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Abstract. As the largest river basin of the Tibetan Plateau, the upper Brahmaputra River basin (also called
“Yarlung Zangbo” in Chinese) has profound impacts on the water security of local and downstream inhabitants.
Precipitation in the basin is mainly controlled by the Indian summer monsoon and westerly and is the key to
understanding the water resources available in the basin; however, due to sparse observational data constrained
by a harsh environment and complex topography, there remains a lack of reliable information on basin-wide
precipitation (there are only nine national meteorological stations with continuous observations). To improve
the accuracy of basin-wide precipitation data, we integrate various gauge, satellite, and reanalysis precipitation
datasets, including GLDAS, ITP-Forcing, MERRA2, TRMM, and CMA datasets, to develop a new precipitation
product for the 1981–2016 period over the upper Brahmaputra River basin, at 3 h and 5 km resolution. The new
product has been rigorously validated at different temporal scales (e.g., extreme events, daily to monthly vari-
ability, and long-term trends) and spatial scales (point and basin scale) with gauge precipitation observations,
showing much improved accuracies compared to previous products. An improved hydrological simulation has
been achieved (low relative bias: − 5.94 %; highest Nash–Sutcliffe coefficient of efficiency (NSE): 0.643) with
the new precipitation inputs, showing reliability and potential for multidisciplinary studies. This new precipita-
tion product is openly accessible at https://doi.org/10.5281/zenodo.3711155 (Wang et al., 2020) and additionally
at the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn, last access: 10 July 2020, login required).

1 Introduction

Precipitation plays a very important role in the research of
hydrology, meteorology, ecology, and even social economics
as it is a critical input factor for various models (e.g., hy-
drological and land surface models; Qi et al., 2016; L. Wang
et al., 2017; Fang et al., 2019; Miri et al., 2019; S. Wang et
al., 2019). Specifically, precipitation is a key part of the water
balance and energy cycle and will directly impact runoff gen-
eration and soil moisture movement (Su et al., 2008). As a re-
sult, water resource management tasks such as flood forecast-

ing and drought monitoring, ecological environment restora-
tion (e.g., vegetation growth and protection), and many other
scientific and social applications are closely linked with pre-
cipitation patterns (Funk et al., 2015).

The Tibetan Plateau (TP), known as the highest plateau
in the world, is covered by massive glaciers, snow, and
permafrost, which significantly affect the hydrological pro-
cesses of all the large rivers that are fed by it: the Brahmapu-
tra, the Salween, and the Mekong, among others. Therefore,
it is necessary to explore the hydrological variations over the
TP to achieve efficient utilization and protection of its wa-
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Figure 1. The upper Brahmaputra River basin originates from the Tibetan Plateau (TP) with the spatial distribution of nine meteorological
stations from the China Meteorological Administration (CMA) and 166 rain gauges from the Ministry of Water Resources (MWR), China.
The green arrow indicates the direction of the westerlies, the Indian monsoon, and the East Asian monsoon. The elevation data were obtained
from the SRTM DEM datasets (https://earthexplorer.usgs.gov, last access: 30 January 2020).

ter resources and a better understanding of the effects of cli-
mate change on the surrounding region. However, due to the
irregular and sparse distribution of national meteorological
stations, particularly in the upper Brahmaputra (precipitation
data from only nine stations are available and are sparsely
distributed; see Sang et al., 2016; Cuo et al., 2019), there are
large data constraints on research on these hydrological pro-
cesses and their responses to climate change. Although there
are many more rain gauges managed by the Ministry of Wa-
ter Resources (MWR), most of them are located in middle-
stream regions, and rainfall datasets are only recorded over
short time periods. Simply using the linear mean of these
station observations to calculate variations in precipitation
for the entire basin is impractical and prone to problems (Lu
et al., 2015). Accurate spatial distributions of precipitation
are unavailable. This influences the generation of historical
runoff data (Mazzoleni et al., 2019), meaning that the spe-
cific contributions of glaciers, snow cover, permafrost, and
vegetation to hydrological processes in this area cannot be
analyzed and quantified, posing a threat to regional sustain-
able development and living conditions (Shen et al., 2010;
Guo et al., 2016; Kidd et al., 2017; Shi et al., 2017; Ruhi et
al., 2018; Sun et al., 2018).

