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Abstract. Since the late 1970s, space-borne microwave radiometers have been providing measurements of ra-
diation emitted by the Earth’s surface. From these measurements it is possible to derive vegetation optical depth
(VOD), a model-based indicator related to the density, biomass, and water content of vegetation. Because of
its high temporal resolution and long availability, VOD can be used to monitor short- to long-term changes
in vegetation. However, studying long-term VOD dynamics is generally hampered by the relatively short time
span covered by the individual microwave sensors. This can potentially be overcome by merging multiple VOD
products into a single climate data record. However, combining multiple sensors into a single product is chal-
lenging as systematic differences between input products like biases, different temporal and spatial resolutions,
and coverage need to be overcome.

Here, we present a new series of long-term VOD products, the VOD Climate Archive (VODCA). VODCA
combines VOD retrievals that have been derived from multiple sensors (SSM/I, TMI, AMSR-E, WindSat, and
AMSR2) using the Land Parameter Retrieval Model. We produce separate VOD products for microwave obser-
vations in different spectral bands, namely the Ku-band (period 1987–2017), X-band (1997–2018), and C-band
(2002–2018). In this way, our multi-band VOD products preserve the unique characteristics of each frequency
with respect to the structural elements of the canopy. Our merging approach builds on an existing approach that
is used to merge satellite products of surface soil moisture: first, the data sets are co-calibrated via cumulative
distribution function matching using AMSR-E as the scaling reference. To do so, we apply a new matching tech-
nique that scales outliers more robustly than ordinary piecewise linear interpolation. Second, we aggregate the
data sets by taking the arithmetic mean between temporally overlapping observations of the scaled data.

The characteristics of VODCA are assessed for self-consistency and against other products. Using an auto-
correlation analysis, we show that the merging of the multiple data sets successfully reduces the random error
compared to the input data sets. Spatio-temporal patterns and anomalies of the merged products show consis-
tency between frequencies and with leaf area index observations from the MODIS instrument as well as with
Vegetation Continuous Fields from the AVHRR instruments. Long-term trends in Ku-band VODCA show that
since 1987 there has been a decline in VOD in the tropics and in large parts of east-central and north Asia, while
a substantial increase is observed in India, large parts of Australia, southern Africa, southeastern China, and
central North America. In summary, VODCA shows vast potential for monitoring spatial–temporal ecosystem
changes as it is sensitive to vegetation water content and unaffected by cloud cover or high sun zenith angles. As
such, it complements existing long-term optical indices of greenness and leaf area.

The VODCA products (Moesinger et al., 2019) are open access and available under Attribution 4.0 Interna-
tional at https://doi.org/10.5281/zenodo.2575599.
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1 Introduction

Vegetation attenuates microwave radiation that is emitted or
reflected by the Earth surface. The degree of attenuation can
be derived from passive and active microwave satellite ob-
servations and is commonly referred to as vegetation op-
tical depth (VOD) (Jackson and Schmugge, 1991; Vreug-
denhil et al., 2016). The amount of attenuation depends on
various factors, e.g. the density, type, and water content of
vegetation and the wavelength of the sensor (Jackson and
Schmugge, 1991; Owe et al., 2008). Short wavelengths ex-
perience a higher attenuation by vegetation (and hence re-
late to higher VOD values) than longer ones (Liu et al.,
2009; Owe et al., 2008; Rodríguez-Fernández et al., 2018).
As a consequence, VOD estimates from long wavelengths
are generally more sensitive to deeper vegetation layers (e.g.
stem biomass) while VOD estimates from short wavelengths
are more sensitive to leaf moisture content (Chaparro et al.,
2018; Tian et al., 2018; Fan et al., 2018; Konings et al., 2019).
VOD increases with the vegetation water content (VWC)
(Jackson and Schmugge, 1991) and therefore is related to the
above-ground dry biomass (AGB) (Liu et al., 2015) and its
relative water content (RWC) (Momen et al., 2017).

Satellite-derived VOD has a wide range of potential ap-
plications, including biomass monitoring (Liu et al., 2015;
Brandt et al., 2018b), drought monitoring (Liu et al., 2018),
phenology analyses (Jones et al., 2011), and estimating the
likelihood of wildfire occurrence (Fan et al., 2018; Forkel
et al., 2017, 2019). VOD also correlates with various optical
remote sensing indicators of vegetation greenness like nor-
malized difference vegetation index (NDVI), enhanced vege-
tation index, normalized difference water index (Grant et al.,
2016), and leaf area index (LAI) (Vreugdenhil et al., 2017)
and hence also relates to plant productivity (Teubner et al.,
2018, 2019). VOD has some distinct advantages over opti-
cal vegetation indexes for vegetation monitoring, such as a
slower saturation and the resulting higher sensitivity to high
biomass (Liu et al., 2015) or the ability to be retrieved de-
spite cloud cover (Liu et al., 2011a) which are both advanta-
geous for monitoring tropical forest regions (van Marle et al.,
2016).

VOD products have been derived from multiple space-
borne microwave sensors that have been in orbit since the
late 1970s (Owe et al., 2008). These sensors have varying
lifetimes and characteristics, resulting from differences in
microwave frequency used, measurement incidence angles,
orbit characteristics, radiometric quality, and spatial foot-
prints. This complicates their joint use in studying long-term
VOD dynamics. To overcome this issue, Liu et al. (2011a)
proposed a long-term (1987–2008) harmonized multi-sensor
VOD data set by merging VOD products derived from the
Special Sensor Microwave/Imager (SSM/I), the Microwave
Imager on board the Tropical Rainfall Measuring Mission

(TMI), and the Advanced Microwave Scanning Radiometer
– Earth Observing System (AMSR-E) through the Land Pa-
rameter Retrieval Model (LPRM; Owe et al., 2008). Their
methodology was inherited from the methodology used to
produce the first long-term satellite-based climate data record
of soil moisture within the Climate Change Initiative of the
European Space Agency (ESA CCI Soil moisture; Dorigo
et al., 2017, 2012; Liu et al., 2011c, 2012; Gruber et al.,
2019). In their methodology, all available observations were
harmonized with respect to C-band (6.9 GHz) VOD obser-
vations from AMSR-E, which was assumed to provide the
highest-quality observations (Liu et al., 2012). Only in peri-
ods where AMSR-E C-band observations were not available,
were other products used instead. This approach ignores the
fact that in a statistical sense a high-quality product can be
fused with a low-quality product to create a product with a
higher quality than either of the original products. This was
systematically demonstrated for the merging of two level 2
soil moisture products (Gruber et al., 2017). Since the re-
lease of the multi-satellite VOD product by Liu et al. (2011a),
significant progress has been made towards a better under-
standing of the VOD signal. It was shown that the individ-
ual bands also carry valuable information for different appli-
cations (Teubner et al., 2018; Chaparro et al., 2018), which
demonstrates the need for frequency-specific VOD data sets.
In addition, new sensors were launched, allowing the obser-
vational VOD records to be extended to the running present.

