Earth Syst. Sci. Data, 12, 119–135, 2020 https://doi.org/10.5194/essd-12-119-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr

Xianyong Cao^{1,a}, Fang Tian¹, Andrei Andreev^{1,2}, Patricia M. Anderson³, Anatoly V. Lozhkin⁴, Elena Bezrukova^{5,6}, Jian Ni⁷, Natalia Rudaya^{1,6}, Astrid Stobbe⁸, Mareike Wieczorek¹, and Ulrike Herzschuh^{1,9,10}

¹Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A43, 14473 Potsdam, Germany ²Institute of Geology and Petroleum Technologies, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia ³Earth and Space Sciences and Quaternary Research Center, University of Washington, Seattle, WA 98185, USA ⁴North-East Interdisciplinary Science Research Institute, Far East Branch Russian Academy of Sciences, 685000 Magadan, Russia ⁵Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, ul. Favorskogo 1a, 664033 Irkutsk, Russia ⁶Institute of Archeology and Ethnography, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrentieva 17, 630090 Novosibirsk, Russia ⁷College of Chemistry and Life Sciences, Zhejiang Normal University, Yingbin Road 688, 321004 Jinhua, China ⁸Goethe University, Norbert-Wollheim-Platz 1, 60629 Frankfurt am Main, Germany ⁹Institute of Environmental Sciences and Geography, University of Potsdam, Karl-Liebknecht-Str. 24, 14476 Potsdam, Germany ¹⁰Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24, 14476 Potsdam, Germany ^apresent address: Key Laboratory of Alpine Ecology, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101 Beijing, China

Correspondence: Ulrike Herzschuh (ulrike.herzschuh@awi.de) and Xianyong Cao (xcao@itpcas.ac.cn)

Received: 12 January 2019 – Discussion started: 28 May 2019 Revised: 12 November 2019 – Accepted: 9 December 2019 – Published: 22 January 2020

Abstract. Pollen records from Siberia are mostly absent in global or Northern Hemisphere synthesis works. Here we present a taxonomically harmonized and temporally standardized pollen dataset that was synthesized using 173 palynological records from Siberia and adjacent areas (northeastern Asia, 42–75° N, 50–180° E). Pollen data were taxonomically harmonized, i.e. the original 437 taxa were assigned to 106 combined pollen taxa. Age–depth models for all records were revised by applying a constant Bayesian age–depth modelling routine. The pollen dataset is available as count data and percentage data in a table format (taxa vs. samples), with age information for each sample. The dataset has relatively few sites covering the last glacial period between 40 and 11.5 ka (calibrated thousands of years before 1950 CE) particularly from the central and western part of the study area. In the Holocene period, the dataset has many sites from most of the area, with the exception of the central part of Siberia. Of the 173 pollen records, 81 % of pollen counts were downloaded from open databases (GPD, EPD, PANGAEA) and 10 % were contributions by the original data gatherers, while a few were digitized from publications. Most of the pollen records originate from peatlands (48 %) and lake sediments (33 %). Most of the records (83 %) have \geq 3 dates, allowing the establishment of reliable chronologies. The dataset can be used for various purposes, including pollen data mapping (example maps for *Larix* at selected time slices are shown) as well as quantitative climate and vegetation reconstructions. The datasets for pollen counts and pollen percentages are available at https://doi.org/10.1594/PANGAEA.898616 (Cao et al., 2019a), also including the site information, data source, original publication, dating data, and the plant functional type for each pollen taxa.

1 Introduction

Continental or sub-continental pollen databases are essential for spatial reconstructions of former climates and past vegetation patterns of the terrestrial biosphere and in interpreting their driving forces (Cao et al., 2013); they also provide data for use in palaeodata-model comparisons at a continental scale (Gaillard et al., 2010; Trondman et al., 2015). Continental pollen databases from North America, Europe, Africa, and Latin America have been successfully established (Gajewski, 2008), and a fossil pollen dataset has been established for the eastern part of continental Asia (including China, Mongolia, southern Siberia, and parts of Central Asia; Cao et al., 2013). These datasets have been used to infer the locations of glacial refugia and migrational pathways by pollen mapping (e.g. Magri, 2008; Cao et al., 2015) and to reconstruct biome or land cover (e.g. Ni et al., 2014; Trondman et al., 2015; Tian et al., 2016) and climates at broad spatial scales (e.g. Mauri et al., 2015; Marsicek et al., 2018).

Pollen records from Siberia have rather seldomly been included in global, Northern Hemisphere, or synthesis works (Sanchez Goñi et al., 2017; Marsicek et al., 2018), probably because (1) few records are available in open databases or (2) available data are not taxonomically harmonized and lack reliable chronologies. Binney et al. (2017) established a pollen dataset together with a plant macrofossil dataset for northern Eurasia (excluding East Asia; the dataset has not been made accessible yet), but the chronologies were not standardized and the pollen data restricted to 1000-year time slices. In addition, a few works that make use of Siberian fossil pollen data either present biome reconstructions (Binney et al., 2017; Tian et al., 2018), which do not require taxonomic harmonization of the data, or restrict the analyses to selected times slices such as 18, 6, and 0 ka (Tarasov et al., 1998, 2000; Bigelow et al., 2003).

Here we provide a new taxonomically harmonized and temporally standardized fossil pollen dataset for Siberia and adjacent areas.

2 Dataset description

2.1 Data sources

We obtained 173 late Quaternary fossil pollen records (generally since 40 ka) from Siberia and surrounding areas (42-75° N, 50–180° E) from database sources and/or contributors or by digitizing published pollen diagrams (Appendix A; this table is available in PANGAEA). A total of 102 raw pollen count records were downloaded from the Global Pollen Database (GPD; http://www.ncdc.noaa.gov/paleo/gpd.html, last access: August 2010); 18 pollen count records were downloaded from the European Pollen Database (EPD; http: //www.europeanpollendatabase.net, last access: July 2016); 20 pollen records (16 sites have pollen count data, others with pollen percentages) were collected from the PANGAEA website (Data Publisher for Earth and Environmental Science, which also includes most pollen records found in GPD and EPD; https://www.pangaea.de, last access: July 2016); raw pollen count data of 17 sites were contributed directly by the data gatherers; and pollen percentages for the remaining 16 sites were digitized from the published pollen diagrams.

2.2 Data processing

Pollen standardization follows Cao et al. (2013), including homogenization of taxonomy at family or genus level generally (437 pollen names were combined into 106 taxa; Appendix B; this table is available in PANGAEA) and recalculation of pollen percentages on the basis of the total number of terrestrial pollen grains. To obtain comparable chronologies, age-depth models for these pollen records were re-established using Bayesian age-depth modelling with the IntCal09 radiocarbon calibration curve ("Bacon" software; Blaauw and Christen, 2011). We set up a gamma distribution accumulation rate with a shape parameter equal to 2, a beta distribution with a "strength" of 20 for all records for the accumulation variability, a mean "memory" of 0.1 for lake sediments, and a high memory of 0.7 for peat and other sediment types (following Blaauw and Christen, 2011). For the 20 pollen records without raw pollen counts, we set the terrestrial pollen sum based on the descriptions given in the original publications. Approximate values or ranges were provided for 16 records, e.g. more than 600 for the pollen record from Chernaya Gorka palsa and between 452 and 494 grains for Two-Yurts Lake, these pollen sums are assigned at

Figure 1. Spatial distribution of fossil pollen records (+) in the study area. The number of each site is used as its ID in Table A1.

