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Abstract. A 21 year (1998–2018) continuous monthly data set of the global distribution of light (photosyntheti-
cally available radiation, PAR, or irradiance) reaching the seabed is presented. This product uses ocean color and
bathymetric data to estimate benthic irradiance, offering critical improvements on a previous data set. The time
series is 4 times longer (21 versus 5 years), the spatial resolution is better (pixel size of 4.6 versus 9.3 km at the
Equator), and the bathymetric resolution is also better (pixel size of 0.46 versus 3.7 km at the Equator). The paper
describes the theoretical and methodological bases and data processing. This new product is used to estimate the
surface area of the seafloor where (1) light does not limit the distribution of photosynthetic benthic organisms
and (2) net community production is positive. The complete data set is provided as 14 netCDF files available on
PANGAEA (Gentili and Gattuso, 2020a, https://doi.org/10.1594/PANGAEA.910898). The R package Coastal-
Light, available on GitHub (https://github.com/jpgattuso/CoastalLight.git, last access: 29 July 2020), allows us
(1) to download geographical and optical data from PANGAEA and (2) to calculate the surface area that receives
more than a given threshold of irradiance in three regions (nonpolar, Arctic, and Antarctic). Such surface areas
can also be calculated for any subregion after downloading data from a remotely and freely accessible server.

1 Introduction

Light is a key ocean variable. It shapes the composition of
benthic and pelagic communities by controlling the three-
dimensional distribution of primary producers, the lowest
levels of the food webs. Light also plays a major role in
the global carbon cycle by controlling primary production,
the main source of new organic carbon in the ocean (Assis
et al., 2018). In the marine environment, sunlight is rapidly
absorbed by the water column, and primary production is re-
stricted to the shallow photic zone above 200 m depth (ex-
cept for localized chemoautotrophic communities). Marine
diazotrophs, which fix dinitrogen into organic forms, are also
light-dependent. Furthermore, many marine ecosystem engi-
neers require light because they are either plants (mangrove,
salt marshes, seagrass, coralline algae) or animals living in

symbiosis with endosymbiotic algae (e.g., some mollusks
and zooxanthellate reef-building corals).

Until the late 1970s, most water transparency measure-
ments were performed using Secchi disks (Tyler, 1968), and
several formulations became available to convert Secchi disk
readings into attenuation coefficients (e.g., Weinberg, 1976;
Lee et al., 2015). Remote sensing observations of ocean color
showed great promise as early as 1978, when the Coastal
Zone Color Scanner (CZCS) was launched. It was followed
by several other instruments on board satellites. Ocean color
measurements of the Sea-Viewing Wide Field-of-View Sen-
sor (SeaWiFS), launched in 1997, are used to derive the con-
centration of chlorophyll a (Csat) and the mean attenuation
coefficient for photosynthetically available radiation (KPAR).
Until 2006, most attention was focused on the light field in
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the water column to derive open-ocean primary production
(e.g., Antoine et al., 1996). However, in the coastal ocean,
primary production also occurs at the bottom when enough
light reaches the seafloor. For example, on coral reefs, ben-
thic primary production can represent 90 % of the total pri-
mary production (Delesalle et al., 1993). Primary produc-
tion in coastal vegetated habitats such as mangroves, sea-
grass beds, and tidal marshes, the so-called blue carbon
ecosystems, has received considerable interest in the past
10 years because of their disproportionately large contribu-
tion to global carbon sequestration (Macreadie, 2019). It has
been recently suggested that benthic macroalgae also con-
tribute to global carbon burial (Krause-Jensen et al., 2018).

Gattuso et al. (2006) used SeaWiFS data collected between
1998 and 2003 to estimate, for the first time on a nearly
global scale, the irradiance reaching the bottom of the coastal
ocean. They provided cumulative functions to estimate the
percentage of the area (S) of the coastal zone receiving more
than a given irradiance. These data were used to investigate
the extent of macroalgae (Krause-Jensen and Duarte, 2016),
the restoration of seagrass ecosystems (Eriander, 2017), the
role of vegetated coastal habitats in the ocean carbon bud-
get (Duarte, 2017), macroalgal subsidies supporting benthic
invertebrates (Filbee-Dexter and Scheibling, 2015), global
continental shelf denitrification (Eyre et al., 2013), and ben-
thic primary production in the Arctic Ocean (Attard et al.,
2016; Glud et al., 2009).