A longer time series of spatially consistent and temporally
continuous precipitation products could be used to improve

our understanding of feedback mechanisms between differ-
ent meteorological and hydrological components, especially
under the background signal of climate change. Various
satellite rainfall products have been widely used in previous
studies, such as the National Oceanic and Atmospheric Ad-
ministration/Climate Prediction Centre (NOAA/CPC) mor-
phing technique (CMORPH; Ferraro et al., 2000; Joyce et al.,
2004; Shen et al., 2014) and the Tropical Rainfall Measuring
Mission (TRMM; Huffman et al., 2007; Roca et al., 2019).
However, there are still problems in estimating daily (Meng
et al., 2014; Bai and Liu, 2018) and extreme precipitation
(Funk et al., 2015; Y. Zhou et al., 2015; Fang et al., 2019),
especially in mountainous regions with high elevations and
fewer ground measurements, such as the upper Brahmapu-
tra (Xia et al., 2015; Xu et al., 2017; Qi et al., 2018). Addi-
tionally, there are several reanalysis datasets that have been
widely used by researchers, such as the Global Land Data
Assimilation System (GLDAS; Rodell et al., 2004; Zaitchik
et al., 2010; Wang et al., 2011) and the Modern-Era Retro-
spective analysis for Research and Applications, Version 2
(MERRA2) dataset (Savtchenko et al., 2015; Gelaro et al.,
2017; Reichle et al., 2017a, b). Evaluation of GLDAS data
has generally been limited to the United States and other re-
gions with adequate ground observations (Kato et al., 2007;
Qi et al., 2016). Most studies have focused on evapotranspi-
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Table 1. The precipitation products used in this study.

Precipitation Time Temporal Spatial
products range resolution resolution

CMA gridded data 2008–2016 hourly 0.1◦ × 0.1◦

GLDAS 1981–2016 3 h 0.25◦ × 0.25◦

ITP-Forcing 1981–2016 3 h 0.1◦ × 0.1◦

MERRA2 1981–2016 hourly 0.5◦ × 0.625◦

TRMM 1998–2016 3 h 0.25◦ × 0.25◦

ration, soil moisture, and groundwater products derived from
GLDAS or MERRA2 (Bibi et al., 2019; Deng et al., 2019;
X. Li et al., 2019); meanwhile, to the best of our knowledge,
there has been less focus on the evaluation of methods of
precipitation estimation and little work on the correspond-
ing river discharge simulations within the upper Brahmaputra
River basin. These precipitation products generally have the
advantage of wide and consistent coverage and have shown
great potential in many applications (Li et al., 2015; Zhang et
al., 2017; Fang et al., 2019) but also suffer from large uncer-
tainties over the upper Brahmaputra River basin due to indi-
rect observations, insufficient gauge calibration, and complex
topography (Tong et al., 2014; Yong et al., 2015; Xu et al.,
2017).

In this study, we focus on integrating gauge, satellite, and
reanalysis precipitation datasets to generate a new dataset
over the upper Brahmaputra, suitable for use in hydrologi-
cal simulations and other scientific research related to cli-
mate change. The remainder of this study is structured as fol-
lows. Section 2 briefly describes the study area, datasets, and
methodology used. Section 3 presents and discusses the eval-
uation results of different products and validates the accuracy
and reliability of our integrated dataset. Then Sect. 4 is the
data availability. Finally, conclusions are given in Sect. 5.

