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Abstract. Crop phenology provides essential information for monitoring and modeling land surface phenology
dynamics and crop management and production. Most previous studies mainly investigated crop phenology at
the site scale; however, monitoring and modeling land surface phenology dynamics at a large scale need high-
resolution spatially explicit information on crop phenology dynamics. In this study, we produced a 1 km grid crop
phenological dataset for three main crops from 2000 to 2015 based on Global Land Surface Satellite (GLASS)
leaf area index (LAI) products, called ChinaCropPhenlkm. First, we compared three common smoothing meth-
ods and chose the most suitable one for different crops and regions. Then, we developed an optimal filter-based
phenology detection (OFP) approach which combined both the inflection- and threshold-based methods and
detected the key phenological stages of three staple crops at 1km spatial resolution across China. Finally, we
established a high-resolution gridded-phenology product for three staple crops in China during 2000-2015. Com-
pared with the intensive phenological observations from the agricultural meteorological stations (AMSs) of the
China Meteorological Administration (CMA), the dataset had high accuracy, with errors of the retrieved phe-
nological date being less than 10d, and represented the spatiotemporal patterns of the observed phenological
dynamics at the site scale fairly well. The well-validated dataset can be applied for many purposes, includ-
ing improving agricultural-system or earth-system modeling over a large area (DOI of the referenced dataset:
https://doi.org/10.6084/m9.figshare.8313530; Luo et al., 2019).

Zhang and Tao, 2013).

et al., 2018a; Sakamoto et al., 2010, 2013; Wang et al., 2015;

Phenology is a key indicator of vegetation growth and devel-
opment and plays an important role in vegetation monitor-
ing (Qiu et al., 2015; Tao et al., 2017; Zhong et al., 2016).
Accurate information on the timing of key crop phenolog-
ical stages is critical for determining the optimal timing of
agronomic management options, reliable simulations of crop
growth and yield, and analyzing the plant response to climate
change (Bolton and Friedl, 2013; Brown et al., 2012; Chen
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Field phenological observations are time- and money-
consuming. And the observational stations are limited and
distributed sparsely. Therefore, the field phenological ob-
servations cannot meet the requirements of many purposes
such as vegetation monitoring for remote areas with sparse
observations and the grid-based earth system simulations.
The satellite-based observations with a wide spatial cover-
age and short revisit times have become a powerful method
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for monitoring vegetation growth and obtaining vegetation
information at regional and global scales. Previous studies
have mainly used a vegetation index (VI) to extract crop phe-
nology. For example, Pan et al. (2015) presented a method
to construct normalized difference vegetation index (NDVI)
time-series dataset derived from the Environment and Dis-
aster Monitoring and Prediction Satellite Constellation A/B
(HJ-1 A/B) charge-coupled device (CCD) sensor and ex-
tracted phenology parameters. Zeng et al. (2016) detected
corn and soybean phenology with the Moderate Resolution
Imaging Spectroradiometer (MODIS) 250 m wide dynamic
range vegetation index (WDRVI) time-series data. Cao et
al. (2015) developed an adaptive local iterative logistic fit-
ting method to fit time series of the enhanced vegetation
index (EVI) derived from MODIS and estimated green-up
date of spring vegetation. Sakamoto (2018) refined the shape
model-fitting method to estimate the timing of 36 crop-
development stages of major US crops from MODIS WDRVI
time-series data. Crop phenology detected by these studies is
relatively accurate. Nevertheless, it cannot be ignored that
the VI is overly dependent on the band characteristics of sen-
sors (Atzberger et al., 2014). By contrast, the leaf area in-
dex (LAI) is more robust across diverse sensors and more
sensitive than the VI to large amounts of vegetation (Verger
et al., 2016). In addition, previous studies focused on only
very limited areas or very few crops due to the high diver-
sity and complexity of agricultural planting structures (Liao
et al., 2019; Liu et al., 2017; Xu et al., 2017; Wang et al.,
2012).

To implement a large-scale agricultural-system simula-
tion for multiple crops, there is an urgent need to acquire
the gridded-phenology dataset for each crop at a national or
global scale. For example, the crop model can simulate crop
growth and development and predict crop yields. However,
its applications to a large area are limited by the lack of ac-
curate and spatially heterogeneous crop growth information
(Curnel et al., 2011; Dorigo et al., 2007; Tao et al., 2009; Jin
et al., 2018). According to some previous studies, it could
improve the accuracy of model estimation at a large scale
by assimilating reliable remote-sensing data into crop growth
models (Bolten et al., 2010; Nearing et al., 2012; Ines et al.,
2013; Chen et al., 2018a; Huang et al., 2015; Zhou et al.,
2019; de Wit and van Diepen, 2007). Among the state vari-
ables used in the assimilation, phenology is one of the essen-
tial variables because of its critical roles in affecting dry mat-
ter accumulation and distribution during the growing stages
and reflecting of crop periodic biological changes influenced
by various environmental conditions (e.g., climate; Jin et al.,
2018; Zheng et al., 2016).

