Corrigendum to Earth Syst. Sci. Data, 12, 1835–1860, 2020 https://doi.org/10.5194/essd-12-1835-2020-corrigendum © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Corrigendum to "A Canadian River Ice Database from the National

Hydrometric Program Archives" published in Earth Syst. Sci. Data, 12, 1835–1860, 2020

Laurent de Rham¹, Yonas Dibike¹, Spyros Beltaos², Daniel Peters¹, Barrie Bonsal³, and Terry Prowse¹

¹Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada

²Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, 867 Lakeshore Rd., Burlington, ON, L7S 1A1, Canada

³Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, 11 Innovation Blvd., Saskatoon, SK, S7N 3H5, Canada

Correspondence: Laurent de Rham (laurent.derham@canada.ca)

Published: 3 December 2020

In the published version of the above-mentioned paper, Tables 2 and 4 were missing the grey shading that was introduced in the caption. The corrected version of these tables can be found below.

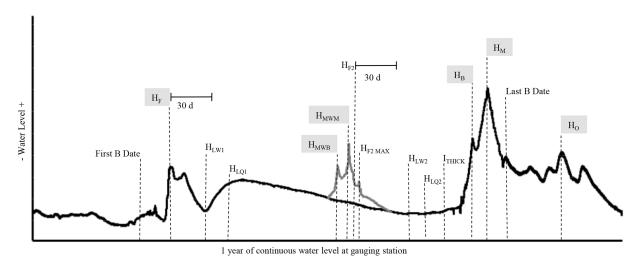

Furthermore, the dashed lines in Fig. 3 were shifted. Please find the correct version below as well.

Table 2. The 15 variables extracted from the National Hydrometric Program archives and input to the Canadian River Ice Database (CRID). The CRID includes the date of all variables classified by season. The resolution of the water level or discharge record examined is summarized with grey shading that denotes an attempt to identify instantaneous water level events. Data quality rating was applied to the data in bold.

				Data r dai	ta resolution: Instantaneous daily (D), no extraction (-)	Data resolution: Instantaneous (1), daily (D), no extraction (–)	Data quality rating (0-1-2)
Season	Variable	Symbol	Description	Water Level	Discharge	Time	Yes (Y) or no (N)
Freeze-up	First day with backwater due to ice	First B date	First day that ice affects channel flow conditions	-	ı	D	z
Freeze-up	Freeze-over water level	H_{f}	Channel-wide ice cover; daily water level at $H_{\rm F}$ and the following 29 d	I or D	D	I or D	Y
Ice cover	First minimum winter water level	${ m H_{LW1}}$	Minimum daily water level between H_{F} and H_{B}	ם	D	D	ү
Ice cover	First minimum winter discharge	${ m H}_{ m LQ1}$	Minimum daily discharge between H_{F} and H_{B}	D	D	D	Y
Ice cover	Midwinter break-up initiation	${ m H}_{ m MWB}$	Initiation of midwinter break-up event	I	D	I	Y
Ice cover	Maximum midwinter break-up water level	H_{MWM}	Maximum midwinter break-up event water level	I or D	D	I or D	Y
Ice cover	Maximum winter water level	H_{F2}	Freeze-up after $H_{MWM}.$ If there is no mdiwinter event, first day of the 7 d average if it exceeds the $H_{\rm F}$ 7 d average	Д	D	D	Y
Ice cover	Maximum winter water level 7 d	$ m H_{F2~MAX}$	Maximum daily water level within first 7 d following $H_{\rm F2}$	σ	D	D	Y
Ice cover	Second minimum winter water level	$ m H_{LW2}$	Minimum daily water level between $H_{\rm F2}$ and $H_{\rm B}$ if $H_{\rm LW1}$ is before $H_{\rm F2}$	Ф	D	D	Y
Ice cover	Second minimum winter discharge	$ m H_{LQ2}$	Minimum daily discharge between H_{F2} and H_{B} if H_{LQ1} is before H_{F2}	D	D	D	Y
Ice cover	River ice thickness	I_{THICK}	Average channel ice thickness prior to spring break- up			D	Z
Break-up	Spring break-up initiation	${ m H_{B}}$	Beginning of spring break-up event	I	D	I	Y
Break-up	Maximum spring break-up water level	H_{M}	Maximum spring break-up water level event	I or D	D	I or D	Y
Break-up	Last day with backwater due to ice	Last B date	Final day that ice affects channel flow conditions	-	1	D	N
Open-Water	Maximum open-water level	H_0	Maximum water level occurring outside first B date to last B date range	I or D	I or D	I or D	¥