2 Materials and methods

2.1 Study area

This study is conducted in upper Brahmaputra River basin
(27–32◦ N, 81–98◦ E), located in the south of the Tibetan
Plateau (Fig. 1). The Brahmaputra River is an important part
of the whole GBM (Ganges, Brahmaputra, Meghna) basin,
which significantly influences the natural resources and so-
cial development of the Tibetan Plateau and South Asia. The
river is approximately 2057 km long with a drainage area
of 240 000 km2. The climatic conditions are complicated by
the extremely high altitude and highly varying topography
(Wang et al., 2018; Y. Wang et al., 2019); elevation varies
by up to 6500 m throughout the study region. Generally,
the intra-annual distribution of precipitation is extremely un-
even, with more precipitation distributed in the warm seasons
(S. Wang et al., 2019). Since the Indian and East Asian mon-
soons bring more water vapor in summer, and the westerlies

Figure 2. The flowchart used to produce the spatiotemporal contin-
uous precipitation dataset (P _int).

Figure 3. The spatial distribution of P _int (mm) averaged from
1981 to 2016 (a annual; b seasonal).

dominate in winter (Yi et al., 2013; Wang et al., 2018; Li
et al., 2019a, b), there is a declining trend of precipitation
from the humid southeast to the arid northwest on average.
In recent decades, the TP has been experiencing a significant
warming trend exceeding that in the Northern Hemisphere
(Liu and Chen, 2000; Yang et al., 2014), which will affect
the generation and distribution of precipitation and influence
hydrological processes throughout the upper Brahmaputra.
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Figure 4. The spatial distribution of different precipitation products during the warm season (May to October) and the cold season (November
to April) averaged from 2008 to 2016.

2.2 Datasets

Monthly precipitation data (1981–2016) from nine meteoro-
logical stations were obtained from the China Meteorologi-
cal Administration (CMA), and daily precipitation data (May
to October in 2014 and 2016) from 166 rain gauges were
accessed through the Ministry of Water Resources (MWR),
China (Fig. 1). Both of these are regarded as observed pre-
cipitation data. Daily river discharge data at Nuxia station
(Fig. 1) are used to assess the simulation performance when
forced by different precipitation products.

In this study, we chose five types of satellite and reanaly-
sis precipitation products (Table 1). We first evaluated their
performance in detecting precipitation and then integrated
them to generate a better product, designed to enhance the
strengths of each product.

The three satellite and reanalysis data products GLDAS,
MERRA2, and TRMM were acquired from the National
Aeronautics and Space Administration (NASA) website
(https://disc.gsfc.nasa.gov/, last access: 10 July 2020 ).
GLDAS ingests satellite- and ground-based observational
data products and applies advanced land surface modeling
and data assimilation techniques (Rodell et al., 2004; Za-
itchik et al., 2010; Xia et al., 2019); it has been widely used
for river discharge simulations, groundwater monitoring, and
many other fields (Wang et al., 2011; Chen et al., 2013; Qi
et al., 2018; Verma and Katpatal, 2019). MERRA2 is the
first long-term global reanalysis dataset to assimilate space-
based observations of aerosols and represent their interac-
tions alongside other physical processes in the climate sys-
tem (Marquardt Collow et al., 2016; Reichle et al., 2017a,
b), and TRMM is a joint mission between NASA and the

Japan Aerospace Exploration Agency (JAXA) to study rain-
fall for weather and climate research (Xu et al., 2017; Ali
et al., 2019; S. Wang et al., 2019). The ITP-Forcing dataset
has been developed by the hydrometeorological research
group at the Institute of Tibetan Plateau Research, Chinese
Academy of Sciences (He, 2010), and has been shown to per-
form well on the TP (Yang et al., 2010; Chen et al., 2011).
These data were downloaded from the Cold and Arid Re-
gions Science Data Center (http://westdc.westgis.ac.cn/, last
access: 10 July 2020 ).

2.3 Methods

In this study, because of the different spatial resolutions of
different products, we extracted the precipitation values from
each product according to the locations of the gauges to
generate product–gauge data pairings for evaluation. Where
there are at least two gauges in the pixel of one product, we
used the average value of the gauges to evaluate the perfor-
mance of the corresponding precipitation product data.