In this paper, we present a new series of long-term, har-
monized VOD climate data records, called the VOD Cli-
mate Archive (VODCA), which are derived from multiple
single-sensor level 2 products. VODCA uses a similar core
methodology as in Liu et al. (2011a) and in ESA CCI Soil
Moisture (Gruber et al., 2019) but incorporates the latest in-
sights into VOD and climate data record production gath-
ered during the last few years, and it introduces recent satel-
lite missions. We combine VOD observations from SSM/I,
TMI, AMSR-E, WindSat, and AMSR2 into global, harmo-
nized long-term VOD products at a 0.25◦ spatial sampling
and covering the period 1987–2018. First, we describe the
input VOD data sets, followed by an overview of the fusion
methodology. We then describe the main characteristics of
the merged data sets in terms of spatial and temporal cover-
age and patterns and their random error characteristics. We
check the spatio-temporal characteristics for plausibility by
comparing them to those of related satellite-derived biogeo-
physical products and complement the data set assessment
by a trend analysis. We conclude the paper with a discussion
on current limitations and ways forward.
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2 Input data

2.1 Vegetation optical depth data sets

2.1.1 The Land Parameter Retrieval Model (LPRM)

LPRM v6 (van der Schalie et al., 2017; Owe et al., 2008;
Meesters et al., 2005) is based on a radiative transfer model
first proposed by Mo et al. (1982), and it simultaneously re-
trieves soil moisture and VOD from vertical and horizontal
polarized microwave data. The model assumes that the Earth
emits microwave radiation depending on its surface temper-
ature Ts and emissivity e, which is a function of its dielectric
constant k, which in turn is dependent on the surface soil
moisture. Part of this radiation is then absorbed or scattered
by water in the vegetation depending on its transmissivity
0 and single-scattering albedo w, while the vegetation itself
also emits radiation depending on its temperature Tv. The re-
sulting brightness temperature Tb measured at the sensor can
then be modelled as

Tbp =

Tsep0+ (1−0)Tv(1−w)+ (1− ep)(1−w)Tv(1−0)0,
(1)

where the subscript p denotes either a vertical or horizontal
polarization. Further, VOD (τ ) is related to 0 and the inci-
dence angle u by

0 = exp
(
−τ

cos(u)

)
. (2)

Since observations from the sensors used in this study are
available in both horizontal and vertical polarization, Eq. (1)
is used to open a system of linear equations. While the ab-
solute measured TbH is lower than TbV , it is more sensitive
to changes in soil moisture while TbV is more sensitive to
vegetation and surface soil temperature. This relationship in
combination with the application of a separate retrieval al-
gorithm to determine the temperature from 37 GHz vertical
polarization measurements (Holmes et al., 2009) allows us to
solve the system analytically as described in Meesters et al.
(2005).

The actual temperatures are difficult to estimate dur-
ing daytime due to surface heating, while during night-
time, soil and vegetation are nearly in thermal equilib-
rium. This implies that nighttime retrievals are expected
to have a lower temperature-related error than daytime re-
trievals (Owe et al., 2008). Therefore, to minimize error
sources, only nighttime retrievals are used in VODCA. While
LPRM v6 is not publicly available, older versions are avail-
able at https://disc.gsfc.nasa.gov/datasets/LPRM_AMSR2_
D_SOILM3_001/summary (last access: 9 January 2020).

2.1.2 Sensor specifications

The used VOD data sets were derived from brightness tem-
perature measurements of various space-borne sensors active
since 1987 (Table 1).

The Advanced Microwave Scanning Radiometer (AMSR-
E) on board Aqua retrieved microwave observations from
2002 to 2011 in six bands, of which we only consider
the C-, X-, and Ku-bands. Their spatial footprints are
75 km× 43 km, 51 km× 29 km, and 27 km× 16 km respec-
tively. AQUA is on a sun-synchronous circular orbit, passing
the Equator at 13:30 ascending and 01:30 descending mode
(Knowles et al., 2006; Kawanishi et al., 2003).

The Advanced Microwave Scanning Radiometer 2
(AMSR2) is an improved version of AMSR-E on board
GCOM-W1 continuing AMSR-E’s measurements since
2012 with similar bands, orbit, and overpass times but
with a slightly higher spatial resolution: 62 km× 35 km,
42 km× 24 km, and 22 km× 14 km, for the C-, X-, and Ku-
bands respectively. In addition, AMSR2 also contains a sec-
ond C-band (7.3 GHz) that can be used to cover areas where
radio-frequency interference (RFI) is present in the primary
C-band channel (6.9 GHz) (Meier et al., 2018). During pre-
liminary analysis, we discovered that the AMSR2 Ku-band
VOD retrievals have an apparent break in late 2017. Since
then, the values observed are globally systematically lower
than before, indicating a possible calibration error in Ku-
band brightness temperatures. While the exact reasons are
unknown to us, until the matter is resolved we do not include
Ku-band data after 1 August 2017 in VODCA. This short-
ens the Ku-band VOD product by 16 months. VOD retrievals
from X- and C-band AMSR2 seem unaffected and are used
until the end of 2018.

The Special Sensor Microwave Imager (SSM/I) is on
board a series of DMSP satellites. We use the VOD data re-
trieved from F-8, F-11, and F-13. From the seven available
bands of SSM/I we use only VOD from the Ku-band which
has a resolution of 69 km× 43 km. The equatorial crossing
time varies between the DMSP satellites, but all are on sun-
synchronous orbits (Wentz, 1997).

Among other sensors, the Tropical Rainfall Measuring
Mission (TRMM) carried the TRMM Microwave Imager
(TMI). TRMM is the only satellite used which has a non-
near-polar orbit with an inclination of 35◦. Up to 2001
it had an altitude of 350 km, which then got boosted
to 400 km, leading to a slight decrease in spatial reso-
lution. TMI was active from 1997 to 2015. Of the nine
channels we only use its X- and Ku-bands, which have
a spatial resolution of 63 km× 37 km/72 km× 43 km and
30 km× 18 km/35 km× 21 km pre-/post-boost respectively
(Kummerow et al., 1998).