600 and 470, respectively. A pollen sum of 400 is assigned for the other four records because no information was provided in the publications.. The "pollen counts" were then back-calculated using the pollen percentages and pollen sum. Finally, the pollen datasets are available with both count data and percentage data in table format in Excel software (taxa vs. samples), with age and location information for each sample.

2.3 Data quality

The Siberia pollen dataset includes pollen count data and percentages from 173 pollen sampling sites (Fig. 1). Sites are distributed reasonably evenly in eastern and western Siberia, but geographic gaps still exist in central Siberia ($55-70^{\circ}$ N, $90-120^{\circ}$ E), where no published pollen records exist.

The dataset includes 83 pollen records from peat sediments, 57 records from lake sediments, 23 from fluvial sediments, 6 from coastal or marine sediments, 3 from palaeosol profiles, and 1 from palsa sediment (Appendix A). The peat and lake sediments generally have reliable chronologies and high sampling resolutions of the pollen records. About 83 % of the pollen records have \geq 3 dates (\sim 57 % have \geq 5 dates); 73 % of the pollen records have sampling resolutions of < 500 years per sample and only 14 % sites have > 1000 years per sample (Appendix A).

Within this dataset, 91 % of the pollen records (157 sites) have raw pollen count data or percentages with complete pollen assemblages (Appendix A). Although there might be some rare pollen taxa excluded from the published pollen diagrams (16 sites) that were digitized, these pollen taxa are likely of minor importance within the pollen assemblages.

In addition, during digitizing we ensured that the sum of pollen percentages for each pollen assemblage was within $100 \pm 10\%$, to minimize artificially introduced errors.

The pollen records were counted by different scientists that gave different pollen names to the same pollen types requiring taxonomic homogenization (from 437 original taxa to 106 combined taxa). However, this reduces the taxonomic resolution of the dataset. In cases where homogenization would have resulted in grouping pollen taxa with different growth forms (herb, shrub, or tree) together, we keep the taxa separately even though not all analysts separated them (for instance, *Betula* pollen is separated into *Betula*_shrub, *Betula*_tree and *Betula*_undiff). We also append the original pollen names to the dataset to ensure feasibility of future studies on various topics using these data.

The chronologies of most pollen records are based on a reasonable number of dates (mostly ¹⁴C; at least 3 dates per record). However, we also included pollen records from under-represented areas or periods that do not meet this criterion. Furthermore, most of the pollen records cover only part of the last 40 kyr, and comparatively few pollen records cover (parts of) the last glacial (i.e. > 11 ka). We interpolated pollen abundances at 16 key time slices (40, 25, 15, 13, 11, 10, 9, 8, 7, 6, 5, 4, 3, 1.5, and 0.5 ka) using the *interp.dataset* function in the R package rioja (Juggins, 2012) to produce pollen presence–absence maps for *Larix* as an example of the distribution of available sites at these 16 key time slices (Fig. 2). We also present boxplots for 14 major pollen taxa from all available sites at the 16 key time slices (Fig. 3), which illustrates the general temporal patterns.

Figure 2. Pollen-inferred presence maps for *Larix* at key time slices. Black squares indicate presence while empty circles indicate absence.

3 Potential use of the Siberian fossil pollen dataset

Fossil pollen data mapping can be used to reveal broadscale spatial distributions over time, as Cao et al. (2015) demonstrate. In this paper, we present presence-absence maps for Larix as an example (Fig. 2). Larix has extremely low pollen productivity (e.g. Niemeyer et al., 2015) that causes the under-representation of Larix pollen compared to its cover in the pollen source vegetation (Lisitsyna et al., 2011). Accordingly, Larix pollen is accepted as an indicator of the presence of Larix locally (e.g. Lisitsyna et al., 2011). The pollen presence-absence maps for Larix (Fig. 2) show a wide geographical range over the last 40 000 years, even during the Last Glacial Maximum, when there was very likely a relatively low density of larch. Our results generally confirm the distribution revealed by Larix macrofossil analysis (Binney et al., 2009). The Larix distribution changes revealed by our pollen dataset exemplify the usability of the dataset for vegetation reconstruction.

The Siberian fossil pollen dataset has already been used for biome reconstruction (Tian et al., 2018), although an integration of this dataset into global or Northern Hemispherewide biomization research is still pending. Pollen percentages in pollen assemblages do not directly reflect species abundance in the vegetation community because of different pollen productivity. Therefore, quantitative vegetation composition is modelled using pollen productivity estimates (e.g. Sugita et al., 2010; Trondman et al., 2015). Our pollen dataset was recently used to reconstruct plant cover quantitatively using the REVEALS model to describe the compositional changes in space and time, which is more reliable than using pollen percentages directly (Cao et al., 2019b).

Modern pollen data have been published from many sites in Siberia (e.g. Tarasov et al., 2007, 2011; Müller et al., 2010; Klemm et al., 2015). These modern pollen datasets can be used to investigate modern pollen–climate relationships, and these modern relationships can be used to make quantitative climate reconstructions, as has been done previously (e.g. Marsicek et al., 2018).

4 Data availability

Five datasets including overview and reference (site information), dating data, plant functional type for each pollen taxa,

X. Cao et al.: A standardized late Quaternary pollen dataset for Siberia

Figure 3. Boxplots of percentages of 10 major pollen taxa at all available sites at key time slices. La: *Larix*; Pc: *Picea*; Pn: *Pinus*; Be: *Betula*; Al: *Alnus*; Sa: *Salix*; Cy: Cyperaceae; Er: Ericaceae; Po: Poaceae; Ar: *Artemisia*.

and pollen count and pollen percentage for each sample are available at https://doi.org/10.1594/PANGAEA.898616 (Cao et al., 2019a).

5 Summary

We present a taxonomically harmonized and temporally standardized fossil pollen dataset of 173 palynological records with counts and percentages from Siberia and adjacent areas (northeastern Asia, $42-75^{\circ}$ N, $50-180^{\circ}$ E).

Our open-access dataset is a key component that can help provide quantitative estimates of vegetation or climate, which can be used to validate palaeo-simulation results of general circulation models for the Northern Hemisphere.

Appendix A

 Table A1. Details of the fossil pollen records in the Siberian pollen dataset. NA – not available.