More recently, Assis et al. (2018) provided a data layer of
benthic irradiance for modeling species distribution as part
of the Bio-ORACLE set of GIS rasters. This data set is based
on Kd(490) in contrast to Gattuso et al. (2006) who used
the more appropriate KPAR to estimate bottom PAR (PARB).
This is particularly important in coastal regions where there
is no unique relationship between Kd(490) and KPAR due
to large differences in the concentration and composition of
non-algal colored substances.

Since these first efforts, new products have become avail-
able which can improve estimates of the global distribution
of benthic irradiance. These include a much longer time se-
ries of ocean color (21 versus 5 years) with an improved spa-
tial resolution (4.6 versus 9.3 km at the Equator). Bathymet-
ric data have also considerably improved since 2006 (0.46
versus 3.7 km at the Equator). Here we make use of these
new products to provide a global distribution of photosyn-
thetically available radiation (PAR) reaching the seafloor.

2 Methods

Irradiance, here downwelling irradiance, can be defined or
measured at a specific wavelength or integrated within a spe-
cific spectral domain. Photosynthetically available radiation
(in mol photons m−2 d−1) is the amount of light available for
photosynthesis, which is to say in the 400 to 700 nm spectral
range. Biogeochemists and ecophysiologists use the term ir-

radiance for the same quantity. Both terms are used synony-
mously in the present paper. The characteristics of the prod-
ucts used by Gattuso et al. (2006) and of those in the present
study are compared in Table 1.

2.1 Remote sensing data

Monthly level-3 data of PAR (mol photons m−2 d−1), KPAR
(m−1), concentration of chlorophyll a (Csat; mg m−3), and
remote sensing reflectance at 555 nm (Rrs(555); sr−1) from
the satellite-borne sensors SeaWiFS, Moderate Resolution
Imaging Spectroradiometer (MODIS), MEdium Resolution
Imaging Spectrometer (MERIS), and Visible Infrared Imag-
ing Radiometer Suite (VIIRS) were obtained from the
GlobColour project (http://www.globcolour.info, last access:
2 May 2019). The GlobColour project generates global ocean
color products by merging data from current and past ocean
color instruments (SeaWiFS, MERIS, MODIS, VIIRS, and
the two OLCIs), but data retrieved from GlobColour in
January 2019 did not comprise data from the Ocean and
Land Colour Imager (OLCI). Merged products are gener-
ated through a weighted average of the level-2 geophys-
ical products (e.g., chlorophyll) from individual missions.
The weights are assigned to each mission under the form of
a global uncertainty value derived through validation with
respect to global databases of field observations. Alterna-
tive products are also generated through the Garver–Siegel–
Maritorena (GSM) model (Garver and Siegel, 1997; Mari-
torena et al., 2002, 2010). The resolution is 1/24◦. Together,
the 252 monthly images downloaded (a level-3 image con-
tains values of a product on a regular longitude–latitude grid)
cover the period 1998 to 2018.

2.2 Bathymetry and coastline

Depths were estimated from the 2019 General Bathymetric
Chart of the Oceans (GEBCO; https://www.gebco.net, last
access: 2 May 2019) gridded bathymetry data (1/240◦ reso-
lution). The coastal zone (0 to 200 m) was determined using
a land mask and coastline (Global Self-consistent, Hierarchi-
cal, High-resolution Geography, GSHHG) as implemented in
the Generic Mapping Tools (GMT; Wessel et al., 2013). The
full resolution was used. The Arctic, Antarctic, and nonpolar
regions represent, respectively, 24.1 %, 0.6 %, and 75.3 % of
the surface area of the coastal zone.

2.3 Case 1 versus Case 2 waters

It is beyond the scope of this paper to review the criteria used
to eliminate dubious data when generating a level-3 ocean
color composite except for discriminating the water type as
being either Case 1 or Case 2 (Morel and Prieur, 1977). In
Case 1 waters, where phytoplankton and associated degrada-
tion products are the main contributors to light attenuation
(but see Claustre and Maritorena, 2003), KPAR can be mod-
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Table 1. Main characteristics of the products used by Gattuso et al. (2006) and of those in the present study.