WindSat on board Coriolis was launched in 2003 on a
sun-synchronous orbit providing radiometric measurements
in five bands, of which the C-, X-, and Ku-band were used
to derive VOD. The spatial resolution is 39 km× 71 km,
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Table 1. The input VOD data sets used with their temporal coverage, local ascending equatorial crossing times (AECT), and used frequencies
(GHz) for each product.

Sensor Time period used AECT C-band X-band Ku-band Reference

AMSR-E Jun 2002–Oct 2011 13:30 6.93 10.65 18.70 van der Schalie et al. (2017)
AMSR2 Jul 2012–Jan 2019 13:30 6.93, 7.30 10.65 18.70 van der Schalie et al. (2017)
SSM/I F08 Jul 1987–Dec 1991 18:15 19.35 Owe et al. (2008)
SSM/I F11 Dec 1991–May 1995 17:00–18:15 19.35 Owe et al. (2008)
SSM/I F13 May 1995–Apr 2009 17:45–18:40 19.35 Owe et al. (2008)
TMI Dec 1997–Apr 2015 Asynchronous 10.65 19.35 Owe et al. (2008)
WindSat Feb 2003–Jul 2012 18:00 6.80 10.70 18.70 Owe et al. (2008)

25 km× 38 km, and 16 km× 27 km. Due to some periods of
non-operation, WindSat contains temporal data gaps (Gaiser
et al., 2004). Unfortunately we were unable to gain access to
data past July 2012, even though WindSat is still operational.

2.2 Evaluation data

2.2.1 Vegetation optical depth product from Liu et al.,
VOD_Liu

We compared the VODCA data sets with the previously
created multi-sensor, multi-band VOD data set (Liu et al.,
2011b, 2015), hereafter called VOD_Liu. VOD_Liu covers
the period from January 1993 to December 2012 and is based
on VOD retrieved via LPRM from SSM/I (Ku-band), TMI
(X-band), and AMSR-E (C-/X-band) observations. The val-
ues are scaled to AMSR-E and methods are in place to fill
gaps due to frozen ground and to correct for large-scale open
water bodies. We expect that the data that are publicly avail-
able were subject to some temporal smoothing since the data
are mostly gap-free. The smoothing is not described in Liu
et al. (2011b, 2015) and the Supplement.

2.2.2 MODIS leaf area index

To verify the plausibility of VODCA we compare it to
MODIS leaf area index (LAI), MOD15A2H version 6 (My-
neni et al., 2015). LAI is the ratio of one-sided leaf area
to ground area and is estimated from the solar-reflective
MODIS bands using a look-up-table-based approach with a
back-up algorithm that uses empirical relationships between
NDVI, LAI, and fraction of photosynthetically active radia-
tion (FPAR). Field studies with different crop types showed
that VOD is closely related to LAI (Sawada et al., 2016),
a relationship that has already been used to assess VOD
products derived from active sensors (Vreugdenhil et al.,
2017). The data are available globally since 2002 with an
8 d temporal resolution and are for comparison purposes spa-
tially downsampled from their native resolution of 500 m
to a quarter-degree grid. The original data are available on
https://doi.org/10.5067/MODIS/MOD15A2H.006.

2.2.3 AVHRR Vegetation Continuous Fields

We use the Vegetation Continuous Fields (VCF) version 1
derived from data of Advanced Very High Resolution Ra-
diometer (AVHRR) instruments (Hansen and Song, 2018;
Song et al., 2018). The VCF product shows the fractional
cover of bare ground, short vegetation, and tree canopy,
where trees are defined as all vegetation taller than 5 m in
height, and short vegetation is defined as vegetation smaller
than 5 m. VCFs are provided as yearly files from 1982 to
2016, indicating the fractional coverage during the local an-
nual peak of growing season. The VCF product is retrievable
from the online NASA Earthdata Search at https://search.
earthdata.nasa.gov (last access: 9 January 2020).

Given the relation of VOD with vegetation height and
biomass (Giardina et al., 2018; Liu et al., 2015), it seems
sensible to assume that VOD would increase from areas with
bare ground and short vegetation to areas with high tree
cover. Hence, we use the VCF data to calculate the mean
VCF from 2002 to 2016 and compare them to the mean of
the VODCA products from 2002 to 2017 (Sect. 4.1). Further-
more, we calculate the VCF trends from 1987 to 2016 and
compare it to the trends in the merged Ku-band VOD over the
same period (Sect. 4.4.2). Song et al. (2018) also calculated
VCF trends by first determining whether there is a signifi-
cant trend with a Mann–Kendall test and then calculating the
slope with a Theil–Sen estimator. Both are non-parametric
tests that are robust to outliers, but using different methods
to mask for significance and estimate the slope can lead to
significant slopes that are still very small. To avoid this issue,
we also calculate the slope using a Theil–Sen estimator and
use the Theil–Sen estimator to determine a 95 % confidence
interval for the slope and remove any slopes where the zero
slope is within the confidence interval.

3 Methods

For each of the VODCA products, we use almost exactly the
same methodology. Exceptions to this common methodology
are described at the end of the respective subsection. Each
product is computed without any influence of the others. The
main difference between the three products is the time period
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Figure 1. Time periods of the sensors used for each band.

spanned, resulting from the varying availability of input data
(Fig. 1). The fusion process involves three main processing
steps: first, preprocessing involves masking for spurious ob-
servations and spatial and temporal collocation of the data
sets. Second, bias between the different sensors is removed
by scaling them to AMSR-E VOD. Ultimately, the collocated
and bias-corrected observations of all data sets are merged in
time and space.

3.1 Preprocessing

Level 2 VOD data in swath geometry were first projected
onto a common regular 0.25◦×0.25◦ latitude–longitude grid
using nearest-neighbour resampling. The different sensors
visit the same spot on the Earth surface at different times
of the day. To facilitate further processing, we do not take
into account the exact time of observation. Instead, we se-
lected the closest nighttime value in a window of ±12 h for
every UTC midnight which is identical to in the ESA CCI
soil moisture processor (Dorigo et al., 2017). Since in sub-
sequent processing steps the values of different sensors with
different measurement times will be merged, one can con-
sider the resulting values to be nightly averages.

Basic masking operations were applied to remove poten-
tially spurious observations. Specifically we mask for RFI,
low land surface temperatures (LSTs), and VOD values ≤ 0
as follows.

– RFI. Artificial microwave emitters on the Earth’s sur-
face distort the signal received by the satellite, causing
the resulting VOD values at those locations to be un-
reliable. RFI is typically frequency-specific. RFI flags
were already provided with the level 2 VOD data and
were based on de Nijs et al. (2015). Any observations
affected by RFI are removed.

