
Earth Syst. Sci. Data, 12, 1625–1648, 2020
https://doi.org/10.5194/essd-12-1625-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development of a global 30 m impervious surface map
using multisource and multitemporal remote sensing

datasets with the Google Earth Engine platform

Xiao Zhang1,2, Liangyun Liu1,2, Changshan Wu3, Xidong Chen1,2, Yuan Gao1,4, Shuai Xie1,2, and
Bing Zhang1,2

1State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese
Academy of Sciences, Beijing 100094, China

2University of the Chinese Academy of Sciences, Beijing 100049, China
3Department of Geography, University of Wisconsin-Milwaukee, Milwaukee, WI, USA

4College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China

Correspondence: Liangyun Liu (liuly@radi.ac.cn)

Received: 19 October 2019 – Discussion started: 21 January 2020
Revised: 2 June 2020 – Accepted: 16 June 2020 – Published: 15 July 2020

Abstract. The amount of impervious surface is an important indicator in the monitoring of the intensity of hu-
man activity and environmental change. The use of remote sensing techniques is the only means of accurately
carrying out global mapping of impervious surfaces covering large areas. Optical imagery can capture surface
reflectance characteristics, while synthetic-aperture radar (SAR) images can be used to provide information on
the structure and dielectric properties of surface materials. In addition, nighttime light (NTL) imagery can detect
the intensity of human activity and thus provide important a priori probabilities of the occurrence of impervi-
ous surfaces. In this study, we aimed to generate an accurate global impervious surface map at a resolution of
30 m for 2015 by combining Landsat 8 Operational Land Image (OLI) optical images, Sentinel-1 SAR images
and Visible Infrared Imaging Radiometer Suite (VIIRS) NTL images based on the Google Earth Engine (GEE)
platform. First, the global impervious and nonimpervious training samples were automatically derived by com-
bining the GlobeLand30 land-cover product with VIIRS NTL and MODIS enhanced vegetation index (EVI)
imagery. Then, the local adaptive random forest classifiers, allowing for a regional adjustment of the classifi-
cation parameters to take into account the regional characteristics, were trained and used to generate regional
impervious surface maps for each 5◦× 5◦ geographical grid using local training samples and multisource and
multitemporal imagery. Finally, a global impervious surface map, produced by mosaicking numerous 5◦× 5◦

regional maps, was validated by interpretation samples and then compared with five existing impervious prod-
ucts (GlobeLand30, FROM-GLC, NUACI, HBASE and GHSL). The results indicated that the global impervious
surface map produced using the proposed multisource, multitemporal random forest classification (MSMT_RF)
method was the most accurate of the maps, having an overall accuracy of 95.1 % and kappa coefficient (one of the
most commonly used statistics to test interrater reliability; Olofsson et al., 2014) of 0.898 as against 85.6 % and
0.695 for NUACI, 89.6 % and 0.780 for FROM-GLC, 90.3 % and 0.794 for GHSL, 88.4 % and 0.753 for Glo-
beLand30, and 88.0 % and 0.745 for HBASE using all 15 regional validation data. Therefore, it is concluded that
a global 30 m impervious surface map can accurately and efficiently be generated by the proposed MSMT_RF
method based on the GEE platform. The global impervious surface map generated in this paper is available at
https://doi.org/10.5281/zenodo.3505079 (Zhang and Liu, 2019).
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1 Introduction

Impervious surfaces are usually covered by anthropogenic
materials which prevent water penetrating into the soil
(Weng, 2012) and are primarily composed of asphalt, sand
and stone, concrete, bricks, glass, etc. (Chen et al., 2015).
Due to the rapid growth in the area covered by impervious
surfaces, a series of climate, environmental and social prob-
lems are emerging, including urban heat islands, traffic con-
gestion, waterlogging and the deterioration of the urban envi-
ronment (Fu and Weng, 2016; Gao et al., 2012; Weng, 2001;
Zhou et al., 2017, 2018). Furthermore, as an important in-
dicator in the monitoring of the intensity of human activity
and of ecological and environmental changes, the mapping
of impervious surfaces is of great interest in many disciplines
(Xie and Weng, 2017). Accurate large-area impervious sur-
face mapping is, therefore, urgent and necessary.

Due to the frequent and large-area coverage that it pro-
vides, increasing attention has been paid to the use of remote
sensing technology for impervious surface mapping. In re-
cent years, a lot of effort has gone into mapping impervi-
ous surfaces at different spatial resolutions (Elvidge et al.,
2007; Schneider et al., 2010, 2009). For example, Schnei-
der et al. (2010) used multitemporal MODIS data to pro-
duce a 500 m global urban land map, achieving an overall
accuracy of 93 % and kappa coefficient of 0.65. Elvidge et
al. (2007) combined the Defense Meteorological Satellite
Program (DMSP) Operational Linescan System (OLS) and
LandScan population count data to produce a 1 km global
impervious surface area map. However, because of the com-
plex characteristics of impervious landscapes and inherent
resolution of human activity, coarse-resolution global imper-
vious surface maps are not suitable for many applications
and policymakers at local or regional scales, for example,
for urban–rural pattern planning and road network monitor-
ing, which usually require fine-spatial-resolution impervious
surface products (Gao et al., 2012).

Recently, with the advent of free medium-resolution satel-
lite data (e.g., Landsat and Sentinel-2), combined with
rapidly increasing data storage and computation capabili-
ties, many regional or global fine-resolution impervious sur-
face maps have been produced using Landsat and Sentinel-
2 images (Chen et al., 2015; Gao et al., 2012; Goldblatt
et al., 2018; Gong et al., 2019, 2013; Homer et al., 2015;
Li et al., 2018; Liu et al., 2018; Sun et al., 2017). Specifi-
cally, the National Land Cover Database (NLCD) produced
the first 30 m map of the United States including impervi-
ous surface as three separate land-cover types (Developed,
Low Intensity; Developed, Medium Intensity; and Devel-
oped, High Intensity), using Landsat imagery, DMSP OLS
and United States Geological Survey (USGS) National El-
evation Dataset (NED) digital elevation data and achieving
a user’s accuracy of 0.48–0.66 (Homer et al., 2004). Sim-
ilarly, the Finer Resolution Observation and Monitoring of
Global Land Cover (FROM-GLC) produced the global 30 m

impervious surface map as an independent land-cover type
with a user’s accuracy of 0.307 (Gong et al., 2013); the 30 m
Global Land Cover data product (GlobeLand30) combined
pixel-based classification, segmentation and manual editing
based on high-resolution imagery to develop the 30 m imper-
vious surface map as an independent layer with a user’s accu-
racy of 0.867 (Chen et al., 2015). However, as sparse train-
ing samples of impervious surfaces cannot capture all rele-
vant spectral heterogeneity when producing these land-cover
products, the impervious surface layers usually suffered low
accuracy except for GlobeLand30 (which includes manual
interpretation). Therefore, a few studies have proposed in-
dependently producing the impervious surface products. For
example, Liu et al. (2018) proposed the Normalized Urban
Areas Composite Index (NUACI) method to produce a global
30 m impervious surface map and achieved an overall ac-
curacy of 0.81–0.84 and kappa values of 0.43–0.50. How-
ever, the NUACI product had a relatively poor performance
in terms of producer’s accuracy (0.50–0.60) and user’s accu-
racy (0.49–0.61). Brown de Colstoun et al. (2017) combined
object-based segmentation, random forest classification and
postprocessing to develop the 30 m Global Man-made Imper-
vious Surface (GMIS) and Human Built-up and Settlement
Extent (HBASE) dataset in 2010 which achieved a kappa co-
efficient of 0.91 using scene-level cross validation in Europe
(Wang et al., 2017b). Pesaresi et al. (2016) used the mul-
titemporal Landsat imagery and symbolic machine learning
method to produce the 30 m Global Human Settlement Layer
(GHSL) in 2014 and achieved a total accuracy of 96.28 %
and kappa coefficient of 0.3233 based on Land Use/Cover
Area frame Survey (LUCAS) reference data. Therefore, an
accurate impervious surface map at a fine spatial resolution
is still urgently needed using an efficient mapping method.

There are three critical challenges for global impervious
surface mapping at a medium spatial resolution. These are
finding an adequate image identification method, image se-
lection scheme and image processing platform (Liu et al.,
2018).

First, although a wide range of methods have already been
presented for impervious surface mapping, it is still hard to
generate an operational and accurate global impervious sur-
face map at a 30 m resolution. The methods used so far can
be divided into three main groups: spectral mixture analysis
methods (Ridd, 1995; Wetherley et al., 2017; Wu, 2004; Wu
and Murray, 2003; Yang and He, 2017; Zhuo et al., 2018),
spectral index-based methods (Deng and Wu, 2012; Liu et
al., 2018; Xu, 2010) and image classification methods (Chen
et al., 2015; Okujeni et al., 2013; H. Zhang et al., 2018, 2012;
Zhang and Weng, 2016). The spectral mixture analysis meth-
ods have great advantages in terms of the repeatable and ac-
curate extraction of quantitative subpixel information (Weng,
2012). However, these spectral mixture methods can produce
underestimates in areas with high-density impervious sur-
faces and overestimates in areas with low-density impervi-
ous surfaces and may have great difficulties in identifying
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one suitable endmember to represent all types of impervious
surfaces (Sun et al., 2017; Weng, 2012). The spectral index-
based methods have been widely applied in regional imper-
vious surface mapping due to their simplicity, flexibility and
convenience (Liu et al., 2018; Z. Sun et al., 2019; Xu, 2010).
However, these methods have great difficulty in finding the
optimal threshold for separating the impervious pixels from
bare areas and vegetation pixels (Sun et al., 2017). The image
classification methods can efficiently combine remote sens-
ing datasets from multiple sources (H. Zhang et al., 2016,
2018; Zhou et al., 2017) and have great capabilities in spec-
trally complex impervious surface mapping (Okujeni et al.,
2013), which has been an area of great interest in recent years
(Goldblatt et al., 2018; L. Zhang et al., 2018). However, it is
very hard to select training samples for large-area impervious
surface mapping using these methods (Weng, 2012).