In this study, using a remotely sensed Global Land Sur-
face Satellite (GLASS) LAI product (2000-2015; Xiao et
al., 2014), we aim to (1) choose the most suitable smooth-
ing method to reduce the noise of the LAI time series for
different crops and regions, (2) detect the phenological infor-
mation of three staple crops (i.e., maize, rice and wheat) at
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1 km spatial resolution across China and evaluate its accuracy
by comparing with the observed data at agricultural meteo-
rological stations (AMSs) of the China Meteorological Ad-
ministration (CMA), and (3) explore the spatial patterns of
different phenological stages. The resultant remote-sensing
LAI-based crop phenology dataset with 1km spatial resolu-
tion across China (ChinaCropPhenlkm) will benefit the un-
derstanding of crop phenological dynamics, climate change
impacts and adaptations, and agricultural-system modeling
over a large area, temporally and spatially (Luo et al., 2019).

2 Data and methods

2.1 Study area

The study areas across mainland China are characterized
by complex environments and crop planting structures, di-
verse cropping intensity, and cultivation habits (Fig. la;
Piao et al., 2010; Zhang et al., 2014a). Additionally, we
divided the whole study area into different subregions for
each crop based on the cropping system and growth envi-
ronment (Fig. 1b, ¢, d). More details of the subregions for
each crop are shown in Tables S1-S3 in the Supplement.
Rice, wheat and maize are the three staple crops in China,
together accounting for 59 % of the total planting area and
92 % of the grain yield in 2017. Roughly half of the crop-
land in China is multi-cropped, such as the double-cropping
system of wheat—-maize in the North China Plain and the ro-
tation system between early-season rice and late-season rice
in southern China (Frolking et al., 2002).

2.2 Data
2.2.1  ChinaCropPhen1km input data

An improved MODIS-based LAI dataset (GLASS LAI)
from 2000 to 2015 was from Liang et al. (2013; http://
glass-product.bnu.edu.cn/?pid=3&c=1, last access: January
2020). The GLASS LAI product was generated with general
regression neural networks (GRNNs) trained by the fused
LAI from MODIS and Carbon cYcle and Change in Land
Observational Products from Ensemble of Satellites (CY-
CLOPES) LAI products and the reprocessed MODIS re-
flectance of the Benchmark Land Multisite Analysis and In-
tercomparison of Products (BELMANIP) sites during the
period 2001-2003 (Liang et al., 2013). By computing the
root-mean-square error (RMSE) and determination coeffi-
cients (R?) between several global LAI products and the
high-resolution LAI reference map, it could be shown that
the accuracy of the GLASS LAI (RMSE = 0.78; RZ = 0.81)
was fairly good compared to that of the MODIS LAI product
(MOD15) and Geoland2 BioPar version 1 (GEOV1; Xiao et
al., 2016). Moreover, the intercomparison indicated that the
GLASS LAI (8 d composites of 1km spatial resolution) was
more temporally continuous and spatially complete than the
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Figure 1. The spatial distribution of agricultural meteorological stations (AMSs) in studied areas (a) and the locations of divided subregions

for rice (b), wheat (c¢) and maize (d).

other LAI products (Xiao et al., 2014, 2016). It has been ap-
plied to vegetation monitoring and crop model assimilation
(Xiao et al., 2014; Chen et al., 2018a).

In addition, the cultivated-land layer derived from the 1 km
National Land Cover Dataset (NLCD) of China was used as
cropland masks. Specifically, we detected the key phenologi-
cal dates for dryland crops (i.e., maize and wheat) and paddy
rice, which were restricted on the dryland and paddy field
layer derived from the NLCD, respectively. NLCD was pro-
vided by the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences (http://www.resdc.
cn/Default.aspx, last access: January 2020), which also in-
cluded several epochs of land use datasets, i.e., 2000, 2005,
2010 and 2015 (Liu et al., 2005, 2014).

2.2.2 ChinaCropPhen1km validation data

The crop phenology observation records from 2000 to 2013
of maize, rice and wheat crops were obtained from AMSs,
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which were governed by the CMA (https://data.cma.cn/, last
access: December 2019). Such phenology information was
observed and recorded by well-trained agricultural techni-
cians in the experimental field and then checked and man-
aged by the Chinese Agricultural Meteorological Monitoring
System (CAMMS). In this study, we selected the agromete-
orological stations with more than 10 years of records of key
phenological dates, including the green-up date, emergence
date, transplanting date, V3 stage (i.e., early vegetative stage
of maize when the third leaf is fully expanded), heading date
and maturity date, for the three crops. Totally, there were
436 stations across the main crop-cultivated areas in China

(Fig. 1).

2.3 Methods

The method to retrieve the phenological information of three
staple crops at the national scale is presented schematically
in Fig. 2. The data processes are as follows: (1) data pre-
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Figure 2. Flow chart of procedures for data analysis and crop phe-
nological date identification.

processing, (2) selecting the cropland sample grid to deter-
mine the suitable smoothing method, (3) determining the op-
timal filter-based phenology detection (OFP) approach and
(4) generating the ChinaCropPhenlkm dataset.