To ensure the consistency of different products, we inter-
polated all the products into the same 5 km spatial resolu-
tion grid using the inverse distance weighted (IDW) method
(Ma et al., 2019; Qiao et al., 2019; Sangani et al., 2019)
and calculated them at 3-hourly resolution. Due to its good
performance on the TP, we then used the ITP-Forcing data
(1981–2016) to derive the multiyear mean 3 h data as back-
ground climatological precipitation. Then, the precipitation
anomalies between CMA, GLDAS, ITP-Forcing, MERRA2,
TRMM, and the background were calculated 3-hourly using
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Figure 5. Variations in basin-averaged precipitation from multiyear monthly mean values (a), annual values (b), and monthly values (c) for
the different products.

εc = PC −PB

εg = PG−PB

εi = PI −PB

εm = PM −PB

εt = PT −PB ,

(1)

where PB , PC , PG, PI , PM , and PT represent the back-
ground precipitation and different products, respectively, and
ε denotes the corresponding precipitation anomalies. Consid-
ering different weights for these anomalies, we combined the
background precipitation with these anomalies,

P _int= PB +w1εc+w2εg +w3εi +w4εm+w5εt , (2)

where w represents the weight for each anomaly, and P _int
refers to the new integrated precipitation at 5 km and 3-
hourly resolution.

After P _int was acquired, we corrected its probability dis-
tribution function (PDF) based on the rain gauges and un-
dertook several validation steps for spatial distribution and at
different timescales (e.g., extreme events, seasonal to inter-
annual variability, and long-term trends). At the same time,
we also analyzed the changing trend over the 36 years and the

extremely high precipitation events during the warm months
in 2014 and 2016. In order to identify the extreme events,
we first assumed that daily precipitation conforms to a nor-
mal distribution. From this we calculated a threshold, above
which the probability of precipitation values occurring is less
than 0.05 (e.g., Fang et al., 2019, use 0.1). We considered
events with precipitation values above this threshold as ex-
treme events.

P (precipitation≥ threshold)≤ 0.05, (3)

where P denotes the probability. Finally, based on the ob-
served discharge data at Nuxia station, we compared the sim-
ulated daily discharges (normalized) from 2008 to 2016 us-
ing a water- and energy-budget-based distributed hydrologi-
cal model (WEB-DHM) to check the accuracy and reliability
of our integrated precipitation. Evaluation criteria used in the
discharge error assessment include relative bias (RB) and the
Nash–Sutcliffe coefficient of efficiency (NSE).
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Qnormalized =
Q−minQobs

maxQobs−minQobs
(4)

RB=

n∑
i=1

Qsim−
n∑

i=1
Qobs

n∑
i=1

Qobs

× 100% (5)

NSE= 1−

n∑
i=1

(Qobs−Qsim)2

n∑
i=1

(
Qobs−Qobs

)2
,

(6)

where Qnormalized, Qobs, and Qsim represent the normalized
discharge, observed discharge, and simulated discharge, re-
spectively. The perfect value of RB is 0, and that of NSE is
1. More information about this model can be found in many
studies (Wang et al., 2009; Wang and Koike, 2009; Xue et al.,
2013; J. Zhou et al., 2015; L. Wang et al., 2016, 2017). Fig-
ure 2 shows the flowchart of this study, and Fig. 3 presents
the final spatial distribution of our integrated product.

3 Results and discussion

3.1 Evaluation of precipitation products at the basin and
grid scale

Figures 4 and 5 analyze the overall regime of different pre-
cipitation products at the basin scale. Figure 4 is the spatial
distribution in warm (May to October) and cold (November
to April) months, and Fig. 5 presents the time series of basin-
averaged annual and monthly precipitation values. The spa-
tial pattern indicates that more precipitation occurs in warm
seasons and less in cold seasons. During the warm months,
GLDAS and TRMM present obvious regional differences be-
tween upstream and downstream, while CMA gridded data
show the lesser values in the upstream source region. In the
cold seasons, all products present almost the same pattern,
among which MERRA2 gives the lowest precipitation val-
ues.