Gattuso et al. (2006) Present study

Satellite coverage 1998 to 2003 1998 to 2018
Sat. resolution ≈ 1/12◦ = 9.3 km at Equator ≈ 1/24◦ = 4.6 km at Equator
Bathymetry ETOPO 2 min GEBCO 15 s

3.7 km at Equator 0.46 km at Equator
Data PAR, Csat, nLw(555), KPAR from Csat PAR, KPAR, Csat, Rrs(555)

eled as a function of the concentration of chlorophyll a, itself
derived from reflectance values. The situation is, however,
not as straightforward in Case 2 coastal waters where light at-
tenuation by colored dissolved organic matter and suspended
particles other than phytoplankton can be significant and not
correlated to the chlorophyll a concentration. The discrim-
ination between these two types is performed at level-2 of
the processing, yet it is not considered when generating the
level-3 composites (Brian Franz, personal communication,
September 2019). Therefore, the average chlorophyll a con-
centrationCsat in a given bin of a level-3 composite may have
been computed over any proportion of Case 1 and Case 2 wa-
ters.

The accuracy of Csat in Case 1 waters is claimed to be
±30 %, whereas it is unknown in Case 2 waters. It is there-
fore not possible to estimate the accuracy of the chlorophyll
product in coastal areas and, in turn, the accuracy of the dif-
fuse attenuation coefficient. The determination of the water
type could not be performed with specific algorithms for each
water type since no universal algorithm exists for Case 2 wa-
ters. It was carried out a posteriori based on the average Csat
and Rrs(555). This determination provides an indication of
bins that likely belong to the Case 2 water category when, on
average, the individual pixels accumulated in the bins were
predominantly of the Case 2 type.

The identification of turbid Case 2 waters has been per-
formed as in Morel and Bélanger (2006) by comparing the
water reflectance at 555 nm, R(555), to the maximum value
it should have in Case 1 waters and for the same chloro-
phyll concentration, Rlim(555). Note that the water type was
set to Case 1 for any pixel where Csat < 0.2 mg m−3 be-
cause the algorithm is occasionally prone to falsely clas-
sify low-chlorophyll waters as Case 2 (Morel and Bélanger,
2006). Turbid Case 2 waters are those for which R(555)>
Rlim(555). To perform this test, Rrs(555) was converted to
R(555) as follows (Morel and Gentili, 1996):

R(555)= Rrs(555)×Q0(555)/R0, (1)

where Q0(555) is the chlorophyll-dependent Q factor (sr),
i.e., the ratio of the upward irradiance to the upwelling radi-
ance (Morel et al., 2002), and R0 is a term that merges all
reflection and refraction effects at the air–sea interface (on
average equal to 0.529). Since Rrs(555) is fully normalized
(Morel and Gentili, 1996), its dependence on the viewing an-
gle and the sun zenith angle are removed so that both Q and
R are taken for a nadir view and a sun at zenith (hence the
“0” subscript).

2.4 Benthic irradiance

Kd(λ0,z), the diffuse attenuation coefficient for the down-
ward irradiance (Ed) for a given wavelength (λ0), describes
the exponential attenuation of irradiance with depth in the
water column. It determines the amount of radiation reach-
ing a given depth (z):

Kd(λ0,z)=
−∂ ln(Ed(λ0,z))

∂z
. (2)

The spectral composition of the radiation is not considered
in this work, and only its integral value between 400 and
700 nm is used (i.e., the photosynthetically available radia-
tion, PAR). The attenuation coefficient for PAR is therefore

KPAR(z)=
−d ln(PAR(z))

dz
. (3)

The average value (KPAR) of KPAR(z) over the euphotic
zone, approximated as the depth where PAR is reduced
to 1 % of its value just beneath the sea surface, is com-
puted from the corresponding chlorophyll concentration for
Case 1 waters Csat and Kd(490) using the following equa-
tions (Morel et al., 2007; ACRI-ST GlobColour Team, 2017):

Kd(490)= 0.0166+ 0.08349×C0.63303
sat , (4)

KPAR = 0.0665+ 0.874×Kd(490)

− 0.00121/Kd(490). (5)
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The irradiance at the bottom depth (zB) is then calculated
as follows.

PARB = exp(−KPAR× zB) (6)

– For the nonpolar region, all months are taken into ac-
count, so we have 21 years×12 months = 252 values
by pixel at most.

– For the Arctic region, months 6–10 (June–October) are
taken into account, so we have 21 years×5 months =
105 values by pixel at most.

– For the Antarctic region, months 1–3 and 11–12
(January–March and November–December) are taken
into account, so we have 21 years×5 months= 105 val-
ues by pixel at most.

– In total, we have 252 monthly PARB images for the non-
polar region and 105 for the Arctic and Antarctic re-
gions.