– LST. Due to the different dielectric properties of ice and
water, reliable retrievals can only be made if the ground
is not frozen. Therefore, we remove observations where
the LST is below 0 ◦C. Masking for LST was based on
the temperature retrievals from the Ka-band (Holmes

et al., 2009), which is found on all the multi-channel in-
struments used in VODCA, and was provided with the
level 2 VOD data.

– Negative VOD values. VOD retrievals < 0 are physi-
cally impossible and are therefore removed from the
data sets. We also remove VOD values of 0.0 (floating
point zero). The reasoning is twofold: first, it is phys-
ically only possible to get floating point zero VOD if
there is virtually no vegetation, making it very unlikely
for most parts of the globe. Second, we also observed
that this case occurs surprisingly often in non-desert re-
gions and that these values never fit well with the other
observations. This indicates that most VOD values of
zero are artefacts that have to be removed.

The above masking is applied independently to all sensors
and bands. A special case is AMSR2, which has two chan-
nels in the C-band, i.e. at 6.9 and 7.3 GHz. If possible, the
observations from the 6.9 GHz band are used, but if the ob-
servation in this channel is masked, the 7.3 GHz observation
is used instead (if unmasked) to fill gaps. This only causes a
minor reduction in quality, as the two C-bands are strongly
correlated (Fig. S1). A flag indicating the channel ultimately
used in the merged data set for each observation is provided
in the metadata.

3.2 Cumulative distribution function (CDF) matching

We use a new implementation of the CDF-matching tech-
nique based on a combination of piecewise linear interpo-
lation and linear least-squares regression. CDF matching is
used to correct for systematic differences between the VOD
values of each sensor, which may result from the individual
sensor designs, incidence angles, spatial footprints, and the
slight differences in the frequencies used. The goal of CDF
matching is to scale a source data set such that its empirical
CDF becomes similar to the empirical CDF of the reference
data set. CDF matching is applied on a per-pixel basis and
has been successfully used for similar tasks that require the
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correction of higher-order differences between data sets (Liu
et al., 2009, 2011a, 2012; Dorigo et al., 2017).

3.2.1 Improvements to ordinary piecewise linear CDF
matching

Ordinary piecewise linear CDF matching (Liu et al., 2009,
2011a; Dorigo et al., 2017) predicts for each [0, 5, 10, 20,
30, . . . , 80, 90, 95, 100] percentile of the source data the
same percentile of the reference data set. Values between the
nth and nth+ 1 percentile are then scaled using linear inter-
polation. While the scaling parameters are determined only
from temporally overlapping observations, during prediction
there can be values outside the training range. These values
are scaled by extrapolating the first or last percentile inter-
val. This method preserves the ranks of the source and com-
putes rather fast. However, the first and last percentiles are
defined by the lowest and highest observations respectively
in both source and reference time series. Hence, a single out-
lier can greatly affect the parameters of these percentiles,
making them unreliable. Here we propose improvements to
this method to derive more robust scaling parameters that are
not specific to VOD data but rather should be generally ap-
plicable in similar situations.

The first improvement is to fit a linear model using the
sorted observations smaller than the second percentile with
an intercept through the second percentile. This gives more
reliable scaling parameters for low values since all the data
between the lowest and second-lowest percentiles are used
instead of just the lowest value. In case a different number
of observations exists in the source and reference, the data
with fewer observations are padded by linear interpolation
during training. In a similar fashion, a model is fitted for ob-
servations above the penultimate percentile. We further in-
crease the robustness of the CDF-matching parameters by
dynamically increasing the step size of the percentiles if only
a few observations are available. The number of observations
varies greatly from grid point to grid point and from sensor
to sensor. If too few observations exist between two subse-
quent matching percentiles (a “bin”), the CDF matching may
overfit, leading to unreliable parameters. To counteract this,
we dynamically reduce the number of bins and increase the
size of the bins based on the number of observations.

3.2.2 Stability of parameters

To evaluate whether the new matching technique is more ro-
bust to outliers than the original piecewise linear CDF match-
ing method, we simulate the variances of the derived parame-
ters of each bin for a varying number of training observations
using artificial values. The use of artificial values allows us
to test the method without being influenced by the artefacts
inherent to real data. To achieve this, we sample a set of
source and reference values from a standard normal distri-
bution, and then we determine the resulting CDF-matching

Figure 2. Variance of the derived slope, depending on the num-
ber of observations and the percentile bin for both piecewise linear
CDF-matching techniques. The colour is log-normalized.

parameters. For each evenly spaced percentile bin, we deter-
mine the slope in radians. This is repeated a few thousand
times for various numbers of values (representing time series
with a varying number of observations), each time drawing
new values. If a CDF-matching method is robust, the deter-
mined slopes should have low variance due to the values al-
ways being drawn from the same distribution.

We run this with both piecewise linear CDF matching and
our new method. However, for this simulation we do not dy-
namically decrease the number of bins, as we are solely in-
terested in the performance of the linear regression scaling
the first and last percentiles. Both methods are tested with
the same randomly drawn data.

The resulting variances in the slope, for each percentile
bin, for both methods, depend on the number of observa-
tions used for the parameter determination. This is shown in
Fig. 2. The results in the middle bins are exactly the same,
as the same methodology is used for these bins. However, in
the case of linear piecewise interpolation, the slope param-
eters of the first and last bins have a much higher variance
than the middle bins as they are affected by outliers. In con-
trast, the slopes determined by the least-squares method have
a much lower variance. In both cases we can also see that
the more observations we have, the lower the variance of the
slope parameter is, showcasing the reasoning behind reduc-
ing the number of bins dynamically if too few observations
are available.

3.2.3 Practical implementation

While there is no “true” reference to scale to, AMSR-E has
almost global coverage and has a long temporal overlap with
all other sensors but AMSR2. Hence, the empirical CDFs of
WindSat, TMI, and SSM/I are directly scaled to the one of
AMSR-E, similar to Dorigo et al. (2015). To preserve any
potential trends in both source and reference data, only dates
when both have a valid observation are used. If at a certain
location fewer than 20 temporal overlapping observations ex-
ist, no reliable scaling parameters can be determined and the
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source time series is dropped. A bin size of 20 was chosen
as a compromise between data coverage and often-used bin
sizes. A bin size of 50 observations is often used as a rule
of thumb for univariate regression to get robust estimates
(Green, 1991). However, our main goal was rather to prevent
time series with very few observations from learning spuri-
ous scaling parameters and we also did not want to lose all
time series with fewer than 50 values. As such 20 was chosen
as a compromise.