For annual precipitation, CMA, ITP-Forcing, and
MERRA2 show similar characteristics (annual mean value:
615, 550, and 506 mm, respectively), while GLDAS and
TRMM are 789 and 757 mm, respectively. There are also
significantly (p < 0.01) increasing trends in annual pre-
cipitation of GLDAS, ITP-Forcing, and MERRA2 (6.42,
3.28, and 4.68 mm yr−1, respectively) over the 36 years of
the data. For monthly precipitation, GLDAS and TRMM
greatly overestimate summer precipitation compared to
the others, which explains why these two products give
anomalously high annual values (nearly 200 mm greater
than the other three data products). On the other hand, the
monthly variations indicate that the intra-annual distribution
of precipitation is extremely uneven.

Figure 6. A comparison of the probability distribution function
(PDF) between all the monthly observations and different precip-
itation products in the warm seasons (May to October in 2014 and
2016).

Figures 6 and 7 compare the accuracy of monthly rain-
fall from different products at the grid scale. Due to the
coarse spatial resolution of MERRA2 (0.5◦ × 0.625◦), there
are fewer product–gauge data pairings available for evalua-
tion. All the products show similar correlation relationships
with the observations, with most rain gauges overestimating
monthly precipitation (Fig. 7). The highest correlation coef-
ficient is 0.63 (MERRA2), and the lowest is 0.51 (GLDAS).
The PDFs, however, show different characteristics (Fig. 6).
The CMA data are more consistent with the gauge data,
while GLDAS and TRMM exhibit clear overestimations. As
for ITP-Forcing, its precipitation is more concentrated on the
average value, as indicated by the narrow curve.
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Figure 7. As for Fig. 6 but with scatterplots.

3.2 Integration of precipitation products and validation of
P _int

3.2.1 Integration of precipitation products and validation
against different time series

Figure 3 presents the spatial distribution of annual and sea-
sonal precipitation estimated by our integrated dataset, which
shows a declining trend from the southeast to northwest. Fig-
ure 5 then compares the monthly and annual precipitation
calculated from our integrated dataset with the satellite and
reanalysis products. As discussed in Sect. 2.3, we interpo-
lated all the products into a spatial resolution of 5 km using
the IDW method and calculated them at a temporal resolution
of 3 h. Comparing different weights for the anomalies men-
tioned in Eq. (2), we finally adopted the same weight for each
product, and the sum of the weights is 1 (w = 1/3 from 1981
to 1997; w = 0.25 from 1998 to 2007; w = 0.2 from 2008 to
2016) to develop the new product. We made the integrated
precipitation data using equal weights essentially according
to the number of available precipitation products at different
time periods (Table 1). Then we corrected the PDF of the
newly integrated data based on the rain gauge observations
(Fig. 6).

Figure 8. A validation of P _int against short time series by compar-
ing with daily gauge-averaged precipitation from May to October in
2014 and 2016.

After P _int was derived, we first validated its performance
against short time series (Fig. 8). P _int shows optimal per-
formance in detecting daily precipitation, with correlation
coefficients of 0.43 in 2014 and 0.55 in 2016. In 2014, the
average bias is 0.20 mm, and the root mean square error
(RMSE) is 4.18 mm. P _int successfully captures the daily
variation in precipitation except for late September and early
October. For 2016, the average bias and RMSE are −0.006
and 2.62 mm, respectively, much better than those for 2014.

We then check the spatial distribution of P _int from May
to October in 2014 and 2016 (Fig. 9). Every rain gauge is
compared with its corresponding grid in P _int to explore the
spatial heterogeneity. P _int well reproduces the precipita-
tion pattern described by less rain in the upstream (western)
regions and more rain in the downstream (eastern) regions.
Meanwhile, abundant rainfall occurs in summer, particularly
for July.