The product delivered comprises longitude, latitude,
depth, area, PAR, KPAR, and PARB for each coastal pixel.
PAR,KPAR, and PARB are monthly climatologies or a clima-
tology over the entire time series (see Sect. 4). The calcula-
tion of surface area receiving PARB above a certain threshold
does not use these climatologies.

2.5 Surface area receiving light above a certain
threshold

Calculations of surface area receiving PARB above a certain
threshold are made in two steps. First a P function is calcu-
lated with the available pixels. Then the area is calculated as
the product of the P function by the surface of the coastal
zone (0–200 m).

2.5.1 The three main regions

A region is defined here by an interval of latitude at the sur-
face of the Earth. Polar regions are more frequently observed
by satellites, yet polar night and cloudiness end up with data
not being available for several months of the year. So three
regions have been defined:

– the “nonpolar” region (60◦ S; 60◦ N), for which data are
always available;

– the “Arctic” region (60◦ N; 90◦ N), for which data are
available during the months of June, July, August,
September, and October;

– the “Antarctic” region (90◦ S; 60◦ S), for which data
are available during the months of January, February,
March, November, and December.

2.5.2 P functions

Definition of a P function for a monthly PARB image of a
region

– Let I be the monthly image (values of PARB on the floor
of the coastal zone of the region).

– Let Sa,I be the available surface, i.e., the total surface of
pixels for which an irradiance value is available (varying
every month).

– Let E be a value of irradiance (expressed in
mol photons m−2 d−1).

– Let sI (E) be the total surface of pixels collecting irradi-
ance greater than E.

– Let the PI function be defined as PI (E)=
100sI (E)/Sa,I .

Definition of a climatological P function

Our purpose is now to define a P function for a set of
monthly values I = {Ii, i = 1. . .n}. Giving a value of irra-
diance E, it is defined as follows:

PI (E)= 100
n∑
i=1

sIi (E)
/ n∑
i=1

Sa,Ii . (7)

Climatological monthly P function

In this case, the 21 data sets available for a given month
through the entire time series (1998 to 2018) are selected to
calculate the P function according to Eq. (7). So we have the
following:

– 12 climatological monthly P functions for the nonpolar
region;

– 5 climatological monthly P functions for the Arctic re-
gion;

– 5 climatological monthly P functions for the Antarctic
region.

Climatological global P function

The global P function (Pg) is obtained using all data sets
(252 for nonpolar and 105 for Arctic and Antarctic regions)
in Eq. (7).

P functions for a subregion

A subregion may be defined within one of the three main
regions. In this case, data sets are clipped according to the
subregion’s boundaries, and the months used are those of the
main region. Calculation is identical to that described above
for the climatological global P function (Sect. 2.5). The R
package CoastalLight (see Sect. 4) can be used to calculate a
P function for a subregion with the help of a remote server.
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Table 2. Surface area (S) of coastal waters (depth < 200 m) of different optical characteristics. Calculations were performed on monthly
products. Values reported by Gattuso et al. (2006) are shown in parentheses for comparison. Gattuso et al. (2006) did not report data for the
Antarctic.

Arctic Nonpolar Antarctic

S (106 km2) S (%) S (106 km2) S (%) S (106 km2) S (%)

Coastal zone 6.1 (6.13) 100 (100) 19.1 (18.8) 100 (100) 0.146 100
Case 1 2.37 (1.6) 38.8 (26.2) 11.3 (8.47) 59.2 (45) 0.029 20.1
Case 2 0.72 (0.81) 11.8 (13.2) 4.62 (6.76) 24.2 (35.9) 0.022 14.8
Case 1 and Case 2 3.08 (2.41) 50.5 (39.40) 15.9 (15.23) 83.4 (80.9) 0.051 34.9

Figure 1. Availability of remote sensing data over the 21 year time
series. Availability is expressed as the monthly mean of the percent
area of each latitudinal band covered by the satellite.

2.5.3 Surface areas

Let P be the P function of the zone and Sgeo its area; the area
receiving irradiance above a threshold E is

s(E)= Sgeo
P(E)
100

. (8)

3 Results and discussion

The present study essentially confirms the bathymetric data
reported in our earlier study (Gattuso et al., 2006) but shows
substantial differences in the optical data.