AMSR2 does not share any temporal overlap with AMSR-
E and therefore cannot be directly scaled based on overlap-
ping observations. Instead, for the X- and Ku-bands, scaled
observations of TMI can potentially be used to bridge this
gap. This is done according to the following logic: if possi-
ble, AMSR2 is scaled to the rescaled TMI. Should there not
be enough overlapping observations, the scaling parameters
are determined from all observations of the first 2 years of
AMSR2 and the last 2 years of AMSR-E. While this removes
any potential trends in the first 2 years of the AMSR2 period,
these trends are still assumed to be smaller than the removed
bias. Last, if there are also not enough AMSR2 or AMSR-
E observations available in those years, the whole AMSR2
time series is dropped. For the C-band, which is not cov-
ered by TMI, the AMSR2 data are always matched directly
to AMSR-E by using the last and first 2 years of both sensors.
The published data sets contain a flag indicating the match-
ing method, allowing the user to remove the AMSR2 obser-
vations matched directly to AMSR-E if desired.

Since the scaling parameters are determined using only a
subset of all observations, during prediction there can be val-
ues outside the training range. The regression is therefore not
forced to go through the origin if the predicted values can po-
tentially be smaller than 0. These values are deemed unreli-
able and are removed. However, this occurs very rarely, only
a fraction of about 1/106 to 1/108 of values are lost this way.

3.3 Merging

For all bands, the CDF-matched time series of all individual
sensors are merged into a single long continuous time series.
For a certain pixel at a certain time step, three possible sce-
narios can occur:

1. If on a certain date no sensor has an observation, a data
gap will result in the final product.

2. If only one sensor has an observation, the CDF-matched
value will be directly integrated in the final product.

3. If multiple sensors have an observation on a certain date,
their arithmetic mean is taken.

This means that the number of sensors contributing to
each observation within a time series can vary greatly. For
each observation in the final product there is a flag indicat-
ing which sensors have contributed to it. Although more so-
phisticated weighted merging methods based on least squares

Figure 3. (a–c) Example X-band time series for a grid cell in Aus-
tria (15.125◦ E, 48.125◦ N, mostly farmland with about 20 % forest)
at different processing steps. Time series of the original VOD data
of all available sensors are shown in (a), the CDF-matched series
in (b), and the final merged VOD (VODCA) together with MODIS
LAI in (c). In (c) VOD and LAI are both normalized, and VOD is
downsampled by moving average to match the temporal 8 d resolu-
tion of LAI. (d) Violin plot showing the effect of CDF matching on
the statistical distribution of VOD.

have been proposed to merge multiple satellite observations
(Gruber et al., 2017, 2019), estimating these weights, i.e. in-
dicators of the relative quality of the individual data sets, is a
non-trivial task. This particularly applies to VOD, for which
no appropriate independent reference data exist. However, in
most cases, the arithmetic mean appears to be a robust ap-
proximation of optimal merging (Liu et al., 2012).

Alternatively, one could also take the median instead of the
mean. This would likely be more robust to outliers but would
only make a difference if three or more concurrent values
exist. As such the difference would likely be very small and
thus this is not explored in detail.
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Figure 4. Global spatial patterns of average multi-sensor VOD from each band (2002–2017), average MODIS LAI (2002–2017), and average
VCF (2002–2016) and distribution of VOD for locations with high tree cover (TC), short vegetation (SV), and bare ground (BG) greater than
0.8. The error bars indicate the standard deviation within each group.

4 Properties of the long-term vegetation optical
depth data sets

4.1 Spatial patterns and temporal dynamics

Figure 3 shows an example of X-band VOD time series in
Austria at different stages of merging procedure together
with MODIS LAI. The original VOD time series have vis-
ible systematic differences between each sensor. The CDF-
matched VOD time series have been scaled to AMSR-E and
visually do not show systematic differences between sensors.
The statistical distributions of VOD from the sensors are sim-
ilar after matching (Fig. 3b). This example grid point is north
of 38◦ N and thus outside the spatial coverage of TMI; there-
fore AMSR2 has been scaled to AMSR-E directly using non-

temporally overlapping observations. The merged VOD time
series shows comparable seasonal dynamics like LAI.

The global spatial patterns of average VOD between
June 2002 and June 2017 are shown for each band in Fig. 4a–
c. This period was selected because all bands have global
coverage in this time period. All bands show similar spa-
tial patterns, matching the ones of the VCF land covers
(Fig. 4e), with high VOD in tropical and northern forests and
lower VOD in grassland and desert regions. The same pat-
tern is also visible in canopy height (Simard et al., 2011) and
MODIS LAI (Fig. 4d), even though the LAI in the tropical
forests is much higher than in the boreal forests, while VOD
is similarly high in both regions.

Based on the principle that the penetration of microwaves
increases with wavelength, the maximum VOD is highest at
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Figure 5. Hovmöller diagrams showing the monthly mean VOD per latitude for each band of VODCA and VOD_Liu and for LAI.

shorter wavelengths (Ku-band) and smallest at longer wave-
lengths (C-band). This can also be seen in Fig. 4f), which
shows the average VOD of each band for locations domi-
nated by high tree cover (vegetation height> 5 m), short veg-
etation (< 5 m), or bare ground. Similarly to previous find-
ings based on the L-band (Konings and Gentine, 2017), this
figure also shows that on average VOD is highest in forests
and lowest over bare ground.

The temporal dynamics of VOD across different latitudes
shows plausible seasonal patterns of vegetation phenology
(Fig. 5). In general, summer months have the highest VOD:
in the tropics and subtropics due to increased precipitation
during that time, and in northern–southern regions due to the
increased temperature and consequent vegetation growth and
(leaf) biomass gain.

The VOD time series do not show any visible artificial
breaks, indicating that the biases have overall been success-
fully removed from the individual sensors before merging.
To make potential artificial breaks more visible, we inves-
tigated the seasonal anomalies per latitude (Fig. 6). The
anomalies are calculated by collecting all the observations
of a latitude, calculating the monthly mean, subtracting the
multi-year monthly average, and removing any potential lin-
ear trends using ordinary least-squares regression. Hence the

anomalies should represent either natural variability or arte-
facts due to shifts in available sensors. In the latter case, one
would expect global anomalies to be visible due to either bias
or differing spatial extent.

Most anomalies are limited in both space and time and
their start or end does not coincide with a change in sensors,
indicating that they are due to natural causes. Anomalies in
MODIS LAI show patterns similar to VODCA anomalies,
showing that surface events manifest in both in a similar way.
The VOD_Liu anomalies are very similar to the VODCA
anomalies, the biggest difference being that the texture is less
coarse due to the temporal smoothing present.