2.3.1 Data preprocessing

Due to the differences among these datasets on the pro-
jected coordinate system, firstly, we projected or re-projected
all raster data to “Asia North Albers Equal Area Conic” by
using the Project Raster tool in ArcGIS. Then, we com-
bined 46 annual GLASS LAI images together and used a
China provincial administrative vector map to mask images
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by province. Finally, a LAI time series was created for each
pixel for further applications.

2.3.2 ChinaCropPhen1km LAl smoothing methods

Previous studies have proposed different smoothing methods
to reduce the noise of GLASS LAI time series and found
that the OFP method varied by studied times, areas and ob-
jectives (Zhao et al., 2016; Wang et al., 2018). Three com-
monly used methods were chosen in the study to smooth the
LAI time-series curves, including the double logistic (DL)
method, Savitzky—Golay (S-G) filter method and wavelet-
based filter (WF) method.

Double logistic (DL) method

The double logistic method is a method of merging local fit-
ting parts to obtain the overall fitting result (Jonsson and Ek-
lundh, 2004). In the local fitting process, the double logistic
function can be expressed as

1 1
I+exp(*=H) 1+ exp(“x—;’)’

gty x1,...,x4) = (D

where x| determines the position of the left inflection point,
while x, gives the rate of change. Similarly, x3 determines
the position of the right inflection point, while x4 gives the
rate of change at this point.

Savitzky—Golay (S-Q) filter method

Based on locally adaptive moving window, the S—G filtering
method can be used to smooth data and suppress disturbances
with a local polynomial regression model (Savitzky and Go-
lay, 1964). The algorithm can be summarized as follows:

1=n

Z CiLAIL;;
l=—n

LAij = N , 2)
where LAI;; represents the original LAI value, LAT? is the
smoothed LAI value, j is running index of the LAI time se-
ries, C; is the coefficient of the ith LAI value, n is the half-
width of the smoothing window and N is the width of the
moving window to perform filtering (2n + 1). The width of
the moving window — N — not only determines the degree
of smoothing but also affects the ability to follow a rapid
change. We selected three window widths (3, 4 and 5) to

identify a better width for different crops and regions.

Wavelet-based filter (WF) method

The wavelet-based filter method can reduce noise with
reflecting the periodicity of seasonal vegetation change
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(Sakamoto et al., 2005). The input signals f(x) is trans-
formed in the wavelet transform as follows:

1 x—>b
Wibi= f o) fodr, 3

where a is a scaling parameter, b is a shifting parameter and
¢ implies a mother wavelet.

The advantage of the WF method is that it can maintain the
time components of time-series data and hardly distort sig-
nals. The input signal f(x) is decomposed into linear combi-
nations of wavelet functions in the multi-resolution approxi-
mation:

J
fE) = 1F i+ g0, )

i=1

where f(x); implies the approximate expression in level i,
and g(x); implies the high-frequency components in level i.
We used three types of mother wavelets: Daubechies (1988;
on the order of 3-24), Coiflet (on the order of 1-5) and Sym-
let (on the order of 4-15) in the study.

2.3.3 Methods to detect the phenological information

The methods to detect remote-sensing-based phenology can
generally be classified into three groups: the inflection-based
method (Chen et al., 2016), threshold-based method (Man-
fron et al., 2017), and methods based on the mathematical or
geometrical model-fitting approach (Sakamoto et al., 2010).
In this study, we used both the inflection- and threshold-
based methods together to detect phenology. Firstly, we de-
fined the inflection and maximum points of LAI time series
as the specific timing of key phenological stages for different
crops (Fig. 3).

Green-up date, emergence date, transplanting date and
V3 stage

We defined the date of inflection point (the first derivative in-
creases continuously after this point or the second derivative
equals 0) of the LAI time-series curves as the green-up date
of winter wheat, emergence date of spring wheat, transplant-
ing date of rice and V3 stage (early vegetative stage of maize
when the third leaf is fully expanded) of maize (Sakamoto,
2018; Sakamoto et al., 2005, 2010). Before the inflection
point, the LAI values are kept low for a long time, and then
they start to increase continuously after this point.

Heading date

The heading date in the study was defined as the day when
the LAI reaches the maximum, similar to some previous
studies (Sakamoto et al., 2005; Chen et al., 2018b) — that is
to say, the maximum LAI points in the time-series curve are
regarded as the heading dates.

www.earth-syst-sci-data.net/12/197/2020/

Maturity date

When crops reach maturity, the physiological activity will
change largely, leading to an abrupt decrease in LAI
(Sakamoto et al., 2005; Chen et al., 2018b). Therefore, we re-
garded an inflection point in the LAI time-series curve, where
the first derivative is negative with the largest absolute value,
as the maturity date.