3.1 Surface area and depth of subregions of the ocean

The area and depth of the three regions measured with the
most recent GEBCO bathymetry are very similar to those
obtained with the coarser ETOPO2 data set used by Gattuso
et al. (2006) (Table 2). The surface area of the ocean with
depth less than 200 m is 25.3× 106 km2. Three geographical
areas are considered: the Arctic (60 to 90◦ N), the nonpolar
region (60◦ N to 60◦ S), and the Antarctic (60 to 90◦ S) re-
gions, respectively covering 24.1 %, 75.5 %, and 0.6 % of the
global coastal zone. The average depth of the coastal zone is
almost twice as much in the Antarctic than in the Arctic and
nonpolar regions (137 versus 77 and 71 m).

3.2 Availability of ocean color data and seawater types

The availability of monthly ocean color data is highly vari-
able depending on the latitude and month of the year (Fig. 1).
It is highest in nonpolar regions where, on average, data
are available in 83 % (range: 62 %–96 %) of the pixels in
monthly data sets. In the Arctic and the Antarctic, sunlight
is available only during the 5 summer months of the year,
i.e., June to October and November to March, respectively.
Furthermore, data availability is higher in midsummer than
in early and late summer (Fig. 1). Data availability also de-
creases as one gets closer to the poles. On average, data are
available for 51 % and 35 % of the summer data sets in the
Arctic and Antarctic regions (ranges: 6 %–89 % and 11 %–
58 %, respectively; Table 3). Data availability is higher in
the present study which used multiple sensors compared to
a previous study that only used SeaWiFS data (Gattuso et al.,
2006). Several factors contribute to the lower availability of
data in polar regions: pixels are contaminated by sea ice and
flagged accordingly, high occurrence of cloudy days, and low
incidence of the sun.

The coverage of the Arctic has improved by about 20 %
more pixels with available data (Table 3). Case 1 and Case 2
waters are approximately equally distributed in the Antarctic
region (Table 2). In contrast, there is a clear dominance of
Case 1 over Case 2 waters (70 % versus 30 %) in the non-
polar region, whereas it was more even (55 % versus 45 %)
in Gattuso et al. (2006). This discrepancy may be due to the
different approaches used to differentiate between Case 1 and
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Table 3. Surface area and average depth of the various pixel classes. Calculations were performed on monthly data sets for the periods
indicated. Values reported by Gattuso et al. (2006) are shown in parentheses for comparative purposes. Gattuso et al. (2006) did not report
data for the Antarctic. Z1 % is the depth at which benthic irradiance or benthic PAR (PARB) equals 1 % of surface irradiance or PAR.
Available pixels are the pixels for which PAR, KPAR, Csat, and Rrs(555) are available for analysis.

Arctic Nonpolar Antarctic
(June–October) (January–December) (November–March)

Min Max Mean Min Max Mean Min Max Mean

Available/total number of pixels 0.059 (0.20) 0.89 (0.60) 0.51 (0.39) 0.62 (0.68) 0.96 (0.90) 0.83 (0.81) 0.11 0.58 0.35
Average depth available pixels (m) 66 (74) 103 (87) 82 (80) 67 (67) 76 (71) 72 (69) 131 148 140
Average depth missing pixels (m) 67 95 78 27 81 63 131 138 135
Case 1 pixels/available pixels 0.63 (0.58) 0.86 (0.72) 0.77 (0.66) 0.62 (0.46) 0.77 (0.65) 0.71 (0.55) 0.32 0.76 0.58
Average depth Case 1 pixels (m) 80 (86) 114 (99) 92 (93) 81 (80) 89 (86) 85 (83) 143 157 149
Case 2 pixels/available pixels 0.14 (0.28) 0.37 (0.42) 0.23 (0.34) 0.23 (0.35) 0.38 (0.54) 0.29 (0.45) 0.24 0.68 0.42
Average depth Case 2 pixels (m) 35 (43) 64 (70) 46 (55) 31 (44) 47 (57) 38 (52) 107 143 128
Z < Z1 % pixels/available pixels 0.07 0.21 0.15 0.27 0.36 0.31 0.01 0.07 0.03

Figure 2. Distribution of PARB in the Arctic (a) and nonpolar (b) regions in the present study and in Gattuso et al. (2006). The dashed
vertical lines represent the median values in Gattuso et al. (2006) (black) and the present (red) studies.