ID	Site	Lat. (°)	Long. (°)	Elev. (m)	Archive type	Data type	Source	Dating method	No. of dates & material code	Time span (ka BP)	Res. (yr)	Reference
1	Pobochnove	53.03	51.84	58	Peat sediment	digitized	_	¹⁴ C	10C+6E	14.4-0	540	Kremenetski et al. (1999)
2	Novienky peat	52.24	54.75	197	Peat sediment	counts	EPD, Pan	¹⁴ C	1U	4.5-0	270	López-García et al. (2003)
3	Ust'Mashevskoe	56.32	57.88	220	Peat sediment	counts	EPD, Pan	¹⁴ C	5C	7.8-00	150	Panova et al. (1996)
4	Aral Sea	44.42	59.98	53	Lake sediment	counts	EPD, Pan	¹⁴ C	4U	8.7-0	260	Aleshinskaya (unpublished data)
5	Fernsehsee Lake	52.83	60.50	290	Lake sediment	counts	From author	¹⁴ C	10A	9.1-0.4	220	Stobbe et al. (2015)
6	Karasieozerskoe	56.77	60.75	230	Peat sediment	counts	EPD, Pan	¹⁴ C	3A	5.9-0.1	190	Panova (1997)
7	Zaboinoe Lake	55.53	62.37	275	Lake sediment	counts	GPD, EPD, Pan	¹⁴ C	1U	12.3-0.1	220	Khomutova and Pushenko (1995)
8	Cape Shpindler	69.72	62.80	20	Fluvial sediment	counts	Pan	¹⁴ C	12A	15.8-0	420	Andreev et al. (2001)
9	Mokhovoye	53.77	64.25	178	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	4C+1E	6.0–0	180	Kremenetskii et al. (1994)
10	Chernaya Gorka	67.08	65.35	170	Palsa sediment	digitized	-	¹⁴ C	1A+3C	10.1-6.9	70	Jankovská et al. (2006)
11	Lake Lyadhej-To	68.25	65.75	150	Lake sediment	counts	Pan	¹⁴ C	14A+6E	12.5-0.3	170	Andreev et al. (2005)
12	Chesnok peat	60.00	66.50	42	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	7C	10.6-0.5	280	Volkova (1966)
13	Baidara Gulf	68.85	66.90	30	Coastal sediment	counts	EPD, Pan	140	10C	10.5 0.5	1/0	Andreev et al. (1998)
14	Komaritsa peat	50.50	69.00	42	Fluvial addiment	counts	GPD, EPD, Pan	14C	100	10.5-0.5	2000	Volkova (1966) Baltharaya (1982)
15	Nulsavaito	59.50 67.53	70.17	57	Pluvial sediment	counts	GFD, EFD, Fall	14C		30.3-22.3 8 4 6 4	2000	Bakilaleva (1985) Papova (1990)
10	Salum Yugan	60.02	72.08	56	Peat sediment	digitized	EFD, Fall	¹⁴ C	4A+1C	0.4-0.4 10.1_0.2	200	Pitköpen et al. (2002)
18	Nizhnevartovsk	62.00	76.67	54	Peat sediment	counts	- GPD FPD Pan	^{14}C	3A+7C	11.1_0	300	Neustadt and Zelikson (1985)
19	Nizhnevartovskove	61.25	77.00	55	Peat sediment	counts	GPD FPD Pan	^{14}C	1A+13C+1F	12.6-0	380	Neishtadt (1976a)
20	Entarnove peat	59.00	78.33	65	Peat sediment	counts	GPD EPD Pan	¹⁴ C	5C	14 9-0 9	460	Neishtadt (1976b)
21	Lukaschin Yar	61.00	78.50	65	Peat sediment	counts	GPD EPD Pan	¹⁴ C	13C	10.9-0.3	430	Neishtadt (1976a)
22	Big Yarovoe Lake	52.85	78.63	79	Lake sediment	counts	From author	Biwa*	-	4.3-0	190	Rudava et al. (2012)
23	Sverdrup	74.50	79.50	7	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	3C	13.4-11.1	290	Tarasov et al. (1995)
24	BP99-04/06	73.41	79.67	-32	Marine sediment	counts	Pan	¹⁴ C	12U	10.0-0.3	190	Kraus et al. (2003)
25	Pur-Taz peatland	66.70	79.73	50	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	5A	10.3-4.7	80	Peteet et al. (1998)
26	Petropavlovka	58.33	82.50	100	Peat sediment	counts	EPD, Pan	¹⁴ C	4C+1E	10.5-0.1	160	Blyakharchuk (1989)
27	Kalistratikha	53.33	83.25	190	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	4A	39.0-12.7	1870	Zudin and Votakh (1977)
28	Tom' River peat	56.17	84.00	100	Peat sediment	counts	GPD	¹⁴ C	6C	10.1-0.2	390	Arkhipov and Votakh (1980)
29	Novouuspenka	56.62	84.17	150	Fluvial sediment	counts	EPD, Pan	¹⁴ C	5C	5.3-0	130	Blyakharchuk (1989)
30	Kirek Lake	56.10	84.22	90	Lake sediment	digitized	-	¹⁴ C	3G	10.5-1.5	190	Blyakharchuk (2003)
31	Zhukovskoye Mire	56.33	84.83	106	Peat sediment	counts	From author	¹⁴ C	9C+6H	11.2-0	130	Borisova et al. (2011)
32	Chaginskoe	56.45	84.88	80	Peat sediment	digitized	-	¹⁴ C	2C	8.8-0	320	Blyakharchuk (2003)
33	Karginskii Cape	70.00	85.00	60	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	13C	8.9-3.5	290	Firsov et al. (1972)
34	Ovrazhnoe	56.25	85.17	110	Peat sediment	counts	EPD, Pan	¹⁴ C	1C	5.8-0.1	230	Blyakharchuk (1989)
35	Bugristoye Bog	58.25	85.17	100	Peat sediment	counts	EPD, Pan	¹⁴ C	4C+1E	11.5-5.0	100	Blyakharchuk (1989)
36	Igarka peat	67.48	86.50	2	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	1A+2C	10.9-5.9	230	Kats (1953)
37	Yenisei	68.17	87.15	68	Peat sediment	digitized	-	¹⁴ C	7C	6.5-1.6	110	Andreev and Klimanov (2000)
38	Teguldet	57.33	88.17	150	Peat sediment	counts	Pan	¹⁴ C	3C	7.3-2.4	90	Blyakharchuk (1989)
39	Maksimkin Yar	58.33	88.17	150	Peat sediment	counts	EPD, Pan	¹⁴ C	4C	8.3-0.2	170	Blyakharchuk (1989)
40	Lama Lake	69.53	90.20	77	Lake sediment	counts	From author	¹⁴ C	26A+4D+4E	19.5-0	170	Andreev et al. (2004)
41	Levinson-Lessing Lake	74.47	98.64	NA	Lake sediment	counts	Pan	¹⁴ C	30A+19E	35.3-0	390	Andreev et al. (2003)
42	LAO13-94	72.19	99.58	65	Peat sediment	counts	Pan	¹⁴ C	2C+1U	16.1–0	1240	Andreev et al. (2002)
43	LAB2-95	72.38	99.86	65	Peat sediment	counts	Pan	¹⁴ C	1A+1C	17.4–5.6	980	Andreev et al. (2002)
44	Taymyr Lake_SAO4	74.53	100.53	47	Lake sediment	counts	Pan	14C	IC (A 15C	8.7-0.4	600	Andreev et al. (2003)
45	Taymyr Lake_SAOT	74.55	100.53	47	Lake sediment	counts	Pan	14c	6A+5C	57.9-0	1320	Andreev et al. (2003)
40	Deitel CON01 (05 5	72.40	102.29	480	Lake sediment	di si di se d	Pan	140	8A+/E	7.0-0.1	110	Riemm et al. (2016)
47	Baikal-CON01-003-3	51.50	104.85	480	Lake sediment	digitized	-	14C	12D	17.7.0	200	Demske et al. (2005)
40	Charnoa Laka	50.05	104.63	500	Lake sediment	counts	- EPD Bon	14C	3D 4E	7.07	620	Vipper (2010)
50	Khanda-1	55 44	107.00	840	Peat sediment	counts	ErD, rall From author	^{14}C	4E 3C	3 1_0 3	50	Bezrukova et al. (2011)
51	Khanda	55 44	107.00	840	Peat sediment	counts	From author	^{14}C	5C 6C	5.1-0.5	140	Bezrukova et al. (2011)
52	Cheremushka Bog	52 75	107.00	1500	Peat sediment	digitized	-	^{14}C	6C	33.5-0	460	Shichi et al. (2009)
53	Okunaika	55 52	108.00	802	Peat sediment	counts	From author	^{14}C	6C	8 3-2 0	120	Bezrukova et al. (2011)
54	Baikal-CON01-603-5	53.95	108.91	480	Lake sediment	digitized	-	¹⁴ C	10D	15 8-0	270	Demske et al. (2005)
55	Ukta Creek mouth	55.80	109.70	906	Peat sediment	counts	From author	^{14}C	3U	5.1-0	160	Bezrukova et al. (2006)
56	Bolshoe Eravnoe Lake	52.58	111.67	947	Lake sediment	counts	EPD, Pan	¹⁴ C	3E	7.3-0.2	710	Vipper (2010)
57	Madjagara Lake	64.83	120.97	160	Lake sediment	counts	GPD, EPD, Pan	¹⁴ C	7E	8.2-0.2	120	Andreev and Klimanov (1989)
58	Khomustakh Lake	63.82	121.62	120	Lake sediment	counts	GPD, EPD, Pan	¹⁴ C	9E	12.3-0.1	170	Andreev et al. (1989)
59	Boguda Lake	63.67	123.25	120	Lake sediment	counts	GPD, EPD, Pan	¹⁴ C	7E	10.9-0.4	180	Andreev et al. (1989)
60	Barbarina Tumsa	73.57	123.35	10	Peat sediment	counts	Pan	¹⁴ C	4C	4.9-0.3	240	Andreev et al. (2004)
61	Lake Kyutyunda	69.63	123.65	66	Lake sediment	counts	Pan	¹⁴ C	10E	10.8-0.3	360	Biskaborn et al. (2016)
62	Suollakh	57.05	123.85	816	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	8C	12.8-3.7	180	Andreev and Klimanov (1991)
63	Derput Bog	57.03	124.12	700	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	1A+4C	11.7-0.8	210	Andreev and Klimanov (1991)
64	Nikolay Lake	73.67	124.25	35	Lake sediment	counts	EPD, Pan	¹⁴ C	6A	12.5-0	600	Andreev et al. (2004)
65	Dyanushka River	65.04	125.04	123	Fluvial sediment	counts	Pan	¹⁴ C	13A	12.6-0	170	Werner et al. (2010)
66	Billyakh Lake	65.27	126.75	340	Lake sediment	counts	Pan	¹⁴ C	1A+10E	50.6-0.2	470	Müller et al. (2010)
67	Billyakh Lake	65.30	126.78	340	Lake sediment	counts	Pan	¹⁴ C	7A	14.1-0	180	Müller et al. (2009)
68	Dolgoe Ozero	71.87	127.07	40	Lake sediment	counts	From author	¹⁴ C	1A+9B	15.3-0	210	Pisaric et al. (2001)
69	Chabada Lake	61.98	129.37	290	Lake sediment	counts	GPD, EPD, Pan	¹⁴ C	15U	13-0	110	Andreev and Klimanov (1989)