2.3.4 Determining the optimal filter-based phenology
detection approach (OFP)

Based on the observations around the nearest AMS, we
needed firstly to determine the restricted time windows re-
sponding to each key phenological stage for different crops.
Then we randomly sampled 1000 grids every year in each
province from the grids where the land use data were identi-
fied as cropland and retrieved the key phenological stages in
the sampling grids according to the three smoothing methods
and the above definitions of key stages. To determine the OFP
approach in each province, we identified the inflection points
and maximum value point of each LAI time-series curve at
each grid within the restricted time windows. After detecting
phenological information of the cropland sample grids, we
calculated the RMSE values between the estimated pheno-
logical dates and observed dates and averaged those RMSE
values for each crop at a provincial scale. Finally, we chose
the most suitable smoothing method for different crops in
each province with minimum RMSE.

2.3.5 Generating ChinaCropPhen1km dataset

After removing the grids from where the land use data were
identified as non-cropland, we then obtained cropland grids
where the phenological information is detected. Then, the
most suitable smoothing method for different crops in each
province were applied to reconstruct the LAI time series at
the 1 km grid scale. Finally, we detected the key phenological
dates using the OFP approach and determined the cultivated
grids for each crop on the basis of three key phenological
stages that could be identified simultaneously. For example,
if the green-up date, heading date and maturity date (corre-
sponding to the inflection and maximum points in LAI time
series) of winter wheat could be simultaneously detected for
a specific grid, then it could be regarded as the cultivated grid
of winter wheat. Additionally, to evaluate the accuracy of the
estimated phenological dates at a national scale, we calcu-
lated the mean of phenological dates detected from each crop
pixel around the corresponding AMS and compared them
with the corresponding observations by using the RMSE.

Earth Syst. Sci. Data, 12, 197-214, 2020
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Figure 3. Typical phenological curves for different cropping systems in China.

3 Results and discussion

3.1 Comparisons of different smoothing methods

The smoothed time profiles of the LAI generated by differ-
ent smoothing methods are shown in Fig. 4. Both the S-G
filter and WF method can smooth LAI time series well — that
is to say, the generated time profiles of the LAI match well
with the seasonal tendency of the observed LAI time series
in the field. In addition, both methods can clearly character-
ize the local changes in the time component and maintain the
time components of LAI time-series data. Although the DL
method performs poorly for smoothing LAI time series of
the double-season crops, it is still reliable for single-season
crops. These findings were consistent with those in some pre-
vious studies (Zhu et al., 2012; Sakamoto et al., 2005; Qiu et
al., 2016).

We further compared mean RMSE of different smoothing
methods and selected the most suitable smoothing method
with minimal mean RMSE for different provinces and crops
(Table 1). If the RMSE values were the same, we also
compared the number of crop grids according to different
smoothing methods and selected the suitable method which
had identified a larger number of crop girds. It is noted that
the number of identified grids differ considerably even with
same RMSE values. Totally, the S—-G filter was an over-
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whelming smoothing method for 95 % crops and provinces,
followed by the WF and DL method.

We ascribed the great performance of the S-G to two rea-
sons. (1) Its scientific smoothing principle is as follows: the
S—G filter applies an iterative weighted moving average filter
to the time series, which can replace the noise data as well
as keep the fidelity (Geng et al., 2014). By contrast, the WF
method decomposes the time series into scaled and shifted
wavelets to acquire time localization of a given signal (Qiu
et al.,, 2014). The DL method uses a series of parameters
to fit the time series (Beck et al., 2006). (2) S-G is more
suitable for the GLASS LAI S—G can catch the local varia-
tions — e.g., the bimodal curve characteristics from double-
cropping rice and the rotation of winter wheat and summer
maize (Fig. 3b, f) — in time series and perform the best for
data without extreme noise, such as those of the GLASS LAI
(Eklundh and Jonsson, 2015). The DL method is more use-
ful for data with much noise; however, it fails to identify lo-
cal changes due to being unfit for data with double peaks.
The WF method is also a powerful tool for processing non-
stationary and noisy signals such as VI time series rather than
the GLASS LAI (Rouyer et al., 2008; Sakamoto et al., 2006).
Therefore, S—G is the most suitable for the complex cultivat-
ing systems across all of mainland China. We also attributed
the excellent performance of S—G to the phenological extrac-
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Table 1. Mean RMSE (in parenthesis) of the most suitable smoothing method for different regions and crops.

Province Winter wheat ~ Spring wheat ~ Summer maize  Spring maize  Single-cropping rice ~ Double-cropping rice
Anhui SG-3 (3.53) SG-4 (6.81) SG-5 (5.67) SG-3 (6.69)
Beijing SG-3 (5.46) SG-3 (8.06)

Chongqing SG-3 (7.09) SG-3 (8.06) SG-3 (3.46)

Fujian SG-3 (8.90) SG-3 (6.36) SG-3 (6.02)
Gansu SG-3 (5.43) SG-3 (7.69) SG-5 (7.63) SG-3 (8.34)

Guangdong SG-3 (6.38)
Guangxi SG-3 (8.17) SG-3 (7.25)
Guizhou SG-3 (6.59) SG-3 (9.77) SG-3 (9.11) SG-3 (7.62)

Hainan db8 (2.33)
Hebei SG-3 (4.53) SG-3 (6.35) SG-3 (4.58) SG-3 (5.42) SG-3 (6.32)