Case 2 waters. The present study uses the remote sensing re-
flectance at 555 nm, Rrs(555), provided by the GlobColour
project, whereas it was roughly estimated from the normal-
ized water-leaving radiance in the previous study (Eq. 1 in
Gattuso et al., 2006). The quality of the results should there-
fore have improved. In any case, the usefulness of this dis-
tinction is relatively limited because the light penetration
through the water column is calculated in the same way in the
two cases. The distribution of water quality is, however, use-
ful to estimate the reliability of the bottom irradiance which
is much better in Case 1 waters than in Case 2 waters. The
average depth of the missing pixels is similar to that of the
available pixels in the Arctic and Antarctic regions (Table 3).
However, it is sometimes lower in the nonpolar region. The
lowest values occur when the amount of available pixels is
the largest (data not shown), suggesting that the missing pix-
els are preferentially located close to the coastline.

3.3 Bottom irradiance

The distribution of PARB has changed in the present study
compared to Gattuso et al. (2006), with less irradiance values
above 0.2 mol photons m−2 d−1 and more irradiance values

around 0.1 mol photons m−2 d−1 in the present study than in
Gattuso et al. (2006) (Fig. 2).

The surface area of the seafloor receiving an irradiance
larger than a threshold value is lower than in the previous
estimate of Gattuso et al. (2006) (Fig. 3). Differences are low
below an irradiance threshold of 0.2 mol photons m−2 d−1 –
3 % to 16 % lower, respectively, in the nonpolar and Arctic
regions. However, differences are as high as 26 % and 56 %,
respectively, in the nonpolar and Arctic regions for irradiance
thresholds ranging between 10 and 50 mol photons m−2 d−1.
Such differences can be due to several causes.

The present study and Gattuso et al. (2006) used differ-
ent approaches. In the 2006 study, a P function was derived
for each month and then monthly means calculated, implic-
itly giving the same weight to each month irrespective of the
number of pixels with available data. In the present study,
each month has a weight proportional to the surface area for
which data are available, hence providing better estimates.
Second, there are more data available in the data set compiled
in the present paper, especially in the Arctic. Third, Gattuso
et al. (2006) fitted polynomial functions on the relationship
between irradiance and the cumulative surface area of the
seafloor receiving irradiance above a prescribed threshold.
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Figure 3. Comparison of the surface area of the seafloor of the Arctic (a) and nonpolar (b) regions receiving an irradiance larger than a
threshold value ranging from 0.01 to 20 mol photons m−2 d−1 calculated in the present paper (2020) compared with the surface area reported
by Gattuso et al. (2006). The dotted line is the 1 : 1 relationship.

These functions only provide rough estimates and are not
used in the present study. The R package CoastalLight has
been developed in the present study to provide more accu-
rate estimates (Sect. 4) calculated from the underlying data,
which is to say the number of pixels and their size.

These changes in approach, together with the different data
sets used for the optical and bathymetric data, have led to
significant changes in three factors that affect bottom PAR
(PARB; Fig. 4; Table 4). Two of them contribute to a decline
of PARB: (1) a change in the depth distribution leading to
an increase in the median depth (39 versus 31 m) and (2) a
distribution ofKPAR that moved towards higher values in the
present study. Also, (3) surface PAR tends to be higher in the
present study than in the previous one. We do not have any
independent confirmation of such an increase in surface PAR
globally. The change could be real but could also result from
successive reprocessing of the individual sensor archives that
make up the GlobColour products that have been performed
since 2006. This reprocessing indeed includes updates of cal-
ibration coefficients and possible refinements of algorithms.
The combined effects of the first two causes are larger that
the effect of the third one, explaining why bottom PAR is
overall smaller in the present study than in the previous one
(Gattuso et al., 2006).

3.4 Implications for the distribution of photosynthetic
organisms and communities

The differences in PARB between the 2006 study and the
present one have implications on the potential surface ar-
eas receiving enough irradiance to sustain growth of photo-
synthetic organisms and communities (Table 5). Surface ar-
eas are 4 % to 47 % lower in the present study depending
on the region and organism or community considered. As
shown in Fig. 3, in the nonpolar region, the higher the irra-
diance threshold, the larger the difference. Hence, the differ-
ences are generally reasonable (less than 15 %) for organisms
but higher (up to 47 %) for communities which have higher

light requirements to maintain positive rates of net primary
production. Differences between the 2006 estimates and the
present ones are generally larger in the Arctic than in the
nonpolar region for organisms and fairly similar for commu-
nities.