To further assess the stability of VODCA, the correlation
of VOD with LAI was calculated for different blending peri-
ods similar to in Dorigo et al. (2015) (Fig. 7). The blending
periods are chosen for each band such that each period corre-
sponds to a different set of input sensors (Fig. 1) and that each
period is long enough to calculate reliable coefficients. Both
the correlation between the raw time series and the anoma-
lies indicate that the temporal dynamics are consistent over
the whole length of the time series.
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Figure 6. Hovmöller diagrams showing anomalies of the monthly means per latitude for each band of VODCA and VOD_Liu and for LAI.

4.2 Spatio-temporal coverage

The temporal and spatial coverage of the merged VOD time
series for each band is shown in Fig. 8. The coverage of the
merged products is defined by the spatial and temporal cov-
erage of sensors (Fig. 1). For any band in any time span with
at least one sensor, most parts of the globe have an observa-
tion for at least 40 % of all days, while in any time period
with at least two sensors about 70 % of all days have a valid
observation. TMI is the only sensor with a non-polar orbit
of 35◦ N and S, leading to an increased coverage in that re-
gion in the Ku- and X-bands from 1997 to 2015. The latitude
affects the coverage in multiple ways: northern regions are
generally more often covered by the polar-orbiting satellites,
but on the other hand frozen grounds and snow cover inhibit
the retrieval of VOD in winter. The low coverage band near
23◦ N is the result of LPRM not converging on a valid so-
lution in very arid regions due to the extreme soil dielectric
constants in these regions (de Jeu et al., 2014).

In some locations the merged VOD products have fewer
observations than in the original products. This data loss can
be caused by a failure of the merging procedure, in detail
explained in Sect. 3.2.3. Matching failures are always a re-
sult of insufficient AMSR-E data, and hence the data loss
occurs in similar regions for all sensors of one band. The
lack of AMSR-E data is in most cases due to either RFI or
low temperatures in mountainous regions. As an example,
Fig. 9 shows, for all bands, where the CDF matching failed
for WindSat data. The Ku-band is the least affected (Fig. 9c),
where only about 2 % of the grid points are lost, mostly in the
Himalayas. In the X-band the matching fails for about 5 % of
the grid points, mostly in large parts of the Sahara (Fig. 9b).
The C-band is most affected by data loss (10 %), mostly in
some parts of the USA where additional RFI prevents accu-
rate retrievals (Fig. 9a) (Njoku et al., 2005).

4.3 Random error characteristics

To validate the performance of our merging approach, we
evaluate the change in autocorrelation as an indicator for
precision. Merging overlapping observations from multiple
sensors is supposed to result in data that have a higher pre-
cision than the data of any of the individual sensors. But
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Figure 7. Correlation between VODCA and MODIS LAI, raw time
series, and anomalies, for different blending periods.

without a higher-quality external reference data set, assess-
ing the change in precision is non-trivial. However, we can
assume that there is supposed to be a high degree of tempo-
ral autocorrelation between subsequent observations because
VOD is related to gradual changes in plant water content and
biomass (Momen et al., 2017; Konings et al., 2016). There-
fore we calculated the difference between the first-order tem-
poral autocorrelation before and after merging.

The autocorrelation coefficient is strongly dependent on
the temporal resolution. As seen in Sect. 4.2, the temporal
resolution of VODCA increases if multiple sensors are avail-
able. Therefore directly comparing the autocorrelation coef-
ficients between the individual sensors and the merged prod-

Figure 8. Hovmöller diagrams showing the fraction of days per
month with observations for each latitude and month. The number
of observations of a latitude and month are counted and then divided
by the number of days per month and the number of land grid points
at that latitude.

ucts would lead to an increase in autocorrelation that is re-
lated to the temporal resolution rather than to the precision.
Therefore the temporal resolution is kept unchanged by us-
ing only observation dates existing in both the pre-merge and
post-merge data set.

The autocorrelation differences for the X-band are shown
in Fig. 10. The other bands show similar results and are avail-
able in Figs. S4–S6. The autocorrelation of the merged time
series is on average higher than the autocorrelation of the in-
put series, indicating an overall decrease in noise. However,
sometimes the gain in autocorrelation of one sensor mirrors
the loss of the autocorrelation of the other, likely due to the
former sensor being more noisy than the latter, e.g. in Alaska
or east Russia in the X-band of AMSR-E vs. WindSat. This
means that locally sometimes a single sensor has a higher
precision than VODCA. But there are also regions where the
merged VOD autocorrelation is higher than any of the in-
put time series, e.g in Europe or central North America. This
is likely to occur when all sensors have a similar precision,
meaning that none of them are dragging the precision of the
others down.

A noteworthy case is TMI where the autocorrelation of the
merged time series is almost always higher. This could mean
that the TMI data are very noisy and are dragging the overall
quality of the merged data down. We investigated this possi-
bility by experimentally not including TMI in VODCA. This
resulted on average in a lower gain in autocorrelation for the
other data sets, indicating that the TMI data are still posi-
tively contributing to the precision of the merged products
by reducing the noise of the end product.
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Figure 9. Data loss during CDF matching of different WindSat bands. CDF matching failed for the red grid points and therefore the data of
WindSat at that location are dropped. Very similar looking maps exist for the other sensors in Figs. S7–S9.

Figure 10. First-order autocorrelation change due to merging of X-band data for each sensor.
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4.4 Comparison of VODCA with LAI, VOD_Liu, and
Vegetation Continuous Fields

4.4.1 Correlation between vegetation optical depth and
LAI

A direct validation of VODCA is not possible because of the
lack of appropriate in situ measurements. Hence it is only
possible to assess dynamics in VOD with dynamics in re-
lated variables such as LAI or land cover. Globally, LAI and
VODCA time series and their seasonal anomalies are pos-
itively correlated over large areas (Fig. 11). For all bands,
the highest correlations with LAI can be found in grassland-
dominated regions such as in African savannahs, Australia,
and parts of South America. Correlations are usually lower
in forested regions and even slightly negative in parts of
tropical forests such as in the Amazon. The negative corre-
lations in tropical forests could be caused by drought peri-
ods where vegetation water content and hence VOD should
decline but LAI possibly increases (Myneni et al., 2007;
Saleska et al., 2007), although a green-up of the Amazon un-
der drought is highly debated (Samanta et al., 2010, 2012;
Morton et al., 2014). However, this comparison of VODCA
and LAI demonstrates that VODCA reflects plausible sea-
sonal and short-term changes in vegetation and will likely
provide additional information on vegetation dynamics on
top of LAI and other related optical biophysical vegetation
products from optical remote sensing.