Heilongjiang SG-5 (6.38) SG-5 (6.72) SG-5 (4.73)

Henan SG-3 (4.22) SG-4 (5.01) SG-5 (3.48)

Hubei SG-3 (5.65) SG-3 (7.89) SG-3 (5.87) SG-3 (5.89)
Hunan SG-3 (8.10) SG-3 (5.03) SG-3 (7.64)
Jiangsu SG-3 (5.12) SG-4 (6.44) db4 (8.67) SG-5 (6.85)

Jiangxi SG-3 (7.95) SG-3 (7.80) SG-3(8.12)
Jilin SG-4 (7.73) SG-5 (5.84) SG-5 (6.30)

Liaoning SG-3 (4.91) SG-3 (6.39)

Inner Mongolia SG-3 (7.85) SG-5 (5.55)

Ningxia SG-3 (6.18) SG-3 (6.74) SG-3 (7.50) SG-5 (6.33) SG-5 (8.22)

Qinghai db3 (6.73) DL (7.56) SG-5 (7.59)

Shandong SG-3 (4.46) SG-4 (4.55) SG-5 (6.36)

Shanghai SG-3 (5.01) SG-3 (7.15)

Shaanxi SG-3 (4.04) SG-3 (8.08) SG-3 (4.09) SG-3 (5.05) SG-5 (7.57)

Shanxi SG-3 (4.61) DL (7.90) SG-3 (5.45) SG-5 (5.57) SG-5 (8.84)

Sichuan SG-3 (5.43) SG-3 (7.43) SG-3 (7.84) SG-3 (5.51)

Tianjin SG-3 (7.36) SG-3 (8.17)

Xinjiang SG-3 (6.93) SG-3 (7.99) SG-3 (7.11) SG-3 (6.14)

Xizang SG-3 (7.02) SG-3 (7.12)

Yunnan SG-3 (7.53) SG-3 (8.45) SG-3 (8.19) SG-5 (7.53) SG-3 (4.51)
Zhejiang SG-3 (6.22) SG-3 (6.35) SG-4 (7.33)

tion rules established in this paper and the goal of accurately
extracting the crop cultivation grids as well as key phenol-
ogy stages. For example, the WF smoothing method might
eliminate pseudo-inflection points that may not be pseudo
due to the uncertainty of GLASS LAI data and misidentify
non-crop grids by inflection- and threshold-based methods,
consequently resulting in very few crop grids being identi-
fied (Qiu et al., 2016).

3.2 Validation of ChinaCropPhen1km

The comparison between retrieved phenological dates and
phenological observations of each crop from 2000-2015 at
the national scale showed that all retrieved and observed
dates were closely and averagely distributed on the 1:1
line for three crops (Fig. 5). Additionally, the RMSE values
of retrieved phenological dates were consistently less than
10d (Table 2). The RMSE averages of three key dates for
rice were around 5.3 d, followed by wheat (5.5 d) and maize
(6.7d), corresponding to the related R? of 0.98, 0.97 and
0.97, respectively.

www.earth-syst-sci-data.net/12/197/2020/

As for the differences among crops, the retrieved accu-
racy of maize phenological stages was consistently the worst,
with the biggest RMSE and errors (> £10d) and the low-
est errors (< +10d) and R2. We ascribed the lower accuracy
of maize phenology to the wider spatial heterogeneity envi-
ronment and the complex-rotation planting system relative
to the other two crops (Qiu et al., 2018). The highest accu-
racy of rice phenology also supported the accuracy impact of
the complex planting system because the paddy field is unfit
for dryland crops such as maize, wheat, soybean and other
coarse cereals (Dong et al., 2015).

More interestingly, the retrieved accuracy of three crops
decreased as crops grew and developed up to maturity peri-
ods (Table 2), with the average RMSEs ranging from 3.7 to
7.2d. The highest accuracy (RMSE = 2.8; error = 0.5 %)
was found for the green-up and emergence stages of wheat,
while accuracy of the maturity stage for each crop was the
lowest (average RMSE = 7.2; error = 19 %). The reason-
able explanation might be relative weaker interference from
other vegetation because the green-up and emergence stage

Earth Syst. Sci. Data, 12, 197-214, 2020
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Table 2. Mean RMSE between retrieved phenological dates and phenological observations.

Crop Stage RMSE (days) Error Error R?

<+10d (%) =>=+£10d (%)

Rice Transplanting 4.05 98.6 % 1.4 %
Heading 5.59 93.0 % 70% 0.98

Maturity 6.21 88.9 % 11.1%

Wheat  Green up and emergence 2.82 99.5 % 0.5%
Heading 6.54 86.4 % 13.6% 097

Maturity 7.18 81.7% 18.3%

Maize V3 4.08 96.8 % 32%
Heading 7.79 79.8 % 202% 097

Maturity 8.22 71.8% 282 %

T . .
« Original GLASS LAT Heading date

— S

3- —DL —

— Wavelet
M7 date

| 1 ! ! 1 I
0 50 100 150 200 250 300 350
(b) Day of year (DOY)

Inflection point
1+ (the first key phenological stage)

T T T
« Original GLASS|LAI Heading date |  [Heading date

—DL 7
—Wavelet

¢

Matlrity Inflection Maturity date|

date point
L5

Inflection point

(the first key phenological stage)

The first growing season The second growing season

0 L 1 L L 1 L L
0 50 100 150 200 250 300 350
Day of year (DOY)

Figure 4. Comparisons of different smoothing methods for differ-
ent cropping systems.

occurs most early during the plant-growing period (some 80
DOY; Table 3). With the land surface green up, more and
more information on plant-growing statuses will be found by
satellites, which consequently mix with the crops’ informa-
tion and interfere with accurately retrieving the phenological
stages of crops. Of course, the interference from anthropo-
logical activities should not be ignored with climate warm-
ing.