Table A1. Continued.

ID	Site	Lat. (°)	Long. (°)	Elev. (m)	Archive type	Data type	Source	Dating method	No. of dates & material code	Time span (ka BP)	Res. (yr)	Reference
70	Mamontovy Khayata	71.77	129.45	0	Coastal sediment	counts	Pan	¹⁴ C	40A+24C	58.4-0	970	Andreev et al. (2002)
71	Nuochaga Lake	61.30	129.55	260	Lake sediment	counts	GPD, EPD, Pan	¹⁴ C	4E	6.5-0	140	Andreev and Klimanov (1989)
72	Tumannaya River	42.32	130.73	4	Fluvial sediment	counts	GPD	¹⁴ C	1F	14.4-0.1	380	Anderson et al. (2002)
73	Amba River	43.32	131.82	5	Peat sediment	counts	GPD	¹⁴ C	1A+1C	4.2-2.0	260	Korotky et al. (1980)
74	Paramonovskii Stream	43.20	133.75	120	Fluvial sediment	counts	GPD	¹⁴ C	2A+1E	32.2-0.6	4530	Korotky et al. (1993)
75	Ovrazhnyi Stream-2	43.25	134.57	10	Peat sediment	counts	GPD	¹⁴ C	3A+1C	36.0-0.4	2250	Korotky and Karaulova (1975)
76	Selitkan-2	53.22	135.03	1300	Peat sediment	counts	GPD	¹⁴ C	4C	6.4–1.9	260	Volkov and Arkhipov (1978)
77	Selitkan-1	53.22	135.05	1320	Peat sediment	counts	GPD	¹⁴ C	6C	7.9–0	140	Korotky et al. (1985)
78	Selitkan-3	53.22	135.07	1310	Peat sediment	counts	GPD	¹⁴ C	2E	10.2-2.3	790	Korotky and Kovalyukh (1987)
79	Bugutakh	67.83	135.12	128	Fluvial sediment	counts	GPD, EPD, Pan	¹⁴ C	1A	20.4-0	1860	Anderson et al. (2002)
80	Betenkyos	67.67	135.58	135	Fluvial sediment	counts	GPD, EPD, Pan	¹⁴ C	1A+1E	2.2-0	230	Anderson et al. (2002)
81	Adycha River	67.75	135.58	130	Fluvial sediment	counts	GPD	14 C	5A	9.2–3.7	420	Anderson et al. (2002)
82	Ulakhan	67.83	135.58	130	Fluvial sediment	counts	GPD	14 C	3C	8.6-5.7	330	Anderson et al. (2002)
83	Kiya	47.83	135.67	100	Peat sediment	digitized	-	14C	4C	10.0-0.9	210	Bazarova et al. (2008)
84	Laptev PM9462	74.30	136.00	0	Marine sediment	digitized	- CDD EDD D	140	120	9.3-0.2	200	Naidina and Bauch (2001)
85	Knocho	71.05	136.23	10	Peat sediment	counts	GPD, EPD, Pan	14C		10.4-0.4	300	Velichko et al. (1994)
00 07	Samandon	50.00	127.05	25	Peat sediment	digitized	GFD, EFD, Fall	14C	3A+0C+4E	7.9-0.2	240	Makhava at al. (2000)
0/	Gurskii paat	50.00	137.03	33 15	Peat sediment	counts	- CPD	14C	13C	12.1-0	340	Korotlay (1982)
80	Siluvanov Var	46.13	127.00	20	Fluvial sediment	counts	GPD	14C	64	12.8 4.0	1120	Korotky (1982)
90	Oumi	48.22	137.05	990	Peat sediment	counts	GPD	^{14}C	5C	26-04	80	Anderson et al. (2002)
91	Opasnava River	48.23	138.48	1320	Peat sediment	counts	GPD	14C	7C	13.3-6.7	360	Korotky et al. (1988)
92	Venyukovka-2	47.03	138.58	6	Peat sediment	counts	GPD	¹⁴ C	1A+1C	3.6-0.4	140	Korotky et al. (1980)
93	Venyukovka-3	47.12	138.58	5	Peat sediment	counts	GPD	¹⁴ C	1A+2C	5.8-3.2	140	Korotky et al. (1980)
94	Kyurbe-Yuryakh-2	68.60	138.62	650	Peat sediment	counts	GPD	¹⁴ C	4C	8.8-2.6	1530	Anderson et al. (2002)
95	Byllatskove	69.17	140.06	316	Fluvial sediment	digitized	_	¹⁴ C	2A	28.6-2.8	4300	Anderson et al. (2002)
96	Smorodinovoye Lake	64.77	141.12	800	Lake sediment	counts	GPD, EPD, Pan	¹⁴ C	6A+5F	27.1-0	360	Anderson et al. (1998b)
97	Izylmet'evskaya	48.82	141.97	4	Fluvial sediment	counts	GPD	¹⁴ C	2A+2E+1F	4.3-2.8	100	Korotky et al. (1997a)
98	Orokess River	48.85	142.00	6	Coastal sediment	counts	GPD	¹⁴ C	4A+2C+3F	9.2-0.8	320	Korotky et al. (1997a)
99	Nizmennyii Cape	49.17	142.02	5	Coastal sediment	counts	GPD	¹⁴ C	2A	5.9-0.3	630	Korotky et al. (1997a)
100	Sergeevka River	49.23	142.08	2	Fluvial sediment	counts	GPD	¹⁴ C	2C+1F	2.3-0	230	Korotky et al. (1997b)
101	Sergeevskii	49.23	142.08	6	Peat sediment	counts	GPD	¹⁴ C	8A+1C	8.4-2.2	110	Korotky et al. (1997b)
102	Khoe, Sakhalin Island	51.34	142.14	15	Palaeosol	digitized	-	¹⁴ C	5A+3E	40.9–0	360	Leipe et al. (2015)
103	Il'inka Terrace	47.97	142.17	3	Peat sediment	counts	GPD	¹⁴ C	2C+1F	2.6-1.1	360	Korotky et al. (1997a)
104	Mereya River	46.62	142.92	4	Peat sediment	counts	GPD	¹⁴ C	2C+2F	42.0-0.8	1530	Anderson et al. (2002)
105	Kuobakh-Baga River	64.98	143.38	500	Fluvial sediment	counts	GPD, EPD, Pan	¹⁴ C	5A	6.5-2.6	350	Anderson et al. (2002)
106	Indigirka lowlands	70.58	145.00	20	Fluvial sediment	counts	GPD	¹⁴ C	3A+1F	59.1-6.0	1440	Lozhkin (1998)