Table 4. Total number of variables that populate the Canadian River Ice Database and their data quality ratings. Grey shading indicates that an attempt was made to extract the instantaneous water level. Also included are column totals per river type: natural versus regulated, active versus discontinued and homogeneous versus heterogeneous.

								Number of	variable	Number of variables by station type	0	
				Data qu	Data quality rating	ng	Natural			Regulated	ated	
								⁼ 	Homo-	Homo-	Hetero-	Hetero-
C			Total number	(ć	i i	ge	geneous,	geneous,	geneous,	geneous,
Season	Variable	Symbol	of variables	0	1	2	Active Discontinued		active	discontinued	active	discontinued
Freeze-up	First day with backwater due to ice	First B date	8933	No data	No data quality rating	ating	5754 8	908	1204	130	1022	16
Freeze-up	Freeze-over water level	$H_{\rm F}$	6547	4794	1592	161	4142 4	466	949	106	881	3
Ice cover	First minimum winter water level	H_{LW1}	4767	4557	193	17	2861 2	214	823	103	992	0
Ice cover	First minimum winter discharge	$H_{\mathrm{LQ}1}$	8178	8114	62	7	5301	764	1077	1111	925	0
Ice cover	Midwinter break-up initiation	H_{MWB}	362	359	n	0	249	111	54	8	40	0
Ice cover	Maximum midwinter break-up water level	H_{MWM}	467	392	70	S	308	22	77	6	51	0
Ice cover	Maximum winter water level	${ m H}_{ m F2}$	1954	1816	39	66	1180	104	329	16	325	0
Ice cover	Maximum winter water level 7 d	H_{F2MAX}	1952	1849	27	78	1180	104	329	16	325	0
Ice cover	Second minimum winter water level	$H_{\rm LW2}$	200	794	4	0	407	39	186	7	159	0
Ice cover	Second minimum winter discharge	${ m H}_{ m LQ2}$	602	709	0	0	325	37	172	4	171	0
Ice cover	River ice thickness	Ітніск	6094	No data	No data quality rating	ating	4163 4	416	762	59	699	25
Break-up	Spring break-up initiation	H_{B}	5534	5070	333	131	3541 3	323	885	121	641	23
Break-up	Maximum spring break-up water level	H_{M}	7355	5428	1571	356	4483 5	503	1216	168	914	44
Break-up	Last day with backwater due to ice	Last B date	9240	No data	No data quality rating	ating	5816 7	788	1380	186	1024	46
Open-Water	Open-Water Maximum open-water level	H_{o}	9705	5705	3728	271	6121 8	826	1408	184	1119	47
	Column total		72 595	39 587	7622	1122	45 831 54	5423 10	10 851	1228	9032	204

Figure 3. Conceptual schematic of a continuous river water level hydrograph (black line) spanning 1 September to 31 August. The period of ice-affected flow is constrained by the first B date and last B date. A possible midwinter break-up event is shown as a grey line at the approximate centre of the hydrograph. Symbols for the 15 variables that populate the Canadian River Ice Database are shown in the figure (see Table 2 for additional information). The variables shaded in grey show the instantaneous water level and associated time when the event occurred. Compression of the *x* axis and vertical exaggeration of the *y* axis accentuate the water level changes observed during ice conditions. The relative magnitudes of variables and water level pathology should not be considered as typical.