Nevertheless, overall the retrieved phenological dates for
the three crops are in strong correspondence with the ob-
servational dates (R2>0.95), and their relationships are sta-
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tistically significant (p<0.01). Meanwhile, the growing sta-
tus of other plants (or rotation crops, e.g., wheat—maize
and maize—soybean) and the influence of other noises will
lead to deviations of the remote-sensing LAI curve and the
actual observed curve in the field. The noises also include
other factors, e.g., weather conditions, farmers’ behaviors,
etc. However, the uncertainty does not exclude the applica-
bility of our method to retrieve key phenological stages of
crops, especially retrieving relative higher-resolution pheno-
logical information based on mature remote-sensing prod-
ucts at a large spatial scale.

3.3 Spatiotemporal patterns of key phenological stages
from 2000 to 2015

We showed the annual averages of each key crop growth
stage to indicate their spatiotemporal patterns due to the sim-
ilarity in inter-annual patterns for a certain crop over the
16 years (Figs. 67, Table 3 and Supplement Figs. S1-S4).
Besides summarizing the key stages by crops and subre-
gions, we also calculated three crop growth periods, includ-
ing the VGP (vegetative growth period), RGP (reproductive
growth period) and GPw (whole growth period) to interpret
their patterns (Fig. 8; Table 3). Among the five subregions
with rice cultivation, subregion III was the most complex
because three types of rice were cultivated there (Fig. 6a;
Fig. 7a). The single-cropping rice in the subregion III was
generally cultivated in the northern parts of four provinces
(i.e., Anhui, Jiangsu, Zhejiang and Hubei), which was char-
acterized by three key stages occurring later (DOY 159-265)
than other three single-rice subregions (I, I and IV). Mov-
ing from the south (IV) to north (I) (excluding subregion
IIT because of cultivation of double-cropping rice), single-
cropping rice was not transplanted in sequence as expected.
In subregion II, it was transplanted latest (DOY 154) but had
relatively early maturity dates (DOY 255), resulting in the
shortest growing period (101 d; Fig. 8a). On the contrary, in
subregion IV, single-cropping rice was transplanted earliest
but had the maturity occurring latest, resulting in the longest
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Figure 5. Comparisons between retrieved and observed phenological dates for rice (a), wheat (b) and maize (c).

growing period of 130d (Figs. 6a, 7a, 8a). In subregion V,
where only double-cropping rice was cultivated, early-season
rice was transplanted earlier (DOY 99) and maturity dates
of late-season rice occurred later (DOY 310), consequently
resulting in longer growing periods (97 and 101d for cor-
responding early-season and late-season rice) than those in
subregion III with double-rice cultivation (80 and 84 d; Ta-
ble 3).

As for wheat, green-up and emergence dates ranged most
widely (DOY 30-128) when compared to other crops. Win-
ter wheat in subregions II and IV had earlier green-up dates,
while spring wheat in subregions I and III had later emer-
gence dates (Table 3; Figs. 6b, 7b). Moreover, along with the
latitudes from the north to the south (excluding subregion III
because of the sparsest wheat cultivation being there), the
first key dates were earlier, but with shorter growth periods
(106, 93 and 92 d for I, IT and IV) due to the sufficient temper-
ature and light in subregion IV (Yu et al., 2012; Fig. 8b). In-
terestingly, the heading and maturity dates in the three subre-
gions showed consistently the same spatial patterns as those
of the first stage, with latitudes decreasing (Figs. 6b, 7b).

www.earth-syst-sci-data.net/12/197/2020/

Both spring and summer maize types were concurrently
cultivated in subregions III and IV, while only one of them
was cultivated in subregions I and II, the main planting ar-
eas of northern China (Figs. 6¢, 7c; Table 3). V3 of summer
maize was approximately 43 d later than that of spring maize
(DOY 161 vs. 117), but its maturity dates were very close
(DOY 259 vs. 245), which thus caused a shorter growth pe-
riod for summer maize, especially for subregions II and III
(some 84 d; Fig. 8c). Additionally, in three subregions (I, III
and IV) for spring maize, like wheat, the spatial patterns of
the three key stages for maize were similar in spatial patterns
with increasing latitude. Finally, the key dates and periods
were the most variable in subregion IV (Figs. 7c, 8c).