107	Khlebnikova Stream	43.75	145.62	3	Peat sediment	counts	GPD	¹⁴ C	4C	5.4-1.3	290	Korotky et al. (1995)
108	Sernovodskii	43.92	145.67	5	Peat sediment	counts	GPD	¹⁴ C	1C	3.5-0.7	400	Korotky et al. (1996)
109	Lesnaya River	44.00	145.75	6	Peat sediment	counts	GPD	¹⁴ C	5C	7.4–3.9	140	Korotky et al. (1995)
110	Seryebryanka Stream	44.05	146.00	5	Peat sediment	counts	GPD	¹⁴ C	4C+2F	5.9-0.1	420	Korotky et al. (1995)
111	Kosmodem yanskaya-2	44.10	146.05	6	Peat sediment	counts	GPD	14C	IA+IC	7.2-0.4	570	Korotky et al. (1995)
112	Kosmodem yanskaya-3	44.10	146.05	6	Peat sediment	counts	GPD	14C	1A+2C	7.0-5.6	100	Korotky et al. (1995)
113	Rosiliouelli yaliskaya-1	44.10	140.07	800	Peat sediment	counts	CPD EPD Par	14C	1A+1C+1E	24 8 2 5	420	Loghlin et al. (1995)
114	Vacharnii Divar	63.28	147.75	800	Paat sediment	counts	GPD, LFD, Fall	14C	24 + 50	61.03	210	Anderson et al. (2002)
116	Gek Lake	63 52	147.73	969	I ake sediment	counts	GPD EPD Pan	^{14}C	2A+3C 8A±1B	9.6-0	440	Stetsenko (1998)
117	Kirgirlakh Stream 2	62.67	147.93	700	Eluvial sediment	counts	GPD FPD Pan	^{14}C	4A	34 5_0 2	2140	Shilo et al. (1983)
118	Kirgirlakh Stream 4	62.67	147.98	700	Fluvial sediment	counts	GPD, EPD, Pan	¹⁴ C	4A	7.1-1.0	610	Shilo et al. (1983)
119	Elgennva Lake	62.08	149.00	1040	Lake sediment	counts	GPD, EPD, Pan	¹⁴ C	6A	16.0-0	310	Lozhkin et al. (1996)
120	Figurnove Lake	62.10	149.00	1053	Lake sediment	counts	GPD	¹⁴ C	4A	1.3-0	30	Lozhkin et al. (1996)
121	Jack London Lake	62.17	149.50	820	Lake sediment	counts	GPD	¹⁴ C	7F	19.5-0.2	320	Lozhkin et al. (1993)
122	Rock Island Lake	62.17	149.50	870	Lake sediment	counts	GPD	¹⁴ C	2E	6.6–0	470	Lozhkin et al. (1993)
123	Sosednee Lake	62.17	149.50	822	Lake sediment	counts	GPD	¹⁴ C	4E+1F	26.3-0	640	Lozhkin et al. (1993)
124	Oldcamp Lake	62.04	149.59	853	Lake sediment	counts	GPD, EPD, Pan	¹⁴ C	2E	3.7-0	370	Anderson (unpublished data)
125	Glukhoye Lake	59.75	149.92	10	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	5C	9.4-3.4	1000	Lozhkin et al. (1990)
126	Pepelnoye Lake	59.85	150.62	115	Lake sediment	counts	GPD, EPD, Pan	¹⁴ C	2A	4.3-0	180	Lozhkin et al. (2000b)
127	Tanon River	59.67	151.20	40	Fluvial sediment	counts	GPD, EPD, Pan	¹⁴ C	6A+4C+1F	42.4-6.6	1240	Lozhkin and Glushkova (1997a)
128	Maltan River	60.88	151.62	735	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	4A+7C	12.0-9.4	120	Lozhkin and Glushkova (1997b)
129	Chistoye Lake	59.55	151.83	91	Peat sediment	counts	EPD, Pan	¹⁴ C	5C	7.0–0	540	Anderson et al. (1997)
130	Lesnoye Lake	59.58	151.87	95	Lake sediment	counts	GPD	¹⁴ C	8A	15.5-0	400	Anderson et al. (1997)
131	Elikchan 4 Lake	60.75	151.88	810	Lake sediment	counts	GPD, EPD, Pan	¹⁴ C	16U	55.5-0	440	Lozhkin and Anderson (1995)
132	Podkova Lake	59.96	152.10	660	Lake sediment	counts	GPD, EPD, Pan	¹⁴ C	5A	6.0-0	220	Anderson et al. (1997)
133	A lut Lake	60.14	152.27	810	Lake sediment	counts	EPD, Pañ	140	11A+2B	9.7-0	240 420	Anderson et al. (2000a)
134	Aiut Lake	61.02	152.31	480	Lake sediment	counts	GPD EPD P	140	10A+9B	50.4-0 10.2 C	430	Anderson et al. (1998a)
135	Taioye Lake	61.02	154.55	/50	Lake sediment	counts	GPD, EPD, Pan	140	7A 2A + 4E + 11	10.3-0	290	Anderson et al. (2000a)
120	Parnatova Lake	50.04	155 40	08U 2	Lake sediment	counts	From outbor	14C	2A+4E+11	10 1 0 1	2/0	Anderson et al. (2015)
137	Fast Siberian Sea 11	50.04 71.07	156.25	0 8	Peat sediment	counts	GPD Pan	¹⁴ C	2A+2C	95_15	550	
130	Kur neat	69.97	156.25	0 47	Peat sediment	counts	GPD EPD Pan	^{14}C	1A+4C	11 7_7 5	430	Lozhkin and Vazhenina (1987)
140	East Siberian Sea coast	71.07	156 50	9	Peat sediment	counts	GPD, LID, I all	^{14}C	10	13.0-1.7	1600	Anderson et al. (2002)
141	Kurop7	70.67	156.75	7	Peat sediment	counts	GPD, EPD Pan	^{14}C	3C	5.7-0.4	760	Anderson et al. (2002)
142	Sokoch Lake	53.25	157.75	495	Lake sediment	digitized	_	¹⁴ C	8E	9.7-0.3	250	Dirksen et al. (2012)
143	Stadukhinskaya-1	68.67	159.50	12	Fluvial sediment	counts	GPD, EPD, Pan	¹⁴ C	4C	9.5-7.2	210	Lozhkin and Prokhorova (1982)

