analysis spread).

7.6 Implications for climate studies

The long-term reanalysis products allow detailed evaluations
of interannual and decadal variations in atmospheric compo-
sition simulated by chemistry climate and chemistry trans-
port models in association with changes in human activi-
ties and natural processes. Employing TCR-1, Miyazaki and
Bowman (2017) evaluated the ACCMIP tropospheric ozone
simulations and investigated sampling biases in model eval-
uation results when using the ozonesonde network. Evalu-
ations of ozone simulations using chemical reanalyses pro-
vide important information on the performance of the simu-
lated radiative forcing (e.g., Bowman et al., 2013; Stevenson
et al., 2013; Kuai et al., 2020), attribution of radiative forc-
ing (Bowman and Henze, 2012), and emergent constraints on
future projections (Miyazaki and Bowman, 2017; Bowman
et al., 2018). Validation of short-lived species can be used to
identify potential sources of error in model fields and is also
important for evaluating the radiative forcing because sim-
ulated OH fields influence simulated climates through their
influences on methane (Naik et al., 2013; Voulgarakis et al.,
2013). The optimized precursor emission fields can be used
to validate bottom-up emission inventories and lightning pa-
rameterizations. As changes in tropospheric ozone burden
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Table 8. The regional mean surface NOx (in TgNyr−1), CO (in TgCOyr−1), and SO2 emissions (in TgSyr−1) obtained from the a priori
emissions and a posteriori emissions for the period 2005–2018 and their linear trends (in % per year). The results are shown for China
(30–40◦ N, 110–123◦ E), Europe (35–60◦ N, 10◦W–30◦ E,), the US (28–50◦ N, 70–125◦W), South America (20◦ S–0◦ N/S, 50–70◦W),
northern Africa (0◦ N/S–20◦ N, 20◦W–40◦ E), central Africa (0◦ N/S–20◦ S, 10–40◦ E,), southern Africa (22–31◦ S, 25–34◦ E), southeastern
Asia (10–20◦ N, 96–105◦ E), Australia (11–44◦ S, 113–155◦ E), and India (8–33◦ N, 68–89◦ E).

China Europe US S. America N. Africa C. Africa S. Africa SE Asia Australia India

NOx TCR-2 6.1 4.6 5.3 1.2 3.2 2.9 0.7 0.6 1.6 3.3
NOx prior 6.1 3.6 5.1 0.9 2.7 2.8 0.5 0.4 1.1 3.3
NOx trend 0.2 −1.3 −2.7 −1.0 −0.1 0.1 0.1 0.4 0.1 2.2

CO TCR-2 176.9 42.4 64.6 38.5 107.1 164.9 7.9 13.7 15.4 78.0
CO prior 128.4 26.5 56.9 31.4 93.4 100.0 6.2 14.7 16.4 71.7
CO trend −0.6 −0.8 −1.8 −4.7 0.8 0.9 0.8 0.1 1.8 1.5

SO2 TCR-2 5.8 2.8 2.5 0.4 0.6 0.7 0.5 0.1 1.2 1.8
SO2 prior 11.6 3.8 5.8 0.2 0.5 0.7 1.1 0.4 1.6 5.0
SO2 trend −6.1 −1.1 −1.1 2.1 −1.9 −0.4 2.0 −0.1 0.9 2.2

Table 9. Same as in Table 7 but for lightning NOx sources NOx (in TgNyr−1) for North America (20–60◦ N, 120–65◦W), Europe (35–
60◦ N, 10◦W–30◦ E), northern Eurasia (30–68◦ N, 60–130◦ E), the Pacific (35◦ S–20◦ N, 154–180◦ E and 35◦ S–12◦ N, 180◦ E–88◦W),
South America (35◦ S–10◦ N, 77–39◦W), the Atlantic ocean (30◦ S–3◦ N, 35◦W–8◦ E), northern Africa (3–25◦ N, 15◦W–48◦ E), southern
Africa (30◦ S–3◦ N, 10–48◦ E), the Indian ocean (40–9◦ S, 52–108◦ E), southeastern Asia (9◦ S–26◦ N, 95–146◦ E), and Australia (40–12◦ S,
112–154◦ E).