In sum, the spatial patterns of key phenological stages
varied by crops and cultivation methods. In addition, early-
season rice and single-cropping rice in subregion III, wheat
in subregion III, and maize and rice in subregion IV showed
larger variability than other crops due to the mixed plant-
ing of heterogeneous varieties of the same crop. Many fac-
tors could impact crop phenology, such as climate, environ-
ment, farmer’s behaviors, technological development and hu-
man activities (Liu et al., 2016, 2018). Different from natural
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Table 3. Annual mean phenological dates and growth periods of different crops in each subregion.

Crop Stage (period) Subregion
I 1I 11 v \Y%
Early Transplanting (VGP) 115.4 (60) 99 (69.3)
rice Heading (RGP) 175.2 (20.4) 168.2 (27.6)
Maturity (GPyw) 195.1 (79.7) 195.5 (96.6)
Late Transplanting (VGP) 204.2 (48.1) 209.4 (54.1)
rice Heading (RGP) 252.2 (35.5) 265.7 (46.5)
Maturity (GPw) 287.7 (83.5) 310 (100.6)
Single Transplanting (VGP) 141.7 (75.5) 154.1 (64.2) 158.5(62.5) 130.4(76.6)
rice Heading (RGP) 217.2(37.9) 218.3(37.1) 221 (43.7) 207 (53.4)
Maturity (GPyw) 255 (113.5)  255.3(101)  264.6 (106)  260.4 (130)
Wheat Green up & Emergence (VGP) 128 (65.1) 51.8(62.9) 108.7 (57.5) 29.6 (34.7)
Heading (RGP) 187.6 (41.1) 113.9(29.6) 165.7 (63.7) 72.3 (57.1)
Maturity (GPy) 224.8 (106) 143.3(92.5) 228.8 (121) 128.7 (91.7)
Spring V3 (VGP) 142.4 (71.9) 130.2 (79.6) 104.3 (74.5)
maize Heading (RGP) 214.3 (40.6) 209.9 (42.2) 178.8 (59.7)
Maturity (GPyw) 254.9 (113) 252.1(122)  238.5(134)
Summer V3 (VGP) 173.1 (46.9) 179.1 47.1) 129.3 (74.1)
maize Heading (RGP) 220.1 (37.5) 226.2(36.1) 203.3 (53.3)
Maturity (GPw) 257.5(84.5) 262.2(83.1) 256.6 (127)

VGP means vegetative growth period — the difference between heading and transplanting or green-up or emergence or V3 dates. RGP means the reproductive
growth period — the difference between maturity and heading dates. GPy, means the whole growth period — the difference between maturity and transplanting or
green-up or emergence or V3 dates. The numbers in the parentheses mean the annual mean growth periods.

ecosystems such as wild forest or grassland, three main crops
cultivated across the mainland of China did not reach green-
up or flowering dates in sequence with latitude, especially for
rice (Zhang et al., 2014b, 2015; Tao et al., 2014). Moreover,
climate conditions did impact crop phenology. For example,
increased temperature led to the advanced heading and matu-
rity date of crops in China (He et al., 2015; Tao et al., 2014).
At the same time, crop management activities, such as cul-
tivar shift and the adjustment of the planting and harvesting
date, largely affected crop phenology (Tao et al., 2006, 2013).

3.4 The changes in three key phenological dates and
growth periods from 2000 to 2015

To interpret the changes of the three key phenological dates
and growth periods from 2000 to 2015, we analyzed their
trends at the pixel scale and summarized the grids with a
significant trend (p<0.1) according to crops and subregions
(Figs. 9-10; Table 4). We found more positive trends, with
0.78dyr~! for 70 % summarized medians, but fewer nega-
tive ones, with —0.69d yr~!' and 30 % medians. This sug-
gests that phenological dates were delayed. Specifically, the
proportion of pixels that had a positive trend is 92 % for
wheat (Fig. 9b), 75 % for rice (Fig. 9a) and 50 % for maize
(Fig. 9c¢).

Earth Syst. Sci. Data, 12, 197-214, 2020

For rice, transplanting dates were consistently advanced
by —0.64dyr~! for early-season rice and single-cropping
rice and delayed by 0.84 dyr~! for late-season rice in most
areas. Maturity dates became later by 1.23dyr~!, but head-
ing dates had fewer changes. In addition, double-cropping
rice in subregion III showed less variability than that in sub-
region V (Fig. 9a). By contrast, the first stages (i.e., green-up
and emergence stage) were delayed by 0.88dyr~! consis-
tently for almost all of the wheat cultivation areas (Fig. 9b).
Maize in the subregion II, and wheat in subregion I and II
(Fig. 9b), had an opposite trend to that of rice (Fig. 9; Ta-
ble 4). Moreover, the changes in the three stages showed less
variable in subregion II, the main planting areas for both dry-
land crops. Among all the crops and growth stages, maize in
the regions III and IV had consistently negative trends, with
the exception of maturity dates in subregion IV.