Second, although individual optical datasets have been
successfully employed for regional or global impervious sur-
face mapping, the accurate estimation of impervious surfaces
remains challenging due to the diversity of urban land-cover
types, which leads to difficulties in separating different land-
cover types with similar spectral signatures (Y. Zhang et al.,
2014). The incorporation of multisource and multitempo-
ral remote sensing imagery has been demonstrated to im-
prove impervious surface mapping accuracy (Weng, 2012;
Zhu et al., 2012). For example, optical imagery is only able to
capture surface reflectance characteristics, while synthetic-
aperture radar (SAR) data can provide details of the structure
and dielectric properties of the surface materials (Z. Sun et
al., 2019; Y. Zhang et al., 2014; Zhu et al., 2012). Zhang et
al. (2016) found that the addition of dual-polarimetric SAR
features resulted in an accuracy improvement of 3.5 % com-
pared with using optical SPOT 5 imagery only and also that
dual-polarimetric SAR data had a superior performance to
single-polarimetric SAR data for impervious mapping. Sim-
ilarly, Shao et al. (2016) explained that the combination of
Gaofen-1 optical imagery with Sentinel-1 SAR imagery effi-
ciently reduced the confusion between impervious surfaces
and water and bare areas. Furthermore, Zhu et al. (2012)
found that the inclusion of multiseasonal imagery increased
the mapping accuracy from 77.96 % to 86.86 % and that
the further addition of texture variables increased the map-
ping accuracy to 92.69 % for urban and peri-urban land-
cover classification. The reasons for the accuracy increase
were that the texture imagery could capture the local spa-
tial structure and the variability in land-cover categories and
also that the temporal information could describe the phe-
nological variability. Schug et al. (2018) also used the mul-
tiseasonal Landsat imagery to successfully map impervious
extent and land-cover fractions. In addition, as an important
data source for the measurement of socioeconomic activities,
DMSP OLS nighttime light (NTL) imagery has been widely
used in many impervious-related applications (Li and Zhou,
2017). For example, Elvidge et al. (2007) successfully pro-
duced a global 1 km impervious map using DMSP OLS NTL

imagery, Goldblatt et al. (2018) combined DMSP OLS NTL
and Landsat 8 imagery to accurately produce 30 m impervi-
ous surface maps at a national scale. Therefore, the integra-
tion of multisource and multitemporal datasets is necessary
and crucial to the production of accurate global impervious
surface maps.

Lastly, the mapping of impervious surfaces at the global
scale usually requires huge amounts of computation and
large storage capabilities. Fortunately, the Google Earth
Engine (GEE) cloud-based platform consists of a mul-
tipetabyte analysis-ready data catalog co-located with a
high-performance, intrinsically parallel computation service
(Gorelick et al., 2017), meaning that the requirements for
large-area image collection and very large computational re-
sources can easily be met by using the free-access GEE
cloud-computation platform. For example, Liu et al. (2018)
produced multitemporal global impervious surface maps and
Pekel et al. (2016) developed global high-resolution surface
water maps and analyzed long-term changes using the GEE
cloud-computation platform. Recently, Massey et al. (2018)
produced a continental-scale cropland extent map for North
America at a 30 m spatial resolution for the nominal year
2010 based on the GEE platform. It can be seen, therefore,
that the GEE is an efficient and useful computation platform
for regional and global applications.

So far, due to the limitations of data collection and com-
putation capability, impervious surface mapping has mainly
focused on using a single type of remote sensing data source
or on case studies made at the regional scale. Although the
GEE platform provides multipetabyte analysis-ready data
and efficient data-processing capabilities, an efficient method
that can fully integrate these multisource and multitemporal
datasets and produce accurate impervious surface maps at a
spatial resolution of 30 m for the whole world is still lacking.
The aims of this study, therefore, were (1) to produce a global
30 m impervious surface map from multisource multitempo-
ral remote sensing datasets including Landsat 8 Operational
Land Imager (OLI), Sentinel-1 SAR, Visible Infrared Imag-
ing Radiometer Suite (VIIRS) NTL and MODIS imagery us-
ing the GEE platform and (2) to investigate the accuracy of
the global 30 m impervious surface mapping using validation
samples and cross comparison with five existing impervious
surface products (GlobeLand30, Chen et al., 2015; FROM-
GLC, Gong et al., 2013; NUACI, Liu et al., 2018; GHSL,
Florczyk et al., 2019; and HBASE, Wang et al., 2017a). The
results indicate that the global impervious surface map pro-
duced by the proposed method is accurate and is suitable for
regional or global impervious surface applications.

2 Datasets

2.1 Remote sensing datasets

In this study, three kinds of data sources including Land-
sat 8 optical imagery, Sentinel-1 SAR data and digital eleva-
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tion model (DEM) topographical variables were selected and
collected for the mapping of impervious surfaces across the
world on the GEE platform. Furthermore, the combination of
VIIRS NTL imagery and MODIS enhanced vegetation index
(EVI) products was used to derive the set of global impervi-
ous surface and nonimpervious surface training data.

All available Landsat 8 surface reflectance (SR) imagery
from 2015 and 2016 (USGS, 2015), which had been archived
on the GEE platform, was used in this study for the nomi-
nal year 2015 because of the frequent cloud contamination
in the tropic areas. All the SR images were radiometrically
corrected by the Landsat Surface Reflectance Code (LaSRC)
atmospheric correction method (Hu et al., 2014; Vermote et
al., 2016), and bad pixels including clouds, cloud shadow,
and saturated pixels were identified by the CFMask algo-
rithm (USGS, 2018).

The Sentinel-1 satellite provides C-band SAR imagery at a
variety of polarizations and resolutions (Berger et al., 2012;
ESA, 2016; Torres et al., 2012). Due to the high-dielectric
properties of the building materials, the unique geometry
of artificial features and the special radar echo properties
of artificial structures, the impervious surfaces usually had
stronger backscattered signals than other land-cover types
(such as barren land and cropland) in the SAR imagery. In
this study, all available Sentinel-1 imagery from 2015 and
2016, which had already been calibrated and orthocorrected
and then archived on the GEE platform, was also used for
the nominal year 2015. In addition, each Sentinel-1 image
on the GEE had been preprocessed with the Sentinel-1 Tool-
box, including thermal noise removal, radiometric calibra-
tion and terrain correction (https://developers.google.com/
earth-engine/sentinel1, last access: 8 July 2020). Also, as
HH- and HV-polarized Sentinel-1 SAR imagery does not
cover the whole world (G. Sun et al., 2019), a combination
of dual-band cross-polarized (VV and VH) Interferometric
Wide (IW) swath mode imagery in both “ascending” and
“descending” orbits was used. The spatial resolution of this
imagery is 10 m, and the repeat cycle of the polar-orbiting
two-satellite constellation is 6 d.

The Shuttle Radar Topography Mission (SRTM) DEM,
provided by the NASA Jet Propulsion Laboratory (JPL) at
a resolution of 1 arcsec (approximately 30 m) and covering
the area between 60◦ N and 56◦ S (Farr et al., 2007), was
used as an auxiliary dataset for impervious surface mapping,
because numerous studies have demonstrated that the spa-
tial distribution of impervious surfaces is related to the topo-
graphical variables (Ban et al., 2015; Z. Sun et al., 2019).
For example, Z. Sun et al. (2019) used a slope threshold
to exclude impervious surface over mountain areas if the
slope was larger than 15◦ for impervious mapping in China.
This dataset has undergone a void-filling process using other
open-source data (Advanced Spaceborne Thermal Emission
and Reflection Radiometer Global Digital Elevation Model
Version 2, ASTER GDEM2; Global Multi-resolution Terrain
Elevation Data, GMTED2010; and NED) in the GEE plat-

form. As for the high-latitude areas that lacked the SRTM
data, the ASTER GDEM2 (Tachikawa et al., 2011) was used
instead.

The VIIRS NTL, collected by the NASA–NOAA
Suomi National Polar-orbiting Partnership satellite
(https://maps.ngdc.noaa.gov/viewers/VIIRS_DNB_
nighttime_imagery/index.html, last access: 8 July 2020), has
the unique ability to record emitted visible and near-infrared
(VNIR) radiation at night with a spatial resolution of
15 arcsec (equivalent to 0.5 km at the Equator; Elvidge et al.,
2017). Compared to the DMSP OLS NTL data, the VIIRS
NTL data provide a higher spatial resolution and finer radio-
metric resolution, which allows for weaker surface radiation
to be detected (Bennett and Smith, 2017). It is also the main
data source used for studying the expansion of impervious
surfaces and related sociodemographic issues (Elvidge et al.,
2017). In this study, a combination of VIIRS NTL, MODIS
EVI imagery and GlobeLand30 land-cover products was
used to derive the set of global training samples.

The MODIS EVI imagery (MYD13Q1) from the MODIS
V6 products contains the best available EVI data from
among all the acquisitions obtained over a 16 d composit-
ing period and has a spatial resolution of 250 m (Didan
et al., 2015), which was used to mitigate the NTL data’s
saturation problem and exclude false positive impervious
samples (vegetated samples in urban settings) when de-
riving the global training samples. In this study, the EVI
imagery for 2015 in the GEE used the blue band to re-
move residual atmospheric contamination caused by smoke
and subpixel thin clouds (https://developers.google.com/
earth-engine/datasets/catalog/MODIS_006_MYD13Q1, last
access: 8 July 2020).