Europe N. America S. America S. Africa N. Africa Siberia India SE Asia Pacific Atlantic Australia

LNOx TCR-2 0.18 0.48 1.12 0.79 0.72 0.56 0.06 0.96 0.24 0.02 0.27
LNOx prior 0.13 0.39 0.87 0.56 0.55 0.47 0.03 0.72 0.12 0.02 0.23

and NOx emissions show a close relation in different future
scenarios (Stevenson et al., 2013), evaluations using the esti-
mated emissions and evaluated model response to emissions
(Miyazaki et al., 2020) have the potential to evaluate prein-
dustrial, present-day, and future model simulations. Short-
lived climate pollutants (SLCP) are an increasingly important
component of greenhouse gas budgets that limit warming to
target temperatures, e.g., 1.5 or 2 ◦C (Rogelj et al., 2019).
Chemical reanalysis can play a crucial role in assessing the
changes and efficacy of SLCPs.

8 Data availability

The Tropospheric Chemistry Reanalysis (TCR-
2) data for 2005–2018 is freely available at
https://doi.org/10.25966/9qgv-fe81 (Miyazaki et al., 2019a).
The teaser data (mon_emi_nox_tot_2005.nc) are a part
of the TCR-2 data products (with the same DOI) and can
be downloaded from the TCR-2 data website by selecting
“Monthly mean data: Emissions” – “NOx (surface total)”
– “2005” at https://tes.jpl.nasa.gov/chemical-reanalysis/
products/monthly-mean (last access: 1 December 2019).

9 Conclusions

We conducted a tropospheric chemical reanalysis calculation
for the 14 years from 2005 to 2018 based on an assimila-
tion of multi-constituent observations from multiple satel-
lite sensors. The assimilated measurements of ozone, NO2,
CO, HNO3, and SO2 were obtained from the OMI, SCIA-
MACHY, GOME-2, TES, MLS, and MOPITT satellite in-
struments. Surface emissions of NOx , CO, and SO2 and
lightning NOx sources and the chemical concentrations of
various species are simultaneously optimized using an EnKF
data assimilation. In this framework, the improved concen-
trations of various species have the potential to improve the
emission inversion, whereas the improved representations of
emissions benefit the concentration reanalysis through a re-
duction in the model errors.

The evaluation results for various species reveal the bene-
fit of the assimilation of multiple-species data on the anal-
ysis of both observed and unobserved species profiles on
both regional and global scales, for seasonal and decadal
variations, and from the surface to lower stratosphere. The
global statistics of the NO2, ozone, and CO evaluation re-
sults are summarized in Table 10. The reanalysis ozone bias
against the ozonesonde measurements was less than 1.2 ppb
in the lower troposphere except for the tropics and less than
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Table 10. Summary of global statistics of the NO2, ozone, and CO
evaluation results for the reanalysis and the control run (in brack-
ets) against tropospheric NO2 in 1015 molec.cm−2 from Table 3,
ozonesonde measurements in parts per billion from Table 2, and
surface CO measurements in parts per billion from Table 5.

Bias RMSE

Satellite tropospheric NO2 −0.03 to 0.02 0.17–0.27
(−0.20 to −0.15) (0.30–0.38)

Ozonesonde 850–500 hPa −0.4 to 4.2 4.1–7.8
(−6.2 to −4.0) (4.6–7.7)

Ozonesonde 500–200 hPa −0.2 to 5.7 9.0–26.7
(−11.9 to 27.7) (12.2–39.1)

Surface CO −9.4 to 4.7 2.0–58.4
(−19.8 to 14.1) (18.6–50.2)