Table A1. Continued.

ID	Site	Lat.	Long.	Elev.	Archive	Data	Source	Dating	No. of dates &	Time span	Res.	Reference
		(°)	(°)	(m)	type	type		method	material code	(ka BP)	(yr)	
144	Stadukhinskaya-2	68.67	159.50	5	Fluvial sediment	counts	GPD, EPD, Pan	¹⁴ C	2C	1.0-0	180	Lozhkin and Prokhorova (1982)
145	Two-Yurts Lake-3	56.82	160.04	275	Lake sediment	percent	Pan	¹⁴ C	5A	6.0-2.8	140	Hoff et al. (2015)
146	Two-Yurts Lake-2	56.82	160.07	275	Lake sediment	percent	Pan	¹⁴ C	5A	2.5 - 0.1	130	Hoff et al. (2015)
147	Two-Yurts Lake-5	56.82	160.07	275	Lake sediment	percent	Pan	¹⁴ C	5A	4.4-2.5	120	Hoff et al. (2015)
148	Cherny Yar	56.07	161.00	148	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	1C+1E	13.0-0.5	830	Osipova (unpublished data)
149	Penzhinskaya Gulf	62.42	165.42	32	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	2C	8.9-3.4	500	Ivanov et al. (1984)
150	Enmynveem River1	68.17	165.93	400	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	2C+2F	36.4-9.3	2470	Lozhkin et al. (1988)
151	Enmynveem River2	68.25	166.00	500	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	4C	10.7-4.0	420	Anderson et al. (2002)
152	Ledovyi Obryu	64.10	171.18	44	Lake sediment	counts	GPD, EPD, Pan	¹⁴ C	3A+3C+1F	19.9–9.7	1140	Lozhkin et al. (2000c)
153	Enmyvaam River	67.42	172.08	490	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	1A+4C	10.6-4.3	630	Lozhkin and Vazhenina (1987)
154	El'gygytgyn Lake	67.50	172.10	(170)	Lake sediment	percent	Pan	polarity	-	20.2-1.5	650	Melles et al. (2012)
155	El'gygytgyn Lake P1	67.37	172.22	561	Palaeosol	counts	From author	¹⁴ C	11A	12.9-3.1	580	Andreev et al. (2012)
156	El'gygytgyn Lake P2	67.55	172.13	542	Palaeosol	counts	From author	¹⁴ C	9A+1E	16.6-0	470	Andreev et al. (2012)
157	Melkoye Lake	64.86	175.23	36	Lake sediment	counts	From author	¹⁴ C	21E	39.1-0	1260	Lozhkin and Anderson (2013)
158	Sunset Lake	64.84	175.30	36	Lake sediment	counts	From author	¹⁴ C	7A	14.0-0	260	Lozhkin and Anderson (2013)
159	Malyi Krechet Lake	64.80	175.53	32	Lake sediment	counts	From author	¹⁴ C	12A	9.6–0	400	Lozhkin and Anderson (2013)
160	Patricia Lake	63.33	176.50	121	Lake sediment	counts	From author	¹⁴ C	3A+7E	19.1-0	290	Anderson and Lozhkin (2015)
161	Gytgykai Lake	63.42	176.57	102	Lake sediment	counts	GPD, EPD, Pan	¹⁴ C	1A+8E	32.3-0	470	Lozhkin et al. (1998)
162	Amguema River 1	67.75	178.70	175	Fluvial sediment	counts	GPD	¹⁴ C	2C	23.8-1.6	5550	Lozhkin et al. (1995)
163	Amguema River 2	67.67	178.60	87	Fluvial sediment	counts	GPD	¹⁴ C	2A	3.2-0.1	390	Lozhkin et al. (1995)
164	Blossom Cape	70.68	178.95	6	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	1C	13.8-0.2	3400	Oganesyan et al. (1993)
165	Wrangel Island_JLL	70.83	-179.8	7	Lake sediment	counts	GPD	¹⁴ C	5A+1E	16.1-0.3	790	Lozhkin et al. (2001)
166	Wrangel Island_wr12	71.17	-179.8	200	Peat sediment	counts	GPD	¹⁴ C	17A+3C	13.7-10.2	110	Lozhkin et al. (2001)
167	Neizvestnaya	71.55	-179.4	3	Peat sediment	counts	EPD, Pan	¹⁴ C	1C	5.2-1.2	1000	Oganesyan et al. (1993)
168	Kresta Gulf	66.00	-179.0	5	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	1A+1C	9.3-3.4	580	Ivanov (1986)
169	Konergino	65.90	-178.9	10	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	1C	9.8-0	900	Ivanov et al. (1984)
170	Dlinnoye Lake	67.75	-178.8	280	Lake sediment	counts	GPD	¹⁴ C	3A	1.3-0	130	Anderson et al. (2002)
171	Dikikh Olyenyeii Lake	67.75	-178.8	300	Lake sediment	counts	EPD, Pan	¹⁴ C	1A+4C	50.3-0	1050	Anderson et al. (2002)
172	Arakamchechen Island	64.75	-172.1	7	Peat sediment	counts	GPD, EPD, Pan	¹⁴ C	1C	11.5-0	1050	Ivanov (1986)
173	Lorino	65.50	-171.7	12	Peat sediment	counts	GPD	¹⁴ C	3C	17.9–5.1	850	Ivanov (1986)