3.5 Analysis of time series

Long-term changes in the optical characteristics have re-
cently been described. For example, using SeaWiFS monthly
global ocean transparency data from September 1997 to
November 2010, He et al. (2017) described a rapid decrease
in global mean ocean transparency at a rate of −0.85 m yr−1

between 1997 and 1999, followed by a small increase with a
rate of 0.04 m yr−1 between 2000 and 2010.

In the Arctic coastal zone, significant climate change ef-
fects have been observed over the last 2 decades including
enhanced melting of sea ice during the summer period, per-
mafrost thaw, and an increase in river discharge into the Arc-
tic Ocean. Time series of ocean color satellite data have been
successfully used to confirm these changes and quantify an
increase of up to 40 % in the concentrations of both dissolved
and particulate terrestrial substances in Arctic coastal waters
(Doxaran et al., 2015; Atsushi Matsuoka, personal communi-
cation, June 2019). In nonpolar regions, satellite observations
did not reveal such a significant temporal trend (e.g., Loisel
et al., 2014) but often highlighted how human-induced activ-
ities have an impact on the discharge of big rivers and the
consequences on the turbidity of surrounding coastal waters
(e.g., Feng et al., 2014).

With a time series 21 years long, it is tempting to investi-
gate whether long-term changes in PARB can be identified.
Figure 5 shows the percent surface area of the coastal zone
of the nonpolar region receiving 2 mol photons m−2 d−1 or
more. There is a highly significant trend with an increase
in the percent of surface area by 0.1± 0.02 % yr−1 (±99 %
confidence interval). However, separate regression analyses
show data shifts occur between the three time periods when
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Figure 4. Distribution of depth, KPAR, and PAR in the present study and in Gattuso et al. (2006). The dashed vertical lines represent the
median values in the 2006 (black) and present (red) studies.

Table 4. Median values of key variables used by Gattuso et al. (2006) and the present study.

Gattuso et al. (2006) Present study

PARB (mol photons m−2 d−1)
Arctic 0.2218 0.0835
Nonpolar 0.6128 0.2169

Depth (m)
Arctic 31.4 38.5
Nonpolar 42.5 45

KPAR (m−1)
Arctic 0.1407 0.1630
Nonpolar 0.0968 0.1336

PAR (mol photons m−2 d−1)
Arctic 19 22
Nonpolar 41 41
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Table 5. Top: Organisms. Surface area (percent of the coastal zone) where irradiance does not limit the distribution of photosynthetic
organisms. Values reported by Gattuso et al. (2006) are shown in parentheses for comparative purposes. The irradiance thresholds are the
first deciles of the minimum light requirements compiled by Gattuso et al. (2006). Data are not reported in the Arctic region for seagrasses
and scleractinian (reef-building) corals where these groups are not present. Bottom: Communities. Surface area (percent of the coastal zone)
where benthic irradiance is higher that the daily community compensation irradiance (net primary production> 0). The irradiance thresholds
are the first deciles of the minimum light requirements compiled by Gattuso et al. (2006). Data are not reported for seagrass communities
and coral reefs in the Arctic and Antarctic regions where they do not occur.

Percent surface area in region

Irradiance Arctic Nonpolar Antarctic Total surface area
(mol photons m−2 d−1) (106 km2)

Organisms

Seagrasses 1.3 – 20 (28) – 3.78 (5.27)
Macroalgae
– Filamentous and slightly corticated filamentous 0.2 18 (26) 37 (42) 4 8.21 (9.50)
– Corticated foliose, corticated, and foliose 0.098 23 (30) 43 (47) 5 9.65 (10.68)
– Leathery and articulated calcareous 0.040 29 (36) 50 (54) 6 11.28 (12.37)
– Crustose 0.001 49 (51) 70 (66) 19 16.32 (15.55)
Microphytobenthos 0.4 14 (22) 31 (37) 3 6.73 (8.31)
Scleractinian corals 0.18 – 38 (43) – 7.29 (8.09)

Communities

Seagrass beds 2.4 – 15 (23) – 2.78 (4.32)
Macroalgal communities 1.6 8 (13) 18 (26) 2 3.91 (5.71)
Microphytobenthic communities 0.24 17 (25) 36 (41) 3 7.83 (9.19)
Coral reefs 4.4 – 10 (19) – –

Figure 5. Time series of the surface area (percent) of the coastal
nonpolar region receiving more than 2 mol photons m−2 d−1. The
linear regression between 1999 and 2018 is shown as a dashed line,
while the result of separate linear regressions for the three time pe-
riods with the same set of ocean color sensors is shown as a solid
line.

the same ocean color sensors were in operation. The trends
are therefore highly variable during specific time periods cor-
responding to various sets of ocean color sensors. We con-
clude that no long-term trend in PARB can be identified in
this data set.