3.1 ppb in the middle and upper troposphere except for the
SH high latitudes, with temporal correlations greater than
0.85 for most regions. The improved agreements in TCR-2
ozone from TCR-1 can be attributed to a mixture of vari-
ous upgrades, including assimilated measurements and the
forecast model performance and resolution. The assimilation
also removed the global mean model biases in the tropo-
spheric NO2 column by about 84 %–93 %, while reproduc-
ing the observed seasonal and interannual changes for both
industrialized and biomass burning regions (r = 0.88–0.99).
The model biases in surface CO concentrations are greatly
reduced in the SH, the tropics, and NH midlatitudes by 66 %–
88 %. The reanalysis also reasonably captured the observed
spatial and temporal variability in PAN as compared with
the TES satellite retrievals (r = 0.52–0.84 for the seasonal
mean fields). The negative model biases (by 10 %–70 %) in
the free tropospheric PAN are greatly reduced by data as-
similation compared to the aircraft measurements due to in-
creased surface and lightning NOx emissions. Data assim-
ilation also removed positive model biases for SO2 in the
lower and middle troposphere. The reanalysis OH shows im-
proved agreements in global distributions over remote oceans
in comparison with the ATom aircraft measurements from the
surface to the upper troposphere, with the RMSE reduction
of up to 30 % in the free troposphere and improved north-to-
south gradients. Constraints obtained for OH profiles have a
large potential to influence the chemistry of the entire tropo-
sphere, which played an important role in propagating ob-
servational information among various species and in mod-
ifying the chemical lifetimes of many species. Although no
aerosol observations were assimilated, improved representa-
tions of aerosols against surface in situ measurements were
obtained through corrections made to the secondary aerosol
formation.

The multi-constituent data assimilation framework is also
used to improve estimates of global emissions of NOx , CO,
and SO2. The simultaneous optimization of emissions and

concentrations reduces the model–observation mismatches
that arise from model errors other than those related to emis-
sions. The global total emissions averaged over the 14 years
is estimated at 49.2 TgN yr−1 for surface NOx emissions,
1104 TgCO yr−1 for surface CO emissions, 35.1 TgS yr−1

for surface SO2 emissions, and 7.5 TgN yr−1 for lightning
NOx sources, which are substantially different from the a
priori emissions constructed based on bottom-up inventories.
Chinese NOx emissions increased from 2005 to 2011, then
rapidly decreased after 2013, and have started to increase
since 2016, while exhibiting substantial spatial differences
within the country. Indian NOx emissions exhibit a continu-
ous increase of 30 % over 14 years. For the US and Europe,
the NOx emissions show a slowdown in NOx emission re-
ductions in the recent years. The SO2 emissions show sub-
stantial reductions over China (by −6.1 % yr−1), some parts
of Europe (up to−6 % yr−1 on each grid), the eastern US (up
to −3 % yr−1), and Japan (up to −8 % yr−1), whereas strong
increases are found over India (up to 5 % yr−1), the Middle
East (up to 4 %), and Mexico (about 4 %), all of which are
associated with environmental policies and economic activi-
ties. Lightning NOx sources exhibit strong year-to-year vari-
ability, associated with multi-year-scale climate variability
such as ENSO. The multi-year changes in emissions, along
with the changes in meteorological conditions, led to strong
increases in surface ozone over India (up to +0.25 ppb yr−1)
and southeastern Asia (up to +0.4 ppb yr−1), as well as in
tropospheric OH over the tropical western and eastern Pacific
(up to +1.2 % yr−1) and low-latitude polluted areas (0.9–
1.4 % yr−1) during 2005–2018. These results have strong im-
plications on the impacts of human activity on air quality,
human health, and climate. Meanwhile, significant temporal
changes in the reanalysis can partly be attributed to disconti-
nuities in the observing systems.

The combined analysis of concentrations and emissions
is considered an important development in the tropospheric
chemistry reanalysis. Our comparisons suggest that improv-
ing the observational constraints, including the continued de-
velopment of satellite observing systems, together with the
optimization of model parameterizations, such as deposition
and chemical reactions, will lead to increasingly consistent
long-term reanalyses in the future. An increase in the fore-
cast model resolution and an extension of data assimilation
to aerosols are expected to improve the capability of chemi-
cal reanalysis for air quality and climate applications. Tech-
niques to reduce the influence of discontinuities in the as-
similated measurements and to employ next-generation satel-
lite retrievals would also be important developments in fu-
ture chemical reanalyses. Satellite data sets from a new con-
stellation of LEO sounders and GEO satellites (e.g., GEMS,
TEMPO and Sentinel-4) will provide more detailed knowl-
edge of ozone and its precursors for East Asia (Bowman,
2013).
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