2.2 Global impervious surface products

In this study, five global impervious surface products (Glo-
beLand30, FROM-GLC, NUACI, HBASE and GHSL) were
used to validate the global impervious surface map produced
using the multisource, multitemporal random forest classi-
fication (MSMT_RF) method. The GlobeLand30 data were
also used to automatically derive the global impervious and
nonimpervious training samples.

GlobeLand30 is an operational 30 m global land-cover
dataset produced using the pixel–object–knowledge-based
method (POK-based) approach in 2000 and 2010 (Chen et
al., 2015). In this study, the global impervious product de-
rived from GlobeLand30 in 2010 (GlobeLand30-2010; http:
//www.globallandcover.com/GLC30Download/index.aspx,
last access: 8 July 2020) was produced by combining pixel-
based classification, multiscale segmentation and manual
editing based on the high-resolution imagery and had been
validated as having a user’s accuracy of 86.7 %.

FROM-GLC, first produced in 2010, was the first 30 m
resolution global land-cover dataset and was produced
by the supervised classification of 8900 Landsat images
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Figure 1. The spatial distribution of the 15 validation regions (blue) corresponding to regions of different impervious landscapes on different
continents together with the six 5◦× 5◦ validation regions (red) used to measure variable importance.

(Gong et al., 2013). In this study, the second generation of
FROM-GLC from 2015 (FROM-GLC-2015; http://data.ess.
tsinghua.edu.cn/, last access: 8 July 2020) was used. This
dataset was produced by using multiseasonal Landsat im-
agery acquired between 2013 and 2015 and incorporates the
day of year, geographical coordinates and elevation data (Li
et al., 2017).

The NUACI-based maps, developed using the spectral
index-based method applied to Landsat and DMSP OLS
NTL imagery, are multitemporal global 30 m impervious sur-
face datasets (Liu et al., 2018). In this study, the NUACI im-
pervious map from 2015 (NUACI-2015) was used (http://
www.geosimulation.cn/GlobalUrbanLand.html, last access:
8 July 2020). This map has been validated as having an over-
all accuracy of 0.81–0.84 and kappa coefficient of 0.43–0.50
at the global level (Liu et al., 2018).

The HBASE dataset was the first global 30 m dataset of
artificial impervious cover derived from the Global Land
Survey (GLS) Landsat data for 2010 (HBASE-2010; https:
//sedac.ciesin.columbia.edu/data/set/ulandsat-hbase-v1, last
access: 8 July 2020). It was produced by combining meter-
resolution training data (exceeding 20 million), Open-
StreetMap, VIIRS NTL, GLS Landsat SR and MODIS nor-
malized difference vegetation index (NDVI) products and
achieved a kappa coefficient of 0.91 using scene-level cross
validation in Europe (Wang et al., 2017a, b).

The GHSL, a global information baseline describing the
spatial evolution of human settlements in the past 40 years,
was developed by using a symbolic machine learning model
trained by the collected high-resolution samples, multitem-
poral Landsat imagery in the epochs 1975, 1990, 2000 and
2015 (Florczyk et al., 2019). In this study, the GHSL im-

pervious surface map at 30 m for 2015 (GHSL-2015; https://
ghsl.jrc.ec.europa.eu/download.php, last access: 8 July 2020)
was employed for comparison analysis, which achieved an
overall accuracy of 96.28 % and kappa coefficient of 0.3233
validated using Land Use/Cover Area frame Survey refer-
ence data (Pesaresi et al., 2016).

2.3 Validation samples

To quantitatively assess the performance of the global im-
pervious surface datasets, 15 validation regions, covering
different continents and various urban landscapes (bare-soil
prevalent cities Phoenix, PNX; Madrid, MDR; Riyadh, RYH;
Niamey, NIM; Johannesburg, JHB; Omdurman, ODM; and
Lhasa, LHS, vegetation-prevalent cities New York, NYK;
Manaus, MNS; Moscow, MSC; São Paulo, SPL; and Mel-
bourne, MBN, as well as cropland-prevalent cities Win-
nipeg, WIP; Bangkok, BGK; and Xi’an, XAN), were se-
lected (Fig. 1). For each validation region, 600–1000 samples
were randomly generated using the stratified random sam-
pling strategy (Bai et al., 2015). As there were significant
advantages to using Google Earth for validation sample se-
lection (X. Zhang et al., 2018), each sample was labeled as ei-
ther “nonimpervious surface” or “impervious surface” based
on visual interpretation of the available high-resolution re-
mote sensing imagery in Google Earth. To ensure the reliabil-
ity of each validation sample, two prior impervious products,
namely NLCD impervious products (Homer et al., 2015) and
Copernicus Land Monitoring Surface high-resolution-layer
imperviousness products (Langanke et al., 2016), which were
validated to achieve high overall, user’s and product’s accu-
racies exceeding 82 % and 90 %, respectively, were overlaid
with the high-resolution remote sensing imagery. In addition,
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the location of each sample was moved to the center of the
relevant surface object (building, road, etc.) because of the
greater spectral mixing effect and uncertainty at the bound-
ary of the objects. Like in the work of Z. Sun et al. (2019),
if the impervious area in the 30 m× 30 m validation window
was more than a predefined threshold of 50 %, we consid-
ered this validation point as impervious surface, otherwise, it
was labeled as nonimpervious surface. After careful interpre-
tation, a total of 11 942 samples including 4952 impervious
samples and 6990 nonimpervious samples were obtained. In
order to minimize the subjective influence of interpretation,
the validation samples were collected independently by three
different scientists. If there was a dispute over the interpre-
tation results of the three scientists, the validation point was
discarded.

3 Collection of global training samples

As the reliability and representativeness of the training sam-
ples would affect the classification accuracy directly (Foody
and Mathur, 2004), we proposed combining GlobeLand30,
VIIRS NTL and MODIS EVI data to derive accurate imper-
vious and nonimpervious samples. The GlobeLand30 land-
cover product was used to derive global training samples be-
cause it had many advantages including (1) the impervious
surface layer in GlobeLand30 being accurately developed by
combining pixel-based classification, multiscale segmenta-
tion and manual editing based on high-resolution imagery
and validated to achieve a user’s accuracy of 86.7 % and (2) it
simultaneously contained the impervious surface and other
land-cover types similar to impervious surface (such as crop-
land and bare land), so the global training samples including
several nonimpervious land-cover types could be easily col-
lected to build the RF model for accurately mapping imper-
vious surface. However, as there was a temporal interval of
5 years between GlobeLand30 and our study, it was assumed
that the process of transforming nonimpervious surfaces into
impervious surfaces was irreversible during the period 2010
to 2015, meaning that the global impervious training sam-
ples derived from GlobeLand30-2010 could also be used to
represent the situation in 2015.

Specifically, as GlobeLand30 used an object-based label-
ing method to remove the “salt-and-pepper effect” caused by
the pixel-based classification method (Chen et al., 2015), the
impervious surfaces consisted of independent blocks. Usu-
ally, a large number of mixed pixels and misclassifications
occur at the boundary of image blocks or objects, and Yang
et al. (2017) also found that GlobeLand30 exhibited higher
accuracy in homogeneous areas. The land-cover heterogene-
ity was calculated as the number of land-cover types occur-
ring in a local window (Jokar Arsanjani et al., 2016). Ac-
cording to the statistics of Chen et al. (2015), there were a
few commission and omission errors in each scene when the
area of the impervious surface block was less than 8× 8. In

this study, the local window size was set to 9× 9 after bal-
ancing the sample reliability and completeness because the
higher window size would cause the candidate samples to
miss small and broken impervious objects (such as rural vil-
lages). Therefore, if the land-cover heterogeneity in the 9×9
local window was greater than 1 (meaning that the land-cover
types within the window consisted of both impervious and
nonimpervious types), the center pixel was removed from the
candidate training point set (CanTPS_Imp).

Secondly, to minimize the effects of mapping error
in GlobeLand30-2010 and the temporal interval between
GlobeLand30-2010 and the input imagery for training sam-
ples in CanTPS_Imp, the VIIRS NTL data, revealing the in-
tensity of socioeconomic activities, were imported to refine
each training point in 2015. However, as the coarse spatial
resolution of VIIRS NTL imagery might cause a “blooming
effect” in suburban areas, the EVI-adjusted nighttime light
index (EANTLI) proposed by Zhuo et al. (2018) was applied
to reduce the blooming effects:

EANTLI=
1+ (NTLnorm−EVI)
1− (NTLnorm−EVI)

×NTL, (1)

where NTLnorm is the normalized NTL value, EVI is the an-
nual mean value of the time-series MODIS EVI products and
NTL is the actual value of the VIIRS NTL data.

The EANTLI measured the likelihood of the pixel corre-
sponding to an impervious surface, so it was reasonable to
assume that the pixels where EANTLI exceeded a certain
threshold were impervious surface pixels. In this study, as
the candidate training points in CanTPS_Imp were collected
from homogenous 9 pixel× 9 pixel areas (270 m× 270 m),
the EANTLI image in 2015 (EANTLI-2015) was first re-
sampled to the 270 m dimensions to match with these can-
didate points. The GlobeLand30-2010 impervious surface
map had a user’s accuracy of 86.7 %, and we assumed that
the process of transforming nonimpervious surfaces into im-
pervious surfaces was irreversible during the period 2010 to
2015, so the impervious segmentation threshold was selected
as being the lowest 15th quantile of the cumulative proba-
bility of all candidate impervious points for EANTLI-2015;
namely, if the cumulative probability of the impervious point
in CanTPS_Imp was lower than the threshold, the candidate
point was removed from CanTPS_Imp. As for the nonim-
pervious pixels, there was usually a negative correlation be-
tween nonimpervious surfaces and EANTLI values, and the
nonimpervious surface samples turned into impervious sur-
face would have high EANTLI values in 2015, so if the cu-
mulative probability of a candidate nonimpervious point in
CanTPS_Imp was greater than the top 20th percentile of the
cumulative probability of all candidate nonimpervious points
(the threshold being based on the overall accuracy of 80.33 %
for GlobeLand30-2010 and a few potential conversion sam-
ples), the candidate nonimpervious point was also removed.