Building on this, further validation was undertaken against
a long time series. We chose the average monthly precipita-
tion from the nine meteorological stations as the evaluation
standard against which to assess P _int (Fig. 10). The PDF
of P _int is consistent with that of the station data, which in-
dicates that the mean value and standard deviation of P _int
are much closer to the observed value (Fig. 10a). Similarly
to the short time series, the average bias (−4.50 mm) and the
RMSE (13.6 mm), especially with respect to the correlation
coefficient (0.96), prove that the P _int is applicable and reli-
able.
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Figure 9. A validation of P _int (mm) against short time series: spatial distribution of the observations and corresponding grids in P _int
from May to October in 2014 and 2016.

Figure 10. A validation of P _int against a long time series: (a) PDF and scatterplots for monthly precipitation at nine CMA stations,
(b) station-averaged monthly precipitation from 1981 to 2016.
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Figure 11. A trend analysis of the annual and seasonal precipitation (a annual, b spring, c summer, d autumn, e winter) over 36 years (1981–
2016) between P _int, GLDAS, ITP-Forcing, and MERRA2. The triangles represent the observed trend of the corresponding meteorological
stations.
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Figure 12. The number of meteorological stations (total of nine)
which present the same trends as the different precipitation prod-
ucts, according to Fig. 11.

3.2.2 Trend and extreme event analysis compared
across different precipitation products

The trend analysis (Fig. 11) over 36 years indicates that
there are different patterns of precipitation in different sea-
sons and different regions. In summer, there are more com-
plicated trends as the variations between upstream and down-
stream differ greatly. In contrast, trends of winter precipi-
tation values over most of the study region vary by merely
±2 mm yr−1, illustrating that precipitation in winter gener-
ally remains unchanged or experiences minimal change. To
find if P _int is able to reflect the true varying trend, we added
a comparison between meteorological stations (triangles in
Fig. 11 and their direction represent the true trend) and pre-
cipitation products. For observed annual precipitation, all the
stations give an insignificantly increasing trend, except for
Bomi station, which is located in the easternmost part of
the study region. For seasonal precipitation, different stations
present different patterns. As a result, P _int appears to reflect
the changing pattern of more stations than any other product,
with the exception of the ITP-Forcing dataset on an annual
timescale or over autumn (Fig. 12).

We notice that there is an increasing trend in annual pre-
cipitation almost in the whole basin for P _int; only precipi-
tation in the midstream area near the Himalayas and a small
part of the upstream region are decreasing. Moreover, the
majority of the increased precipitation in the downstream
regions occurs over spring and summer, with only slight
changes found in autumn and winter.

After the volume, the spatial distribution, and the trend of
P _int at different timescales were completely verified, we
continued to inspect whether P _int could capture the ex-
treme events from May to October in 2014 and 2016 ac-
cording to the rain gauge data (Fig. 13). There are 27 d in
total (19 d in 2014 and 8 d in 2016) when extremely high
daily precipitation occurred. All the products are comparable
with each other in underestimating the frequency of extreme
events. A total of 9 d are identified out of the P _int data,
lesser only to the number of days detected by ITP-Forcing
(11 d).

Figure 13. A comparison of extreme events, as captured by differ-
ent precipitation products.

3.2.3 Evaluation of daily discharges simulated by
different precipitation products

All the comparison and validation steps undertaken above
support the accuracy and reliability of our integrated dataset.
Furthermore, Fig. 14 indicates the superior suitability and ap-
plication of P _int in hydrological simulation and investiga-
tion, with an RB of −5.94 % and an NSE of 0.643 (the high-
est). We simulate the daily discharge of Nuxia station using
the various precipitation datasets as the input with the same
initial conditions and physical parameters. All products over-
estimate the daily discharge, except for P _int (−5.94 %) and
MERRA2 (−2.24 %). In terms of NSE, P _int (0.643), ITP-
Forcing (0.543), and MERRA2 (0.544) are higher than oth-
ers, explaining their better simulation performance. GLDAS
and TRMM offer the worst performance in discharge simula-
tion, which is consistent with their overestimation of precip-
itation in summer (Fig. 5). This indicates that these datasets
should be corrected when undertaking hydrological research
over the upper Brahmaputra.