* Indicates the inclination of age-depth model with Lake Biwa. Elev. indicates elevation. Res. (year) indicates the temporal resolution. GPD: Global Pollen Database; EPD: European Pollen Database; Pan: PANGAEA. Material codes for radiocarbon dating: A = terrestrial plant macrofossil; B = non-terrestrial plant macrofossil; C = peat-gyttja bulk; D = pollen; E = total organic matter from silt; F = animal remains and shells; G = charcoal; H = CaCO₃; U = unknown.

Appendix B

Standardized pollen name	Original pollen name
Abies	Abies, Abies sibirica
Acer	Acer
Alnus (shrub)	Alnaster, Alnaster fruticosa, Alnus cf. fruticosa, Alnus viridis, Alnus viridis ssp. fruticosa, Alnus viridis
	type, Duschekia fruticosa
Alnus (tree)	Alnus cf. hirsuta, Alnus glutinosa, Alnus hirsuta, Alnus incana
Alnus (undiff.)	Alnus, Alnus undiff.
Apiaceae	Apiaceae, Bupleurum, Heracleum, Umbelliferae, Umbelliferae undiff.
Araliaceae	Aralia, Araliaceae
Artemisia	Artemisia, Artemisia tilesii, Artemisia undiff.
Asteraceae (non-Artemisia)	Achillea, Anthemis, Aster, Asteraceae, Asteraceae cichorioideae, Asteraceae liguliflorae, Asteraceae subfam. Asteroideae, Asteraceae subfam. cichorioideae, Asteraceae tubuliflorae, <i>Centaurea cyanus</i> , <i>Cirsium</i> , Compositae, Compositae subfam. Asteroideae, Compositae subfam. Asteroideae undiff., Compositae subfam. Cichorioideae, <i>Lactuca</i> type, <i>Matricaria</i> , <i>Saussurea</i> , <i>Senecio</i> , <i>Serratula</i> , <i>Taraxacum</i>
Betula (shrub)	Betula (shrub), Betula cf. B. fruticosa, Betula cf. B. nana, Betula cf.nana, Betula divaricata, Betula fruticosa, Betula nana, Betula nana ssp. exilis, Betula nana ssp. nana, Betula ovalifolia, Betula sect. Fruticosae Betula sect. Nanae Betula sect. Nanae/Fruticosae
Betula (tree)	Betula alba type, Betula cf. B. pendula, Betula cf. alba, Betula costata, Betula dahurica, Betula ermanii, Betula pendula, Betula platyphylla, Betula pubescens, Betula schmidtii, Betula sect. Albae, Betula sect. Betula, Betula sect. Costatae
Betula (undiff.)	Betula, Betula undiff., Betulaceae undiff.
Boraginaceae	Boraginaceae, Lithospermum type
Brassicaceae	Brassicaceae, Brassicaceae undiff., Cardamine, Cruciferae, Crucififerae, Draba
Campanulaceae	Campanulaceae
Cannabis	Cannabaceae, Cannabis
Caprifoliaceae	Caprifoliaceae, Caprifoliaceae undiff., Diervilla, Knautia, Linnaea borealis, Lonicera, Sambucus, Viburnum
Carpinus	Carpinus, Carpinus cordata, Carpinus betulus
Carya	Carya
Caryophyllaceae	Caryophyllaceae, Caryophyllaceae Sf. Silenoideae-type, Caryophyllaceae undiff., <i>Cerastium, Gypsophila repens</i> type, <i>Illecebrum verticillatum, Lychnis</i> type, <i>Minuartia, Silene, Stellaria holostea</i>
Castanea	Castanea
Cedrus	Cedrus
Celastraceae	Celastraceae, Euonymus
Celtis	Celtis
Cerealia+large Poaceae	Cerealia, Hordeum, Triticum type
Chenopodiaceae	Chenopodiaceae, Chenopodiaceae/Amaranthaceae
Convolvulaceae	Convolvulaceae
Cornus	Cornus, Cornus suecica
Corylus	Corylus
Crassulaceae	Crassulaceae, Mentanthes trifoliata, Sedum
Cupressaceae (other)	Cupressaceae
Cyperaceae	Cyperaceae
Dacrydium	Dacrydium
Dipsacaceae	Dipsacaceae, Succisa
Droseraceae	Drosera, Droseraceae
Elaeagnus	Elaeagnus
Ephedra	Ephedra, Ephedra distachya, Ephedra distachya+fragilis, Ephedra fragilis, Ephedra monosperma
Ericaceae	Calluna, Cassiope, Empetrum, Ericaceae, Ericaceae undiff., Ericales, Ericales undiff., Ledum, Rhodo- dendron, Vaccinium
Euphorbiaceae	Euphorbia, Euphorbiaceae

 Table B1. Pollen taxa used in the dataset and their corresponding original Latin names.

Table B1. Continued.