It should be noted that the definition of artificial surfaces in
the GlobeLand30 was slightly different from that of imper-
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vious surfaces in this study. Specifically, artificial surfaces
in the GlobeLand30 were divided into three subclasses in-
cluding high reflectance, low reflectance and vegetated type
(Chen et al., 2015), and a small part of purely vegetated ar-
tificial surfaces (such as small vegetation patches in the res-
idential zones with good greenness) actually did not belong
to the impervious surfaces. Fortunately, the ENATLI, mea-
suring the likelihood of the pixel corresponding to an im-
pervious surface, usually revealed the low values over these
vegetation patches. Therefore, these purely vegetated artifi-
cial surface pixels could be removed from the CanTPS_Imp
using the lowest 15th quantile of the cumulative probability
of all candidate impervious points for EANTLI-2015.

Lastly, although the candidate training points were refined
using the GlobeLand30 land-cover product and EANTLI-
2015 imagery, the volume of candidate training points was
still huge, and so it was necessary to further resample the
CanTPS_Imp. As the nonimpervious surfaces consisted of
many land-cover types (water, vegetation, cropland and bare
soil), some of them were spectrally similar to the impervious
surface. For example, the bare soil and high-reflectance im-
pervious surfaces usually shared similar surface reflectance,
especially in arid and semiarid areas with large areas of bare
soils, because the composition of impervious surfaces in-
cluded rock material which was also found in bare areas
(Z. Sun et al., 2019; Weng, 2012), and the cropland showed
similar reflectance to low-reflectance impervious surfaces
(such as rural villages, old cities) because they were usu-
ally composed of vegetation and high-reflectance artificial
materials or bare soils (Li et al., 2015). Therefore, the non-
impervious training samples were split into three indepen-
dent groups: bare area, cropland and other nonimpervious
land-cover types. Furthermore, many studies have demon-
strated that the distribution and balance of training samples
has great influence on the mapping accuracy. For example,
Zhu et al. (2016) found unbalanced training samples directly
resulted in rare land-cover types being underrepresented rel-
ative to more abundant classes. Since the impervious surface
was usually sparser than the nonimpervious land-cover types
(bare soil, cropland and so on), the training samples with
uniform distribution were selected to ensure the rationality
of training samples and capture all relevant spectral hetero-
geneity within impervious surfaces; namely, the approximate
ratio of 1 : 3 was used to represent the proportion of impervi-
ous to nonimpervious surfaces (bare area, cropland and other
nonimpervious land-cover types). In addition, as the land-
cover distribution varied with geographical region, the strat-
ified random sampling strategy was applied to every 5◦× 5◦

geographical grid to ensure the training samples were locally
adaptive. Using the stratified random sampling strategy with
a uniform distribution, a total of 4 483 000 training samples,
including 3 499 000 nonimpervious samples and 984 000 im-
pervious samples, were collected over the land areas across
the globe.

Although a series of rules were applied to guarantee the
high confidence of global training samples, due to the classi-
fication error in GlobeLand30 and the temporal interval be-
tween GlobeLand30 and input imagery, the global training
dataset inevitably contained some erroneous samples. The re-
lationship between the percentage of the erroneous samples
and the mapping accuracy of impervious surface is analyzed
in Sect. 6.1, and the results indicate that the error in the train-
ing samples had little effect on the mapping accuracy.

4 Multisource and multitemporal impervious
classification method

To develop the global 30 m impervious surface map for 2015,
the MSMT_RF method was proposed. The method is illus-
trated in Fig. 2. Firstly, time series of Landsat 8 SR and
Sentinel-1 SAR imagery archived on the GEE platform were
collected. Secondly, temporal–spectral–textural features and
temporal–SAR features were derived from the Landsat 8
and Sentinel-1 imagery using image compositing methods.
Thirdly, based on the global training samples derived from
GlobeLand30-2010, VIIRS NTL and MODIS EVI imagery,
the random forest classifier was trained at each 5◦× 5◦ ge-
ographical grid cell using temporal–spectral–textural–SAR–
topographical features. Finally, the global impervious surface
map was compared with existing impervious surface prod-
ucts and further validated using visual interpretation samples.

4.1 Multisource and multitemporal feature selection

As mentioned above, the datasets used in this study were
acquired from various satellite sensors and have distinctive
features. Also the incorporation of multisource and multi-
temporal remote sensing data has been demonstrated to im-
prove the accuracy of the mapping of impervious surfaces.
In this study, three kinds of satellite imagery, namely Land-
sat 8 SR, Sentinel-1 SAR and SRTM–ASTER DEM imagery,
were collected for the global classification of impervious sur-
faces.

After masking out the bad pixels (cloud, shadow and satu-
rated pixels), the time-series Landsat SR imagery was needed
to reduce the number of dimensions of the temporal–spectral
features to guard against the Hughes phenomenon (Zhang et
al., 2019). Similar to what Hansen et al. (2014) and Zhang
and Roy (2017) introduced to capture phenology, the 15th
and 85th percentiles of Landsat SR were used instead of the
minimum and maximum values to minimize the effects of
residual shadows and cloud caused by the errors in the CF-
Mask method (Massey et al., 2018). In addition, as Sun et
al. (2017) explained that the growing season was the best
time for impervious surface mapping over temperate conti-
nental climate zones and H. Zhang et al. (2014) found that
winter (dry season) is the best season in which to estimate
impervious surface in subtropical monsoon regions, a com-
bination of the 15th and 85th percentiles of Landsat SR was
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Figure 2. Flowchart illustrating the MSMT_RF method.

used to efficiently capture intra-annual variation information
of various land-cover types. It should be noted that only the
six optical bands (blue; green; red; near infrared, NIR; short-
wave infrared 1, SWIR1; and shortwave infrared 2, SWIR2)
were selected because the coastal band was sensitive to at-
mospheric scattering (Wang et al., 2016). Liu et al. (2018)
found that the normalized difference water index (NDWI),
normalized difference vegetation index (NDVI) and normal-
ized difference built-up index (NDBI) were of great help in
impervious surface identification; therefore, these three spec-
tral indices were added to the spectral features, giving a total
of 18 features for the two-epoch imagery. Furthermore, as
the texture information contributed to the classification per-
formance (Weng, 2012), the local textural measures based on
the gray-level co-occurrence matrix (GLCM) were adopted;
however, because of the redundancy and similarity between
texture features (Rodriguez-Galiano et al., 2012), only the
variance, dissimilarity and entropy of the NIR band were se-
lected from the 7× 7 local window for the two-epoch im-
agery (Chen et al., 2016; Y. Zhang et al., 2014). The optimal
window size for texture measurements is highly dependent
on the image spatial resolution and the land-cover charac-
teristics (Zhu et al., 2012), and Shaban and Dikshit (2001)
computed texture measurements with different window sizes
as inputs for urban area classification and suggested window
sizes of 7 pixels × 7 pixels perform best.

As the Sentinel-1 SAR imagery had been preprocessed in
the GEE platform, the annual mean and standard deviation of
the VV and VH imagery were directly derived from the time-
series of Sentinel-1 SAR imagery. Y. Zhang et al. (2014b)
found that SAR texture features were also relevant to imper-
vious surfaces, and the dissimilarity, variance and entropy
features of the VV and VH imagery were identified as ef-
fective indicators of the texture description of different urban
land-cover types. As Y. Zhang et al. (2014b) explained the

window size for calculating the GLCM should be smaller as
terrains are smaller under coarser resolution, the window size
was chosen as 9 pixels× 9 pixels at a 10 m spatial resolution,
equivalent to 3 pixels × 3 pixels at 30 m. Moreover, as the
spatial resolution of the Landsat SR (30 m) was 3 times that
of the Sentinel-1 imagery (10 m), the SAR data were resam-
pled to 30 m for integration with the Landsat SR data.

Lastly, as Sentinel-1 SAR imagery usually had high
backscatter similar to the impervious surface over mountain-
ous areas, terrain information was useful auxiliary informa-
tion for removing these false positives in these areas (Ban et
al., 2015). Similarly, Clarke et al. (1997) found that terrain
variables were of great help in identifying impervious sur-
faces because such surfaces are usually located in flat areas.
In this study, the elevation, slope and aspect, calculated from
the SRTM–ASTER DEM data, were added to the feature
vector. This gave a total of 37 features for each pixel location,
including 18 spectral features and 6 texture features from the
Landsat imagery, 10 SAR features, and 3 topographical vari-
ables. The features are listed in Table 1.

4.2 Random forest classification model

There are two kinds of models used for generating a global
impervious surface product – global modeling (building a
single classifier using global training data) and local adap-
tive modeling (dividing the globe into a number of regions
and then building local classifiers using corresponding re-
gional training data). For example, Gong et al. (2013) built a
single global classifier using 91 433 training samples to pro-
duce the FROM-GLC land-cover products and Bontemps et
al. (2011) first split the world into 22 ecological regions and
then trained the classifier for each region using local training
samples to produce the GlobeCover2009 land-cover prod-
ucts. Recently, Zhang and Roy (2017) demonstrated that the
local adaptive model performed better than the single global
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Table 1. Training features for global impervious surface mapping.