Compared with the significant changes in phenological
dates, the duration of phenological periods changed with
fewer pixels (<30 %; Table 4). More pixels with positive
trends, with 1.25 dyr‘1 for 66.7 % medians, were identified
than those with negative trends, with —0.97 d yr~! for 32.3 %
medians, implying commonly prolonged growth periods dur-
ing the study period; 95.8 % of the medians were positive
for rice, while 75 % of the medians were negative for wheat.
The changes of maize growth periods were similar to those
of their phenological dates.
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Figure 6. Spatial patterns of annual averages of three key phenological dates during 20002015 for rice (a), wheat (b) and maize (c).

The duration of growth periods was prolonged, especially
for the whole growth period (GPy,), which was consistently
observed for rice cropping systems, except for early-season
rice in subregion V. In addition, the duration of the VGP
for single-cropping rice in subregion I had weaker trends
(Fig. 10a). On the contrary, almost all the wheat growth pe-
riods were shortened, except for winter wheat in subregion

Earth Syst. Sci. Data, 12, 197-214, 2020

V, especially for spring wheat in the subregion I (Fig. 10b).
Additionally, in terms of growth period duration, maize had
similar changes to wheat in subregions I and II. Changes in
growth period duration were different for spring (shortened)
and winter (prolonged) wheat and for both maize types be-
tween subregion III and IV (Fig. 10c). The results are well
supported by some previous studies based on the intensive
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Figure 7. Box plots of three key phenological dates by crop and
subregions during 2000-2015 for rice (a), wheat (b) and maize (c).

observations at the site scale (Tao et al., 2012, 2013, 2014,
Zhang et al., 2014b).

3.5 Uncertainties in ChinaCropPhen1km

Inevitably, there are still uncertainty in the generated dataset
(i.e., ChinaCropPhenlkm). On the one hand, GLASS LAI
products might lead to some uncertainty in ChinaCrop-
Phenlkm. First of all, the noise of the original GLASS LAI
time series could reduce the accuracy of detected phenologi-
cal stages, which resulted from many factors, such as cloud,
snow, aerosols and water vapor (Xiao et al., 2014). Therefore,
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Figure 8. Box plots of three key phenological periods by crop
and subregions during 2000-2015, for vegetative growth period
(VGP); reproductive growth period (VGP); and whole growth pe-
riod (GPW) of rice (a), wheat (b) and maize (c).

we compared several commonly used smoothing methods
and chose the most suitable one with minimum RMSE for
different crops in each province, which could reduce some
uncertainty. Moreover, the GLASS LAI retrieval algorithm
eliminates abrupt spikes and dips, which may result in the
loss of neighboring smaller peaks in LAI profiles (Xiao et
al., 2016). The number of detected pixels with the double-
season rice cultivated might be less than that of the actual
situation due to the short interval between the two local max-
imum points (i.e., heading stages of early-season rice and
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Figure 9. The trends of three key phenological dates during 2000—
2015 by crop and subregions for rice (a), wheat (b) and maize (c).

late-season rice; Fig. 3f). On the other hand, the mixed pixel
might bring uncertainty in the results, as it contained several
land cover types and then weakened the identified signal of
specific phenological stages. We ascribed the occurrence of
mixed pixel to two reasons. One is the coarse spatial reso-
lution of 1km. For example, the mixed pixel occurs widely
in the mountainous regions (e.g., southern China) with com-
plex terrain and diverse vegetation types. The other is that
we determined the spatial distribution of each dryland crop
(i.e., maize and wheat) based on the dryland layer of NLCD,
which might include several crop types. In future studies,
the application of a crop-specific map and remote-sensing
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Figure 10. The trends of three key phenological periods during
2000-2015 by crop and subregions. VGP stands for vegetative
growth period; RGP for reproductive growth period; and GPW for
whole growth period of rice (a), wheat (b) and maize (c).

products with finer spatial resolution is expected to solve the
mixed pixel issues.

4 Data availability

The derived crop phenological dataset for three sta-
ple crops in China during 2000-2015 is available at
https://doi.org/10.6084/m9.figshare.8313530 (Luo et al.,
2019).
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5 Conclusions

In the present study, we generated a 1 km gridded-phenology
dataset for three main crops from 2000 to 2015 based on
GLASS LAI products, called ChinaCropPhen1km. First, we
compared three common smoothing methods and chose the
most suitable one for different crops and regions. The results
showed that S—G was the most frequently chosen method, as
it could not only smooth the time series well but also keep the
fidelity. Next, we developed an OFP approach which com-
bined both the inflection- and threshold-based method to de-
tect the key phenological stages of three staple crops at a spa-
tial resolution of 1 km across China. Finally, we established
a high-resolution gridded-phenology product for three staple
crops in China during 2000-2015.

The ChinaCropPhenlkm dataset was validated well using
the intensive phenological observations of AMS, which sub-
stantiates high accuracy, with errors of retrieved phenologi-
cal date of less than 10 d. It can reflect the spatial differences
in the local climatic and management factors. Thus, this first
high-resolution crop phenological dataset can be applied for
many purposes, including understanding land surface phe-
nological dynamics, investigating climate change impacts
and adaptations, and improving agricultural-system or earth-
system modeling over a large area, temporally and spatially.
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