4 Data availability

The geographical and optical data generated and
used in this paper are openly available at the World
Data Center PANGAEA (Gentili and Gattuso, 2020a;
https://doi.org/10.1594/PANGAEA.910898). They consist
of 14 netCDF files with a unique dimension (the coastal
pixel number) which is identical for all files:

– a netCDF file with geographical information (lati-
tude, longitude, depth, area of the pixels) (Coastal-
Light_geo.nc; about 1.2 Gb);

– a netCDF file with the climatology over the whole
21 year period calculated as the mean values of the
monthly data of PAR, KPAR, and PARB (Coastal-
Light_00.nc; about 1.1 Gb);

– 12 netCDF files with monthly climatologies (mean of
the values of PAR, KPAR and PARB).

The 12 netCDF files include the following:

– Monthly climatology, January: CoastalLight_01.nc
(6.2 Gb);

– Monthly climatology, February: CoastalLight_02.nc
(6.8 Gb);

https://doi.org/10.5194/essd-12-1697-2020 Earth Syst. Sci. Data, 12, 1697–1709, 2020

https://doi.org/10.1594/PANGAEA.910898


1706 J.-P. Gattuso et al.: Coastal PAR

– Monthly climatology, March: CoastalLight_03.nc
(7 Gb);

– Monthly climatology, April: CoastalLight_04.nc
(7 Gb);

– Monthly climatology, May: CoastalLight_05.nc (7 Gb);

– Monthly climatology, June: CoastalLight_06.nc
(9.6 Gb);

– Monthly climatology, July: CoastalLight_07.nc
(10.6 Gb);

– Monthly climatology, August: CoastalLight_08.nc
(11 Gb);

– Monthly climatology, September: CoastalLight_09.nc
(10.4 Gb);

– Monthly climatology, October: CoastalLight_10.nc
(7.8 Gb);

– Monthly climatology, November: CoastalLight_11.nc
(6.4 Gb);

– Monthly climatology, December: CoastalLight_12.nc
(6 Gb).

The surface area of three regions (Arctic, Antarctic, and
nonpolar) receiving an irradiance above a certain threshold
is available using the R package CoastalLight (https://github.
com/jpgattuso/CoastalLight, Gentili and Gattuso, 2020b).
The package can be installed and used as follows:

– install.packages(“devtools”)

– library(devtools)

– install_github(“jpgattuso/CoastalLight”)

– use function cl_surface of the CoastalLight package.

The surface area of a subregion of one of the regions above
receiving an irradiance above a certain threshold can be de-
rived as follows (complete information can be found in the
documentation of the CoastalLight package):

– connecting to the web server http://obs-vlfr.fr/
Pfunction/ (last access: 30 July 2020) to calculate and
download its P function;

– then using this P function with function cl_surface of
the CoastalLight package.

5 Conclusions

This study builds on the first, and still only, global distribu-
tion of photosynthetically available radiations reaching the
seafloor (Gattuso et al., 2006). It improves the geographi-
cal and depth resolutions and covers a much longer period
of time. Despite these key improvements, several limitations
inherent to the approach remain. While the spatial resolu-
tion is twice better than the previous products, 4.6 km at the
Equator, it is still coarse for investigating the distribution
and function of organisms and communities which change at
much finer scales. The parameterization used to convert re-
flectance data to irradiance is approximate in Case 2 waters.
Finally, light absorption in the benthic nepheloid layer is not
taken into consideration. The global distribution of PARB we
provide is derived from state-of-the-art data and computa-
tions and is arguably the best that can be offered at this time.
Despite its shortcomings, it should considerably improve es-
timates of the geographical and depth distributions of pho-
tosynthetic organisms and ecosystems and help assess their
contribution to global biogeochemical cycles.
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Appendix A: Graphical representation of P functions

Figure A1. Cumulative surface area of the seafloor (S) receiving irradiance above a prescribed threshold (E). Data are expressed in percent
of the total surface area of each region (19 080 010, 6 100 532, and 146 171 km2, respectively, for the nonpolar, Arctic, and Antarctic regions).
The shaded areas show the monthly variability.
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