Data Features References

Landsat 8 OLI Reflectance: 15th and 85th percentiles of blue, green, red, NIR, SWIR1 and SWIR2 Liu et al. (2018)

Normalized indices: 15th and 85th percentiles of NDVI, NDWI and NDBI

Textural variables: variance, dissimilarity and entropy of the NIR Chen et al. (2016)

Sentinel-1 SAR Annual statistics: mean and standard deviation of VV and VH Z. Sun et al. (2019)

Textural features: dissimilarity, variance and entropy of VV and VH Y. Zhang et al. (2014)

DEM Elevation, slope and aspect Clarke et al. (1997)

classification model, while Radoux et al. (2014) found that
using a local window increased the sensitivity to the qual-
ity of the training dataset. Therefore, after balancing the data
volume, computation efficiency and classification accuracy,
we first split the global land surface into 954 geographical
tiles of 5◦× 5◦ and then trained local adaptive classifiers for
each geographical tile. In addition, to ensure the classifica-
tion consistency across neighboring geographical tiles, the
training data from adjacent 3 tiles × 3 tiles were imported to
train the random forest classifier and classify the central tile.

As for the specific techniques used in classifiers, accord-
ing to our previous investigations (Zhang et al., 2019), the
Random Forest classifier is more capable of handling high-
dimensional multicollinearity data. It is also less affected by
noise and feature selection as well as being more accurate
and efficient than other widely used classifiers such as the
SVM (support vector machine), CART (classification and re-
gression tree) and ANN (artificial neural network) classifiers.
Therefore, the RF classifier was selected for the development
of the global impervious surface map.

The RF classifier has only two parameters: the number
of classification trees (Ntree) and the number of selected
predication features (Mtry). Furthermore, many researchers
have demonstrated that there is almost no correlation be-
tween these two parameters and the classification accuracy
(Belgiu and Drăguţ, 2016; Du et al., 2015; Gislason et al.,
2006); therefore, the default values of 500 for Ntree and the
square root of the total number of training features for Mtry
were selected.

4.3 Accuracy assessment

To completely analyze the performance of the MSMT_RF-
based method, two validation methods namely “fraction-
based” and “pixel-based” were adopted. First, the fraction-
based validation method mainly illustrated the spatial agree-
ment of impervious surfaces between the MSMT_RF-
based impervious surface map and several existing prod-
ucts (GlobeLand30-2010, FROM-GLC-2015, NUACI-2015,
HBASE-2010 and GHSL-2015) from a global perspective.
Specifically, all these global 30 m impervious surface maps

were aggregated to a resolution of 0.05◦×0.05◦ and the frac-
tion of impervious area was then calculated. Following that,
scatterplots of the linear regression between the MSMT_RF-
based results and the reference data were produced to provide
the quantitative metrics of the agreement, including the co-
efficient of determination (R2) and root mean square error
(RMSE).

In addition, a pixel-based validation method, based on the
visual interpretation samples over 15 regions of 1◦×1◦ cover-
ing different impervious landscapes and continents, was used
to quantitatively analyze the accuracy metrics, including the
overall accuracy (OA), producer’s accuracy (PA), user’s ac-
curacy (UA) and kappa coefficient (Olofsson et al., 2014), for
assessing the performance of the MSMT_RF-based global
impervious surface mapping.

5 Results

5.1 The importance of multisource and multitemporal
features

Because of the spectral heterogeneity of impervious surfaces,
it is very difficult to accurately map impervious surfaces us-
ing only optical remote sensing imagery (Y. Zhang et al.,
2014). Although a few studies have demonstrated that the in-
tegration of multisource and multitemporal information can
improve mapping accuracy, these studies mainly focused on
regions with high impervious surface density (Y. Zhang et al.,
2014; Zhu et al., 2012). At present, global impervious surface
maps are still produced by optical imagery alone or by using
a combination of optical and DMSP OLS or VIIRS NTL im-
agery (Huang et al., 2016; Liu et al., 2018; Schneider et al.,
2010). This is the first study that has developed the global
30 m impervious surface map using multisource and multi-
temporal imagery. To quantitatively demonstrate the need for
using multisource, multitemporal information, we randomly
selected six 5◦× 5◦ regions (red rectangles in Fig. 1) from
six different continents and then calculated the importance of
the training features using the RF model. Specifically, the RF
model computed the average increase in the mean square er-
ror by permuting out-of-bag data for a variable while keeping
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Figure 3. The importance of the input features derived from the random forest model using the training samples in six continental regions.

all the other variables constant, thus measuring the variable’s
importance (Pflugmacher et al., 2014). Training features that
had a high importance were the drivers of the model deci-
sion, and their values had a significant impact on the output
values.

The importance of all 37 training features for the six re-
gions is illustrated in Fig. 3. These results indicate that the
Sentinel-1 SAR features (VV and VH) had the greatest con-
tribution to the final decision in most regions because SAR
images can provide information about the structure and di-
electric properties of the surface materials. Next in impor-
tance were the 15th percentile of Landsat SR in the blue,
green, red and SWIR2 bands and the corresponding NDVI
and NDWI indices, as well as the texture variance and dis-
similarity for Sentinel-1 SAR. The importance of these fea-
ture was close to or exceeded 5 % in most cases. Then came
the 85th percentile of Landsat SR in the NIR and SWIR1
bands as well as the SAR texture features, with a mean im-
portance about 3 %.

To intuitively understand the characteristics of differ-
ent land-cover types in optical and SAR imagery, two re-
gions (the vegetation-prevalent region of Asia and bare-soil-
prevalent semiarid region of Australia) were selected for
comparison analysis. Figure 4 illustrates the reflectance and
backscatter statistics (mean and standard deviation) of five
typical land-cover types (cropland, vegetation, bare soil, im-
pervious surfaces and water body). Obviously, impervious
surfaces had the highest backscatter signals in VV because
of the high-dielectric properties of the building materials, the
unique geometry of artificial features and the special radar
echo properties of artificial structures, followed by the vege-
tation land-cover types. Further, since only a small part of the
polarized signals (vertical turning horizontal) were returned
to the sensor, the VH was significantly lower than VV but
the ranking orders of different land-cover types in VH was

similar to that of VV. Due to the complicated construction
and heterogeneity of the impervious surfaces, these surfaces
also had the highest standard deviation; for example, the ur-
ban center usually reflected higher VV and VH signals than
the village buildings. If only Sentinel-1 SAR features were
used to identify impervious surfaces, there would be seri-
ous confusion between the mountainous vegetation and low-
reflectance impervious surfaces (such as villages and small
cities); fortunately, the optical reflectance features performed
well to distinguish them because of significant spectral dif-
ferences. However, if only the multitemporal optical imagery
were used to detect the impervious surfaces, there would
be obvious confusion between impervious surfaces and bare
soils and croplands; for example, the spectral characteristics
of impervious surfaces, bare soils and croplands overlapped
in the Asia region (Fig. 4). In summary, only the combination
of multisource training features could guarantee the classifi-
cation accuracy across different impervious landscapes.

Secondly, although the 15th percentile had a higher impor-
tance than the 85th percentile in most of the spectral bands,
we found that there was a large degree of complementarity
between the images from two different seasons (Fig. 3). For
example, the importance of the 15th percentile in the NIR
and SWIR1 bands was low, while that of the 85th percentile
was high, and the total importance of the biseasonal spec-
tral features exceeded 70 % in some cases. The reasons that
the temporal information was important for accurately map-
ping impervious surface included (1) some land-cover types
such as cropland had similar spectra to impervious surface
in the fallow season, but with the growing season imagery
imported, this misclassification could be easily removed and
(2) Sun et al. (2017) explained that the growing season was
the best time for impervious surface mapping over temperate
continental climate zones, and H. Zhang et al. (2014) found
that winter (dry season) is the best season in which to es-
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Figure 4. The reflectance and backscatter characteristics of different land-cover types over Landsat optical and Sentinel-1 SAR imagery in
the Asia and Australia regions.

timate impervious surface in subtropical monsoon regions.
The multitemporal information can address the problem of
seasonal variability in different geographical zones. Figure 4
(Australia region) also illustrates that the cropland and im-
pervious surfaces were spectrally inseparable at the 15th per-
centile but the difference was obvious at the 85th percentile.
Therefore, temporal variability can be considered an impor-
tant contribution for accurate impervious surface mapping.

Thirdly, the importance of Landsat texture features was
lower than 5 % in these six regions because the Sentinel-1
SAR backscatter and texture features were able to provide
information on the surface material and its spatial structure
and variation. Due to the complexity of land surfaces and
different mechanisms of optical and SAR imagery, the opti-
cal textures could complement SAR features in mountainous
and semiarid areas (Asia and Australia regions) a lot. Some
studies have demonstrated that these features contributed a
lot to the improvement of impervious mapping accuracy. For
example, Shaban and Dikshit (2001) emphasized that the in-
tegration of texture variables increased the accuracy from
86.86 % to 92.69 % because texture imagery could capture
the local spatial structure and the variability of land-cover
categories.

Lastly, since most regions are located in the flat areas,
only the cumulative importance of topographical variables
over the region in Asia exceeded 5 %. The reasons why topo-
graphical information reached high importance over moun-
tainous areas were because the impervious surfaces were
usually located in the flat areas (Ban et al., 2015) and
Sentinel-1 SAR imagery had high backscatter signals over

mountainous areas similar to the impervious surfaces, which
increased the importance of topographical variables. Simi-
larly, Clarke et al. (1997) explained that topographical vari-
ables (slope, aspect and DEM) contribute a lot to impervious
surface mapping over mountainous areas. These features are,
therefore, indispensable in the accurate mapping of impervi-
ous surfaces in mountainous regions.