To assess differences between the temporal dynamics of
VODCA and VOD_Liu, we compared both to MODIS LAI.
Because VOD_Liu is temporally smoothed, comparing daily
values is inadequate. Instead, we first resample both data
sets to monthly averages and calculate the Spearman corre-
lation to the also monthly averaged MODIS LAI, only using
dates existing in all data sets. The downsampling leads to
slightly higher correlation coefficients (Fig. 12) than using
the daily values (Fig. 11) due to decreased noise, while the
spatial patterns stay the same. The highest correlation was
the VODCA X-band, with a global average of 0.42, followed
by the VODCA Ku- and C-bands with 0.39 and 0.37 respec-
tively. The lowest on average is VOD_Liu with 0.33. It could
be that the lower correlation is a result of being a mix of mul-
tiple bands or because the VODCA products use more input
data sets, resulting in more accurate values. Either way, this
indicates that the VODCA products capture temporal dynam-
ics better.

4.4.2 Trend analysis of VODCA, VOD_Liu, LAI, and
Vegetation Continuous Fields

To evaluate the relationship between the C-, X-, Ku-band
VODCA, VOD_Liu, MODIS LAI, and VCF changes and to
gain a first insight into the long-term changes in VOD, we
assess linear trends in the data sets. Yearly averages are used
to determine the trends and their confidence intervals via the
Theil–Sen estimator. Trends whose upper and lower confi-

dence interval do not have the same sign or either of them
is zero are regarded as non-significant and are not displayed
in Figs. 13, 15, and 14 . Figure 13a–c show the C-, X-, and
Ku-band VODCA trends from 19 June 2002 to 19 June 2017
during which all bands have global coverage. The trends are
visually very similar in all bands, confirmed by the spatial
Spearman correlation coefficients of 0.88 between the C- and
X-band trends, 0.89 between the C- and Ku-bands, and 0.91
between the X- and Ku-bands, calculated using only loca-
tions where both bands have a significant trend. This further
reinforces that all bands react very similarly to vegetation
changes. The spatial overlap of trends is shown in Fig. 13d,
where each location is classified based on the sum of posi-
tive and the sum of negative trends. Locations with no signif-
icant trend in any band are not displayed. The three classes
with contradicting trends (1|1, 2|1, 1|2) are rare as together
they make up only 4.2 % of the displayed points. Conversely,
48 % of the land points are covered by the four classes with at
least two agreeing trend directions without any contradicting
trend (2|0, 3|0, 0|2, 0|3). The agreement in trends between
frequencies indicates that the longer Ku-band series can be
used as an indicator of the shorter X- and C-band series in
trend analyses. Further, the LAI trends of the same time pe-
riod (Fig. 13e) match the VOD trends very well overall, even
though in detail the strength and location of the trends vary.

The trends of Ku-band VODCA and VOD_Liu were de-
termined (Fig. 14) to assess whether studies that have been
analysing VOD trends using VOD_Liu would get different
results if they were repeated using the VODCA Ku-band
instead. The Ku-band VODCA is used because it has the
longest overlap with VOD_Liu (1993–2012).

On a global scale, we see the almost exact same patterns
in both VOD series; therefore studies performed at that scale
would get similar results for both data sets. However, on a lo-
cal scale the patterns differ sometimes; e.g. in most of Turkey
the Ku-band VODCA shows an increase, while VOD_Liu
shows a decrease in VOD. As such regional studies might
get very different results case-by-case depending on which
data set is used.

Taking advantage of the much longer length of the Ku-
band, another trend analysis is done for this band using the
data from 1987 to 2016 (Fig. 15g) to give a first impression of
the changes within the last 30 years. Overall we see a decline
in VOD in the tropics, likely due to deforestation, and in large
parts of Mongolia, attributed to variations in rainfall and sur-
face temperatures as well as increased livestock farming and
wildfires (Liu et al., 2013). VOD increased strongly in India
and large parts of China, mostly due to an increase in crop-
lands in the former case and due to both an increase in for-
est and croplands in the latter (Chen et al., 2019). VOD also
increased in northern parts of Australia, matching trends in
FPAR and precipitation seen in Donohue et al. (2009). Other
regions with increasing VOD are southern Africa and central
North America. Of a questionable nature is the widespread
positive trend in the Sahara given LPRMs struggle to re-
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Figure 11. Spearman correlation coefficient between VODCA VOD and MODIS LAI for each band. Panels (a, c, e) show the correlation
for the absolute signal, and (b, d, f) for the anomalies from the long-term VOD climatology.

trieve VOD here. Most of the changes observed for VOD are
mirrored in the VCF changes from 1987 to 2016 (Fig. 15f;
see Sect. 2.2.3 for details). The large bare-ground losses in
India, China, and the north African shrubland manifest as
positive VOD trends. Likewise, the deforestation in South
America and land degradation with hotspots in Mongolia,
Afghanistan, or the southwestern USA coincide with a loss in
VOD. Also, the patterns of tree cover gain in eastern Europe
and European Russia coincide with increased VOD. While
there do not seem to be any areas where VOD and VCF con-
tradict each other clearly, some trends are only visible in one
of the data sets. For example the strong increase in VOD in
southern Africa cannot be observed in VCF.

5 Current limitations and possible improvements

5.1 AMSR2 scaling to TMI

Upon closer inspection of the trends in Fig. 13, we can see a
spatial break in North America in X- and Ku-band trends at
35◦ N. North of this latitude AMSR2 data of 2012–2014 were
matched to the AMSR-E data of 2010–2012, while south
of this line temporally overlapping scaled TMI values were
used to bridge the gap between the two sensors. Unusually
low VOD values can be observed in this region in the years
2012 to 2015 in both the X- and Ku-bands. This indicates
that the CDF matching does not correct the bias between the
sensors but artificially removes the difference that is due to
surface processes. Consequently, the matched AMSR2 data
have a slight positive bias north of 35◦ N in large parts of
North America. For users, we advise to be careful when us-
ing X- and Ku-band values after July 2012 north–south of
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Figure 12. Correlation of monthly VOD_Liu and the VODCA products with MODIS LAI. For this analysis, the data are first resampled to
monthly averages, and then only the months where all four data sets have values are used.

35◦ N and S as well as C-band values after July 2012 glob-
ally as the AMSR2 data might induce a bias. Currently there
exists a flag indicating how AMSR2 has been CDF-matched.
With ongoing AMSR-E vs. AMSR2 Level 1 intercalibration
efforts by JAXA we expect to reduce spurious observations
in the AMSR2 period in the near future.