4 Data availability

This high-spatiotemporal-resolution (5 km, 3 h) pre-
cipitation dataset over the upper Brahmaputra River
basin from 1981 to 2016 is freely available at
https://doi.org/10.5281/zenodo.3711155 (Wang et al.,
2020), which can be downloaded in TXT format.

5 Conclusions

In order to acquire suitable and accurate precipitation
datasets which are helpful in hydrology, meteorology, and
other scientific research over the upper Brahmaputra, we
produced a new precipitation product by integrating gauge,
satellite, and reanalysis precipitation datasets to reduce the
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Figure 14. An evaluation of simulated daily discharge at Nuxia station from 2008 to 2016 forced by different precipitation products. All the
discharge values have been normalized.

uncertainties associated with a single product and limita-
tion of few observation stations. Our integrated dataset per-
forms better than the input datasets in estimating daily and
monthly precipitation, describing the spatial heterogeneity,
capturing variation trends and extreme events, and simulating
river discharges. Furthermore, it is successful in reproduc-

ing daily precipitation variation, with smaller average biases
(0.2 mm in 2014 and−0.006 mm in 2016) and RMSE values
(4.18 mm in 2014 and 2.62 mm in 2016). Monthly precipi-
tation shows higher correlation coefficients with the in situ
data for various time series (0.69 for all the rain gauges in
the warm months of 2014 and 2016; 0.86 for the nine mete-
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orological stations between 1981 and 2016). This high spa-
tiotemporal resolution assures us that we can use this new
dataset to explore more detailed physical processes and fur-
ther understand the impacts of climate change on the water
resources of the upper Brahmaputra River basin, and we are
confident that our precipitation dataset will greatly assist fu-
ture research in this basin.

With this in mind, we note some aspects of this study that
deserve further consideration. The effect of altitude on pre-
cipitation has not been taken into account in the development
of this dataset. The 166 rain gauges used in this paper are all
located at elevations above 3500 m, except for several east-
ern gauges. Generally, these gauges were installed in rela-
tively plain-like areas, which may lead to large uncertainty
in estimating precipitation (rain or snow) in high mountains,
especially at daily or finer timescales (Ahrens, 2006; Haiden
and Pistotnik, 2009). Due to the orographic effect on pre-
cipitation rates, this limitation can be even more severe in
mountainous regions and transition zones between low and
high altitudes, which will result in underestimates of the ac-
tual basin-wide precipitation (Anders et al., 2006; Hashemi
et al., 2020). Increasing the density and the distribution area
of observational stations can directly weaken these altitude
effects. We also note uncertainties that may arise from the re-
gridding of the remotely sensed datasets in order to pair with
the in situ gauge data. In addition, the assumption of normal
distribution when analyzing extremely high daily precipita-
tion can also lead to uncertainty. Generally, the non-normal
(skewed) distribution of precipitation is caused by the zero-
rainfall events at single sites (Kumar et al., 2009; Semenov,
2008; Sloughter et al., 2007). An associated problem is the
quantity and reliability of the data used to fit the distribution.
If different probability distributions are used to describe the
observed time series of daily precipitation, then different ex-
treme values may be obtained (Angelidis et al., 2012). This
study provides a foundation from which further studies can
be carried out to explore these aspects in more detail.

In the future, more studies are needed to validate the
method and data in regions with complex topography and
climatic conditions and to further improve the retrieval al-
gorithm. This will greatly benefit hydrological applications,
especially in areas with sparse and irregular observation net-
works. Furthermore, no products used in this study accu-
rately represent extreme precipitation events; thus, it is nec-
essary to improve the ability of all of these products to cap-
ture extreme events.
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