5.2 Global impervious surface map

The global distribution of the fraction of impervious area
(FIA) at a spatial resolution of 0.05◦ is illustrated in Fig. 5,
while the meridional and zonal total FIA for each 0.05◦

longitude and latitude bin are shown at the top and left
of the same figure. From an intuitive and statistical per-
spective, globally, impervious surfaces are mainly concen-
trated in three continents: Asia (34.43 %), North America
(28.04 %) and Europe (24.98 %), followed by South Amer-
ica (5.89 %), Africa (5.63 %) and Australia (1.06 %). In addi-
tion, the zonal statistics indicate that 70 % of the impervious
surfaces are distributed between 30 and 60◦ N because these
regions contain the key areas of Asia, North America and Eu-
rope, which are the locations of the most developed countries
and highest population densities. The meridional results il-
lustrate that there are four peak intervals: 100–70◦W (United
States), 10◦W–40◦ E (Europe), 60–90◦ E (India) and 100–
130◦ E (China and southeastern Asia). The two peak values
in the meridional direction are located in the centers of the
United States and China.
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Figure 5. Global fraction of impervious cover derived from multisource and multitemporal Landsat 8 SR and Sentinel-1 SAR imagery
acquired from 2015 to 2016. The spatial resolution of the map is 0.05◦.

Summaries of the impervious surface areas at a national
scale were also produced. The statistical results indicated
that the total impervious surface areas of the top 20 coun-
tries account for 75.96 % of the total global area. Figure 6
presents the top 20 counties in terms of impervious sur-
face area and corresponding fractions of the world total.
Overall, there is a positive correlation between these statis-
tical fractions and the land area, population and degree of
economic development of these nations. Specifically, it was
found that the United States has the biggest impervious sur-
face area, accounting for more than 20 % of the global total,
and only the top three countries (USA, China and Russia)
exceed 5 % of the total global area. The ranking is also basi-
cally consistent with the statistics produced by the Organisa-
tion for Economic Co-operation and Development (OECD)
for built-up areas in 2014 (https://stats.oecd.org/Index.aspx?
DataSetCode=BUILT_UP, last access: 8 July 2020).

5.3 Spatial variations in global impervious products

To quantitatively analyze the spatial agreement between
the MSMT_RF-based impervious surface map and the five
existing products (GlobeLand30-2010, FROM-GLC-2015,
NUACI-2015, GHSL-2015 and HBASE-2010), all global
30 m impervious surface maps were first aggregated to a res-
olution of 0.05◦. Figure 7 illustrates the spatial patterns of six

global impervious products; intuitively, it can be seen that
NUACI-2015 had lower impervious areas than other prod-
ucts, especially in North America and Europe, and GHSL-
2015, GlobeLand30-2010 and our product (MSMT-2015
map) had greater spatial agreement because the impervious
areas of FROM-GLC-2015 and HBASE-2010 in China were
obviously smaller. Further, our product had higher impervi-
ous areas over North America than other products, especially
over Canada, because the method used had greater ability in
identifying small and fragmented impervious objects such as
villages and roads, which will be demonstrated in the follow-
ing section (Sect. 5.4) over the Winnipeg region.

Scatterplots of the five products against the MSMT-2015
impervious map were then made, as illustrated in Fig. 8.
The results indicate that there was a greater agreement be-
tween the MSMT-2015 map and GHSL-2015 (R2

= 0.783,
RMSE= 0.038 and slope= 0.921) than for other products.
Specifically, as NUACI-2015 has been demonstrated to miss
some small, fragmented villages and roads (Z. Sun et al.,
2019), the slope of the regression line was less than 1.0 and
R2 was the low value of 0.655 in this case. The scatter-
plot between FROM-GLC-2015 and MSMT-2015 indicates
that there was a high degree of agreement between FROM-
GLC-2015 and MSMT-2015 results in “high-fraction” re-
gions (close to 1 : 1) but FROM-GLC-2015 was obviously
lower than MSMT-2015 over “low-fraction” regions, so the
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Figure 6. The top 20 countries in terms of impervious surface area and corresponding fractions of the global total.

Figure 7. The spatial patterns of six global 30 m impervious products after aggregating to the resolution of 0.05◦.

slope of the regression line for FROM-GLC-2015 was also
less than 1. The main differences between the GlobeLand30-
and the MSMT_RF-based maps were due to the temporal in-
terval of 5 years and the limitations of the minimum 4× 4
mapping unit for GlobeLand30-2010 (Chen et al., 2015), so
the scatters were mainly concentrated below the 1 : 1 line.
HBASE-2010 had higher impervious areas than MSMT-2015
especially for the “high-fraction” regions, but the following
section demonstrates that it suffered from an overestimation
problem, so the regression slope was higher than 1 and R2

only reached the value of 0.730. In addition, to intuitively
understand the stability of the regression model, error bars,
calculated as the standard deviation of reference data with
the fitted results, were added to the scatterplots. It was found
that the error bars increased first and then stabilized as the
impervious fraction increased.

5.4 Accuracy assessment using validation samples

The accuracy of the five global impervious surface maps over
15 validation regions with different impervious landscapes is
presented in Table 2. Six evaluation metrics, including the
producer’s accuracy (which measures the commission error)
and user’s accuracy (which measures the omission error) of
the impervious surface and the producer’s and user’s accu-
racy of nonimpervious surfaces as well as the overall ac-
curacy and kappa coefficient, were used to assess the accu-
racy. Overall, the MSMT_RF-based map achieved the high-
est overall accuracy of 0.951 and kappa coefficient of 0.898
compared with 0.896 and 0.780 for FROM-GLC-2015, 0.856
and 0.695 for NUACI-2015, 0.903 and 0.794 for GHSL-
2015, 0.884 and 0.753 for GlobeLand30-2010, and 0.880 and
0.754 for HBASE-2010 using all 15 regional validation data.

From the perspective of the value of the user’s accuracy
for impervious surfaces, the MSMT_RF method performed
better than the other impervious surface products (meaning
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Figure 8. Scatterplots between the MSMT_RF-based impervious map and the GlobeLand30-2010, FROM-GLC-2015, NUACI-2015,
GHSL-2015 and HBASE-2010 global impervious surface products at a spatial grid of 0.05◦× 0.05◦. The error bars are the standard de-
viation between reference datasets with fitted results.

lower omission error), achieving an accuracy of 0.932, es-
pecially in the cropland-prevalent and vegetation-prevalent
impervious landscapes (such as Bangkok, Winnipeg, Xi’an).
Specifically, NUACI-2015 had the lowest user’s accuracy of
0.562, and this might be due to its poor performance over
small impervious surfaces (Z. Sun et al., 2019). FROM-
GLC-2015 had a similar performance to the MSMT_RF
method for big cities (such as New York, Moscow and Jo-
hannesburg), but its accuracy decreased sharply over “small-
city” regions (such as Lhasa, Winnipeg). The performance
of GHSL-2015 was closest to MSMT-2015 over most val-
idation regions, but it also missed the fragmented objects
(villages and roads) over cropland-prevalent city (such as
Bangkok and Winnipeg). As the minimum mapping unit of
GlobeLand30 was a 4 pixel × 4 pixel area, many rural im-
pervious surfaces were ignored in these validation regions,
which caused large omission errors of 23.9 %. Finally, partly
due to the 5-year interval between the HBASE-2010 and val-
idation samples, HBASE-2010 also suffered an omission er-
ror of 12.5 %.

As for the producer’s accuracy for impervious surface
(measuring the commission error), the GHSL-2015 prod-
ucts performed best and achieved an accuracy of 0.973, fol-
lowed by the MSMT-2015 value of 0.948, GlobeLand30-
2010 value of 0.947, FROM-GLC-2015 value of 0.946,
NUACI-2015 value of 0.898 and HBASE-2010 value of
0.841. Compared with user’s accuracy of impervious surface,

these reference products had better performance on this met-
ric, which meant they had a lower commission error.

To intuitively compare the performance of these six im-
pervious products, five validation regions, including two
bare-soil-prevalent regions (Phoenix and Niamey), one
vegetation-prevalent city (New York) and two cropland-
prevalent regions (Winnipeg and Bangkok), were selected
for presentation in Fig. 9. Specifically, in the first bare-soil-
prevalent region of Phoenix, NUACI-2015 obviously under-
estimated the impervious surfaces in the center of Phoenix
city. The causes of omission possibly came from the thresh-
old method used by NUACI-2015. Liu et al. (2018) de-
veloped a novel NUACI index to enhance the impervious
surfaces, suppressed the nonimpervious surfaces, and then
found an optimal threshold for the NUACI index to split
the impervious and nonimpervious surfaces. However, the
NUACI values of rural villages and roads were usually lo-
cated in the mixed areas of impervious and nonimpervious
surfaces, so the NUACI-2015 had great ability for large-size
impervious surfaces but poor performance for fragmented
impervious surfaces. FROM-GLC-2015 performed well in
the central city but missed impervious objects over periph-
eral urban areas. For example, the enlarged region (red rect-
angle), composed of sparse buildings and bare soils, was un-
derestimated by FROM-GLC-2015. This omission error pos-
sibly came from the sparse training samples (91 433 train-
ing samples across the globe; Gong et al., 2013). GHSL-
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Table 2. Accuracy of the six impervious surface maps over 15 validation regions.