5.2 Data loss while CDF matching

As described earlier, CDF matching failed because of miss-
ing AMSR-E data in some regions, mostly in the Himalayas
(Fig. 9). One possible solution to avoid this data loss would
be to substitute the CDF-matching parameters of these lo-
cations with the parameters from locations with similar dy-
namics in VOD. This could be done by clustering the time
series and using the parameters of another location within
the same cluster. Taking this one step further, one could also
investigate the possibility of using all the data in one clus-
ter to derive a single set of CDF-matching parameters and
use these to scale all the source time series within it. Not
only would this allow us to scale all the data without loss,
but the increased number of values available for each pa-
rameter determination would also lead to more robust CDF
parameters. However, generating meaningful clusters from
hundreds of thousands of long time series containing miss-
ing values while keeping the computational cost at bay is
anything but trivial (e.g. Mikalsen et al., 2018). In addition,
even though clusters may be composed of time series with

very similar characteristics, the VOD signal at each location
may still have its unique features resulting from land surface
characteristics or vegetation species composition.

5.3 Data gaps in the input data sets leading to
increased noise

Averaging multiple temporally overlapping observations re-
duces noise (Sect. 4.3). However, this can only be done if
overlapping observations exist. While theoretically the max-
imum number of observations is defined by the number of
available sensors, in practise usually fewer observations are
available due to gaps in the individual time series. Hence,
filling short gaps in the original time series of each sensor
could potentially increase the precision of VODCA. Since
VOD changes slowly over time (Konings et al., 2016), it is
intuitively clear that even if a sensor has no valid observa-
tion on a certain date, the value is expected to be similar to
the value of the dates before and after. Therefore one could
fill short gaps with a model that at least implicitly uses au-
tocorrelation for its predictions, such as Gaussian processes
(Camps-valls et al., 2017).

5.4 L-band product

An L-band product would be of great use to the scien-
tific community, as L-band VOD has been instrumental in
analysing vegetation patterns (e.g. Brandt et al., 2018a; Tian
et al., 2018; Brandt et al., 2018b; Chaparro et al., 2018). Al-
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Figure 13. Trends of various bands between 2002 and 2017 of VOD (a–c) and LAI (e). Non-significant trends are not displayed; the trends
are calculated by Theil–Sen regression using yearly mean values. Panel (d) shows trend classes based on the number of VOD bands exhibiting
a positive|negative trend. For example, 2|1 indicates that two VOD bands show a significant positive trend, while one band shows a significant
negative trend. Their order and colour are indicative of the likelihood of the trend.

Figure 14. Trends between 1993 and 2012 of Ku-band VODCA (a) and VOD_Liu (b). Non-significant trends are not displayed; the trends
are calculated by Theil–Sen regression using yearly mean values.

though we produced an experimental L-band product based
on LPRM-SMAP and LPRM-SMOS using the same method-
ologies as for the other bands, the evaluation of this L-band
product showed that it is not yet fit for release for a number of
reasons. First, merging SMOS and SMAP does not result in a
time series that is longer than just SMOS alone; therefore in

terms of temporal extent nothing is gained. Second, the tem-
poral coverage is highly unbalanced, with the SMAP period
having a much higher density. This carries the high risk that
users might apply unfitting methods to the data. Third, the au-
tocorrelation analysis indicated that VODCA-L has a higher
level of noise than pure LPRM-SMAP. Nevertheless, given
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Figure 15. Trends between 1987 and 2016 of Ku-band VOD (a) and VCF tree canopy, short vegetation, and bare ground (b). Non-significant
trends are not displayed, and the trends are calculated by the Theil–Sen estimator using yearly mean values.

the great scientific interest in L-band VOD, we continue
working on a VODCA L-band product. Yet, a lot of work
is still required, such as assessing the impact of the VOD
retrieval algorithms (e.g. LPRM SMAP and SMOS van der
Schalie et al., 2017; Owe et al., 2008; Meesters et al., 2005,
SMOS-IC Fernandez-Moran et al., 2017, and MT-DCA Kon-
ings et al., 2016) and developing more suitable merging al-
gorithms that can deal with the low temporal variability of
L-band VOD compared to the other frequencies.

5.5 Effect of merging different observation times and
geometries

Literature has shown that the observation time has an in-
fluence on the retrieved VOD (Konings and Gentine, 2017;
Konings et al., 2017) and that the spatial footprint and re-
sampling method and the resampling reference time affect
the quality of merged soil moisture products (Dorigo et al.,
2015). However, overall very little knowledge currently ex-
ists about the effect of mixing observation times and sensor
geometries (incidence angles, spatial footprint, etc.) of mul-
tiple VOD values. Further research on these topics would
improve the understanding of VOD and may lead to more
advanced merging procedures that take these effects into ac-
count.

6 Conclusions

In this paper we presented VODCA, three long-term VOD
data sets spanning up to 3 decades that can be used in stud-
ies of the biosphere. We were able to remove most of the
biases between the different input sensors by co-calibrating
them to AMSR-E. The merging leads to observations with
less noise than the input data sets. The trends of the different
VODCA products (C-, X-, Ku-bands) correlate very strongly
with each other and show similar spatial distributions and
temporal dynamics as trends in LAI and VCF. Compared to
the latter products, which are based on solar-reflective remote
sensing, VOD has the benefit of being unaffected by cloud
cover, generally allowing for more than 40 % of days hav-

ing a valid VOD observation. A major ongoing issue is the
potential bias in AMSR2 due to no temporally overlapping
observations with other sensors. Future efforts will focus on
resolving this and other issues while future VODCA releases
will continuously update the climate archive with recent ob-
servations.

7 Data availability

The VODCA products (Moesinger et al., 2019) are open ac-
cess (Attribution 4.0 International) and available at Zenodo
https://doi.org/10.5281/zenodo.2575599.

The MODIS LAI data (MOD15A2H, v006) by Myneni
et al. (2015) were retrieved from the online data pool, cour-
tesy of the NASA EOSDIS Land Processes Distributed Ac-
tive Archive Center (LP DAAC), USGS/Earth Resources Ob-
servation and Science (EROS) Center, Sioux Falls, South
Dakota, https://doi.org/10.5067/MODIS/MOD15A2H.006.

The VCF annual data (VCF5KYR, v001) by Hansen and
Song (2018) were retrieved from the online NASA Earth-
data Search, courtesy of the NASA EOSDIS Land Processes
Distributed Active Archive Center (LP DAAC), USGS/Earth
Resources Observation and Science (EROS) Center, Sioux
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