NAME BGK JHB LHS MDR MNS MBN MSC NYK NIM ODM PNX RYH SPL WIP XAN OA

IL CR BS BS BS VG VG VG VG BS BS BS BS VG CR CR

M
SM

T-
20

15

UI 0.951 0.963 0.691 0.929 0.993 0.957 0.987 0.995 0.869 0.750 0.988 0.918 0.984 1.000 0.929 0.932
PI 0.997 0.922 0.989 0.961 0.938 0.972 0.961 0.981 0.987 0.951 0.975 0.944 0.965 0.915 0.940 0.948
UN 0.997 0.958 0.996 0.986 0.966 0.987 0.949 0.952 0.997 0.975 0.975 0.954 0.978 0.958 0.922 0.964
PN 0.951 0.981 0.873 0.975 0.996 0.980 0.982 0.987 0.964 0.859 0.987 0.932 0.990 1.000 0.909 0.953
OA 0.974 0.960 0.899 0.971 0.975 0.978 0.970 0.983 0.969 0.888 0.981 0.938 0.980 0.971 0.926 0.951

Kappa 0.948 0.912 0.747 0.925 0.945 0.948 0.939 0.957 0.904 0.754 0.963 0.874 0.958 0.934 0.850 0.898

N
U

A
C

I-
20

15

UI 0.695 0.885 0.031 0.469 0.935 0.690 0.933 0.960 0.526 0.587 0.765 0.822 0.935 0.777 0.562 0.735
PI 0.979 0.693 0.889 0.818 0.952 0.918 0.977 0.927 0.968 0.915 0.968 0.912 0.917 0.923 0.927 0.898
UN 0.985 0.800 0.998 0.963 0.975 0.970 0.972 0.788 0.995 0.965 0.975 0.933 0.947 0.971 0.943 0.941
PN 0.757 0.932 0.686 0.835 0.966 0.868 0.919 0.884 0.882 0.785 0.806 0.862 0.959 0.907 0.624 0.834
OA 0.838 0.829 0.689 0.833 0.961 0.880 0.950 0.911 0.893 0.818 0.870 0.883 0.943 0.911 0.728 0.856

Kappa 0.677 0.641 0.040 0.500 0.914 0.706 0.899 0.789 0.624 0.590 0.740 0.761 0.879 0.783 0.476 0.695

FR
O

M
-G

L
C

-2
01

5 UI 0.717 0.952 0.027 0.844 0.938 0.891 0.953 0.984 0.549 0.763 0.883 0.749 0.935 0.854 0.595 0.794
PI 0.990 0.779 1.000 0.973 0.974 0.958 0.982 0.972 0.960 0.930 1.000 0.975 0.986 0.981 0.982 0.946
UN 0.992 0.862 1.000 0.992 0.987 0.982 0.977 0.931 0.994 0.963 1.000 0.984 0.992 0.993 0.986 0.968
PN 0.772 0.972 0.686 0.947 0.968 0.950 0.942 0.960 0.887 0.864 0.895 0.823 0.961 0.938 0.652 0.870
OA 0.853 0.893 0.689 0.953 0.970 0.953 0.964 0.969 0.896 0.885 0.941 0.876 0.970 0.950 0.765 0.896

Kappa 0.706 0.772 0.037 0.872 0.933 0.889 0.927 0.923 0.641 0.750 0.883 0.746 0.936 0.879 0.548 0.780

G
H

SL
-2

01
5

UI 0.619 0.752 0.453 0.815 0.880 0.849 0.958 0.991 0.451 0.619 0.940 0.672 0.925 0.899 0.741 0.787
PI 1.000 0.949 1.000 0.989 0.996 0.978 0.982 1.000 1.000 1.000 0.995 0.996 0.996 0.991 0.968 0.973
UN 1.000 0.979 1.000 0.997 0.998 0.991 0.977 1.000 1.000 1.000 0.995 0.998 0.998 0.996 0.968 0.985
PN 0.717 0.886 0.795 0.938 0.941 0.932 0.948 0.979 0.867 0.804 0.943 0.783 0.955 0.957 0.742 0.868
OA 0.806 0.903 0.825 0.949 0.958 0.945 0.966 0.994 0.880 0.851 0.968 0.849 0.970 0.966 0.840 0.903

Kappa 0.615 0.770 0.530 0.860 0.903 0.870 0.932 0.985 0.563 0.664 0.935 0.687 0.936 0.919 0.686 0.794

G
lo

be
L

an
d3

0-
20

10 UI 0.310 0.704 0.410 0.825 0.804 0.744 0.908 0.981 0.537 0.779 0.923 0.831 0.902 0.749 0.750 0.761
PI 0.992 0.950 0.991 0.978 0.961 0.975 0.962 0.954 1.000 0.968 0.966 0.905 0.972 0.954 0.874 0.947
UN 0.997 0.981 0.998 0.993 0.983 0.991 0.955 0.901 1.000 0.984 0.968 0.926 0.984 0.984 0.859 0.970
PN 0.582 0.867 0.782 0.941 0.905 0.891 0.891 0.955 0.885 0.874 0.926 0.866 0.942 0.898 0.726 0.852
OA 0.648 0.888 0.810 0.949 0.921 0.911 0.929 0.936 0.899 0.904 0.945 0.883 0.953 0.911 0.798 0.884

Kappa 0.303 0.731 0.483 0.861 0.818 0.783 0.857 0.917 0.645 0.790 0.890 0.762 0.898 0.779 0.597 0.753

H
B

A
SE

-2
01

0 UI 0.801 0.915 0.527 0.888 0.913 0.744 0.984 0.998 0.720 0.776 0.953 0.909 0.941 0.911 0.883 0.875
PI 0.911 0.784 0.957 0.843 0.965 0.970 0.770 0.915 0.947 0.968 0.905 0.757 0.855 0.806 0.719 0.841
UN 0.919 0.872 0.989 0.942 0.983 0.989 0.625 0.771 0.989 0.984 0.900 0.755 0.901 0.902 0.552 0.883
PN 0.817 0.953 0.816 0.960 0.955 0.887 0.969 0.994 0.927 0.873 0.950 0.908 0.961 0.958 0.784 0.909
OA 0.859 0.886 0.841 0.928 0.959 0.908 0.826 0.933 0.930 0.903 0.926 0.826 0.916 0.905 0.739 0.880

Kappa 0.718 0.756 0.586 0.816 0.907 0.779 0.633 0.824 0.776 0.787 0.853 0.654 0.826 0.785 0.450 0.754
Note: IL, impervious landscape; CR, cropland-prevalent impervious landscape; BS, bare-soil-prevalent impervious landscape; VG, vegetation-prevalent impervious landscape; PI, producer’s accuracy of
impervious surfaces; UI, user’s accuracy of impervious surfaces; PN, producer’s accuracy of nonimpervious surfaces; UN, user’s accuracy of nonimpervious surfaces; OA, overall accuracy.

2015, accurately capturing the central and peripheral imper-
vious objects, had significant agreement with MSMT-2015; it
achieved a user’s accuracy of 0.940 and producer’s accuracy
of 0.995 in this region (Table 2). As for GlobeLand30-2010,
there was little omission for the fragmented impervious ob-
jects over peripheral urban areas because of the temporal in-
terval of 5 years and the minimum 4×4 mapping unit (Chen
et al., 2015). HBASE-2010 had the biggest impervious areas
among several global products, but it misclassified the veg-
etation and bare soils into impervious surfaces in the urban
central, so it had the highest commission error of 9.5 %, as
seen in Table 2. As for the second bare-soil-prevalent city of
Niamey, these products, except for GHSL-2015 which had

a smaller impervious area than other products and missed
the peripheral impervious objects, had similar performance
to that for Phoenix: NUACI-2015 had a high omission error
especially for the fragmented objects; HBASE-2010 lost the
impervious details and achieved the highest commission er-
ror of 5.3 %, as seen in Table 2; GlobeLand30-2010 missed
some small objects (the limitation of minimum 4× 4 map-
ping unit) and peripheral impervious objects caused by the
temporal interval; and FROM-GLC-2015 had great perfor-
mance in the dense impervious areas but it underestimated
over peripheral areas.

Next, in the vegetation-prevalent region of New York, six
products generally had similar identification results and ac-
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Figure 9.

curately captured the spatial distribution of New York city,
so they achieved high mapping accuracy exceeding 90 %,
as seen in Table 2. However, from a detailed perspective,
there were still differences between these products. Specif-
ically, NUACI-2015 performed well in the center of the city
but missed the sparse impervious objects over the periph-
eral city – for example, the enlarged region (Fig. 9, red
rectangle) illustrates the mixture of vegetation and sparse
buildings over the peripheral city – and NUACI-2015 and
GlobeLand30-2010 had smaller impervious areas than other

products. HBASE-2010 still suffered the highest commission
error of 8.5 % and had the biggest impervious areas because
it misclassified the bare soils and vegetation in the central
city into impervious surfaces (blue rectangles). GHSL-2015,
FROM-GLC-2015 and MSMT-2015 achieved higher map-
ping accuracy because they captured both dense and sparse
impervious objects in the central and peripheral city.

Lastly, in the two cropland-prevalent cities of Bangkok
and Winnipeg, the MSMT-2015 had greater advantages and
achieved the highest user’s accuracy of 95.1 % and 100 %
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Figure 9. Comparisons between the MSMT_RF-based impervious surface maps and other products (corresponding to the NUACI products
developed by Liu et al., 2018; the FROM-GLC products developed by Gong et al., 2013; the GHSL products developed by Florczyk et al.,
2019; the GlobeLand30 products developed by Chen et al., 2015; and the HBASE products developed by Wang et al., 2017a, respectively)
for five regions with various impervious landscape. The Landsat imagery and corresponding local enlargements came from the United States
Geological Survey (https://earthexplorer.usgs.gov/, last access: 8 July 2020).

compared to the NUACI-2015 values of 69.5 % and 77.7 %,
the FROM-GLC-2015 values of 71.7 % and 85.4 %, the
GHSL-2015 values of 61.9 % and 89.9 %, the GlobeLand30-
2010 values of 31.0 % and 74.9 %, and the HBASE-2010
values of 80.1 % and 91.1 %, as seen in Table 2. Fig-
ure 9 intuitively illustrates the performance of each prod-
uct. GlobeLand30-2010 had smaller impervious areas in the
central city because of the temporal interval and missed the
road networks due to the minimum mapping unit of 4× 4.
As a result, GlobeLand30-2010 achieved the lowest user’s
accuracy. NUACI-2015 captured impervious surfaces in the
central city but missed the road networks and sparse vil-
lage buildings in the peripheral cities. FROM-GLC-2015 and
HBASE-2015 had a similar performance in these two re-
gions, which captured medium and large cities but missed

the road networks and villages buildings. As HBASE-2010
contained the OpenStreetMap data to provide information on
major road networks (Wang et al., 2017a), the omission er-
ror in HBASE-2010 was relatively low and only these vil-
lage roads and buildings were missed; however, it still suf-
fered from a serious overestimation problem. Especially in
Bangkok city, the nonimpervious pixels (bare soils, water
and vegetation) were misclassified as impervious surfaces.
Therefore, HBASE-2010 reached the highest commission er-
ror among these impervious products, as seen in Table 2.
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Figure 10. Sensitivity analysis showing the relation between the classification accuracy and the percentage of erroneous samples points.

6 Discussion

6.1 Reliability and sensitivity of the global training
samples

In contrast to other classification-related studies that require
manual efforts to collect training samples (Gao et al., 2012;
Im et al., 2012; Zhang et al., 2016), we overcame the expen-
sive cost of collecting accurate and sufficient training sam-
ples at a global scale. To ensure the accuracy and reliability
of the training samples, a combination of the GlobeLand30-
2010 land-cover product, which had been validated to have a
producer’s accuracy (which measures the commission error)
of 94.7 % for impervious surfaces (see Sect. 5.4), and DMSP
OLS NTL imagery was adopted to guarantee the reliability
of each sample. As it was difficult and challenging to evalu-
ate the accuracy of all the training samples, we randomly se-
lected 1 % of the total training samples (in Sect. 3), including
34 990 nonimpervious and 9840 impervious points, to mea-
sure the reliability of the global training samples. After care-
ful checking, we found that these training samples achieved
accuracies of 91.9 % and 99.5 % for impervious and nonim-
pervious surfaces, respectively.

Meanwhile, even if the training samples still contained a
small number of erroneous points, the random forest model
has been demonstrated to be resistant to noise and the pres-
ence of erroneous samples (Belgiu and Drăguţ, 2016). In this
study, we randomly changed the category of a certain per-
centage of the 34 990 samples and used the “noisy” sam-
ples to train the random forest classifier. Figure 10 illustrates
the overall accuracy and impervious producer’s accuracy de-
creased for the increased percentage of erroneous samples. It
was found that the overall and impervious producer’s accu-
racy remained stable when the percentage of erroneous sam-
ples increased from 1 % to 20 %, while it rapidly decreased
when the percentage of erroneous samples was higher than

20 %. Similarly, Gong et al. (2019) also found that the de-
crease in overall accuracy was less than 1 % when the error
in the training samples was less than 20 %.

Therefore, the reliability and sensitivity analysis indicated
that (1) the random forest model is resistant to noisy train-
ing samples and performs well if the percentage of erroneous
samples is lower than 20 % and (2) the training samples de-
rived from the GlobeLand30 and DMSP OLS NTL imagery
were accurate enough for use in global impervious surface
mapping.

6.2 Limitations of the proposed method

Although the proposed MSMT_RF method has been demon-
strated to have the ability to produce accurate impervious sur-
face products, there are still some limitations to the method.
First, as the training samples derived from the GlobeLand30-
2010 are restricted to a 9 pixel × 9 pixel local window and
further refined by the integration of MODIS EVI and VI-
IRS NTL imagery, low-density impervious samples might
be omitted and cause further omission of low-density im-
pervious surfaces (rural villages, small roads and so on). Al-
though, in this study, spatially adjacent training samples from
the surrounding 3×3 areas were imported to reduce the omis-
sion of low-density samples, according to the accuracy as-
sessment, higher omission errors were found in low-density
regions (Lhasa and Omdurman) than in high-density regions
(New York and Moscow). Therefore, our future work will
pay more attention to the omission of low-density impervi-
ous surfaces.

Secondly, as Weng (2012) pointed out, mixed pixels are
common in medium-resolution imagery due to the limita-
tions of the spatial resolution and spectral heterogeneity of
the landscape. The effectiveness of “hard” classifiers is eas-
ily affected by these mixed pixels (low-density impervious
pixels also constitute mixed pixels). Due to the proportion of
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Table 3. The detailed information of the datasets and processes in this study.

Data source and platform Detailed datasets and processing steps

Datasets Google Earth Engine platform Landsat 8 optical, Sentinel-1 SAR, VIIRS NTL, MODIS EVI and SRTM–ASTER DEM
topographical imagery

Free-download websites GlobeLand30-2010, FROM-GLC-2015, NUACI-2015, HBASE-2010 and GHSL-2015
products

Our group Validation samples

Processes Google Earth Engine platform
(JavaScript language)

The random forest classification at each 5◦× 5◦ regional grid

Localhost platform
(Python environment)

Derivation of global training samples
The importance of multisource and multitemporal features
Reliability and sensitivity of global training samples

impervious surfaces within a pixel, impervious surface areas
are often overestimated in urban areas or underestimated in
rural areas when using medium-resolution images (Lu and
Weng, 2006). Therefore, our future work will focus on si-
multaneously producing the likelihood (“soft” probability)
of each pixel being an impervious surface. At present, some
scientists have produced continuous impervious fractions at
a regional scale; for example, Okujeni et al. (2018) used the
support vector regression method to estimate the fraction of
impervious surfaces at the pixel scale.

7 Data availability and user guidelines

The global impervious surface map dataset gen-
erated in this paper is available on Zenodo:
https://doi.org/10.5281/zenodo.3505079 (Zhang and Liu,
2019).

To facilitate readers in reproducing this work, Table 3
gives the details of the data source and platform information
of the datasets and processes in this study. The input remote
sensing datasets and products came from three parts: the
GEE platform, free-access websites and our group. Specif-
ically, five kinds of basic datasets discussed in Sect. 2.1 were
available at GEE platform. The five impervious surface prod-
ucts discussed in Sect. 2.2 were downloaded from the free-
access websites of the National Geomatics Center of China,
Tsinghua University, Sun Yat-sen University, National Aero-
nautics and Space Administration (NASA), and the Joint Re-
search Centre (JRC). The validation samples were produced
by our group using visual interpretation.

Further, the process of derivation of global training sam-
ples was implemented by using the multisource datasets at a
localhost computation platform, and the random forest clas-
sification at each 5◦× 5◦ regional grid was developed by our
group on the GEE platform using the JavaScript language.
The importance of multisource and multitemporal features
and the reliability and sensitivity of global training samples

were analyzed in the localhost Python computation environ-
ment.

8 Conclusions

Due to the spectral heterogeneity and complicated makeup of
impervious surfaces, large-area impervious mapping is chal-
lenging and difficult. In this study, a global 30 m impervi-
ous surface map was developed by using multisource, mul-
titemporal remote sensing data based on the Google Earth
Engine platform. First, the global training samples were au-
tomatically derived from the GlobeLand30-2010 land-cover
product together with VIIRS NTL and MODIS EVI imagery.
Then, a local adaptive random forest model was trained
using the training samples and multisource and multitem-
poral datasets for each 5◦× 5◦ geographical grid. Follow-
ing that, the global impervious map produced by mosaick-
ing a large number of 5◦× 5◦ regional impervious surface
maps was validated by comparing it with several existing
products (GlobeLand30-2010, FROM-GLC-2015, NUACI-
2015, HBASE-2010 and GHSL-2015) using approximately
11 942 interpretation samples. The results indicated that
the MSMT_RF-based impervious surface map achieved the
highest overall accuracy of 0.951 and kappa coefficient of
0.898 compared with 0.896 and 0.780 for FROM-GLC-
2015, 0.856 and 0.695 for NUACI-2015, 0.903 and 0.794 for
GHSL-2015, 0.884 and 0.753 for GlobeLand30-2010, and
0.880 and 0.754 for HBASE-2010 using all 15 regional val-
idation data. Therefore, it can be concluded that the global
30 m impervious surface map produced by the proposed
MSMT_RF method is accurate and reliable for use in global
impervious surface mapping.
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Appendix A: List of abbreviations and acronyms

Abbreviation Definition
DEM Digital elevation model
DMSP OLS Defense Meteorological Satellite Program Operational Linescan System
EANTLI EVI-adjusted nighttime light index
EVI Enhanced vegetation index
FROM-GLC Finer Resolution Observation and Monitoring of Global Land Cover
GEE Google Earth Engine
GHSL 30 m Global Human Settlement Layer
GlobeLand30 30 m Global Land Cover data product
HBASE Human Built-up and Settlement Extent
MSMT_RF Multisource, multitemporal random forest classification
NDBI Normalized difference built-up index
NDVI Normalized difference vegetation index
NDWI Normalized difference water index
NLCD National Land Cover Dataset
NTL Nighttime light
NUACI Normalized Urban Areas Composite Index
R2 Coefficient of determination
RMSE Root mean square error
RF Random forest
SAR Synthetic-aperture radar
VIIRS Visible Infrared Imaging Radiometer Suite
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