Standardized pollen name	Original pollen name
Fabaceae (herb)	Trifolium
Fabaceae (shrub)	Astragalus
Fabaceae (undiff.)	Fabaceae, Fabaceae undiff., Leguminosae, Papilionaceae
Fagus	Fagus
Gentianaceae	Gentiana, Gentianaceae, Gentianaceae undiff.
Geraniaceae	Geraniaceae, Geranium
Hippophäe	Hippophäe rhamnoides
Humulus	Humulus
Ilex	Ilex
Impatiens	Impatiens noli-tangere
Iridaceae	Iridaceae
Juglans	Juglans
Juncaceae	Juncaceae
Juniperus	Juniperus
Koenigia	Koenigia islandica
Lamiaceae	Labiatae, Lamiaceae, Lamiaceae undiff., Mentha type
Larix	Larix, Larix dahurica, Larix gmelinii, Larix sibirca
Liliaceae	Allium, Liliaceae, Lloydia, Polygonatum, Tofieldia, Veratrum, Zigadenus
Linaceae	Linaceae
Lythraceae	Lythraceae, Lythrum
Malvaceae	Malvaceae
Myrica	Myrica
Oenotheraceae	Chamaenerium, Circaea, Circaea alpina, Epilobium, Epilobium angustifolium, Epilobium latifolium,
	Epilobium undiff., Onagraceae, Onagraceae undiff.
Oleaceae (temperate)	Fraxinus, Fraxinus mandschurica
Oleaceae (undiff.)	Oleaceae, Oleaceae undiff., Syringa
Orchidaceae	Orchidaceae
Oxalidaceae	Oxalidaceae
Papaveraceae	Corydalis, Papaver, Papaveraceae
Phellodendron	Phellodendron
Picea	Picea, Picea abies ssp. obovata, Picea obovata, Picea sect. Eupicea, Picea sect. Omorica, Picea undiff., Picea/Pinus undiff.
Pinguicula	Pinguicula
Pinus (Diploxylon) <i>Pinus</i> (Haploxylon)	Pinus (Diploxylon), Pinus subgen. Pinus, Pinus subg. Pinus undiff., Pinus sylvestris Pinus (Haploxylon), Pinus cembra, Pinus koraiensis, Pinus pumila, Pinus sibirica, Pinus sibirica type,
	brae undiff.
Pinus (undiff.)	Pinaceae, Pinaceae undiff., Pinus, Pinus undiff.
Plantago	Plantaginaceae, Plantago
Plumbaginaceae	Armeria, Armeria maritima type, Goniolimon, Limonium, Plumbaginaceae
Poaceae (wildgrass)	Gramineae, Poaceae, Stipa
Podocarpus	Podocarpus
Polemoniaceae	Helianthemum, Phlox, Phlox sibirica, Polemoniaceae, Polemoniaceae undiff., Polemonium, Polemo-
	nium acutiflorum, Polemonium boreale
Polygala	Polygala
Polygonaceae (other)	Oxyria, Oxyria digyna, Polygonaceae, Polygonaceae undiff.
Polygonum	Polygonum, Polygonum alaskanum, Polygonum amphibium, Polygonum aviculare, Polygonum bistorta, Polygonum bistortoides type, Polygonum czukavinae, Polygonum ellipticum, Polygonum laxmanii, Poly- gonum sect. Aconogonon, Polygonum sect. Bistorta, Polygonum sect. Persicaria, Polygonum triptero-
	carpum, Polygonum undiff., Polygonum viviparum
Populus	Populus
Portulacaceae	Claytonia, Claytonia acutifolia, Claytonia arctica, Claytonia sarmentosa, Claytonia sibirica, Claytonia undiff., Claytoniella vassilievii, Portulacaceae, Portulacaceae undiff.
Primulaceae	Androsace, Androsaceae, Lysimachia, Primula, Primulaceae, Primulaceae undiff.

Table B1. Continued.

Standardized pollen name	Original pollen name
Pterocarya	Pterocarya
Pyrolaceae	Pyrolaceae
Quercus (deciduous)	Quercus dentata, Quercus mongolica
Quercus (undiff.)	Quercus, Quercus undiff.
Ranunculaceae (other)	Anemone, Anemone nemorosa, Caltha palustris, Delphinium, Hepatica, Pulsatilla, Ranunculaceae, Ra- nunculaceae undiff., Ranunculus, Trollius
Rhamnus	Rhamnus
Ribes	Ribes, Ribes rubrum type
Rosaceae	Comarum palustre, Dryas, Dryas octopetala, Filipendula, Filipendula ulmaria, Potentilla, Rosaceae, Rosaceae subf. Maloideae, Rosaceae undiff., Rubus, Rubus atcticus, Rubus chamaemorus, Sanguisorba, Sanguisorba officinalis, Sieversia type, Sorbus aucuparia, Spiraea
Rubiaceae	Galium, Rubiaceae
Rumex	Rumex, Rumex aquatilis, Rumex undiff., Rumex/Oxyria, Rumex/Oxyria digyna
Salix	Salix
Saxifragaceae (herb)	Parnassia, Parnassia palustris, Saxifraga, Saxifraga cernua, Saxifraga gramulata type, Saxifraga hi- eracifolia, Saxifraga nivalis type, Saxifraga oppositifolia, Saxifraga sp., Saxifraga stellaris type, Sax- ifraga tricuspidata, Saxifraga undiff.
Saxifragaceae (undiff.)	Saxifragaceae, Saxifragaceae undiff.
Scrophulariaceae	Castilleja, Lagotis, Pedicularis, Scrophulariaceae, Scrophulariaceae undiff.
Thalictrum	Thalictrum
Tilia	Tilia
Tsuga	Tsuga, Tsuga canadensis, Tsuga diversifolia, Tsuga undiff.
Ulmus	Ulmus, Ulmus glabra, Ulmus minor, Ulmus sp.
Urtica	Urtica
Urticaceae (non-Urtica)	Urticaceae
Valerianaceae	Patrinia, Valeriana, Valeriana capitata, Valeriana officinalis, Valeriana undiff., Valerianaceae, Valerianaceae undiff.
Violaceae	Violaceae

Author contributions. UH and XC designed the pollen dataset. XC and FT compiled the standardization for the dataset and wrote the draft. Other authors provided pollen data and all authors discussed the results and contributed to the final paper.

Competing interests. The authors declare that they have no conflict of interest.

Special issue statement. This article is part of the special issue "Paleoclimate data synthesis and analysis of associated uncertainty (BG/CP/ESSD inter-journal SI)". It is not associated with a conference.

Acknowledgements. The authors would like to express their gratitude to all the palynologists who, either directly or indirectly, contributed their pollen records to the dataset or accessible databases.

Financial support. This data collection and research were supported by the German Research Foundation (DFG), Palmod project (German Ministry of Science and Education), the GlacialLegacy project (consolidator grant of the European Research Council of UH, grant agreement no. 772852), and the Russian Fund for Basic Research (for AVL, research project no. 19-05-00477).

Review statement. This paper was edited by Michal Kucera and reviewed by Patrick Bartlein and one anonymous referee.

References

- Anderson, P., Minyuk, P., Lozhkin, A., Cherepanova, M., Borkhodoev, V., and Finney, B.: A multiproxy record of Holocene environmental changes from the northern Kuril Islands (Russian Far East), J. Paleolimnol., 54, 379–393, https://dor.org/10.1007/s10933-015-9858-y, 2015.
- Anderson, P. M. and Lozhkin, A. V.: LateQuaternary Vegetation and Climate of Siberia and the Russian Far East (Palynological and Radiocarbon Database), North East Science Center, Far East Branch, Russian Academy of Sciences, Magadan, Russia, 2002.
- Anderson, P. M. and Lozhkin, A. V.: Late Quaternary vegetation of Chukotka (Northeast Russia), implications for Glacial and Holocene environments of Beringia, Quaternary Sci. Rev., 107, 112–128, https://doi.org/10.1016/j.quascirev.2014.10.016, 2015.
- Anderson, P. M., Lozhkin, A. V., Belaya, B. V., and Stetsenko, T. V.: New data about the stratigraphy of late Quaternary deposits of northern Priokhot'ye in: Environmental changes in Beringia during the Quaternary, edited by: Simakov, K. V., North East Interdisciplinary Research Institute, Far East Branch, Russian Academy of Sciences, Magadan, 69–87, 1998a (in Russian).
- Anderson, P. M., Lozhkin, A. V. and Belaya, B. V.: Younger Dryas in western Beringia (northeastern Siberia), in: Environmental changes in Beringia during the Quaternary, North East Interdisciplinary Research Institute, edited by: Simakov, K. V., Far East

Branch, Russian Academy of Sciences, Magadan, 28–44, 1998b (in Russian).

- Anderson, P. M., Lozhkin, A. V., Solomatkina, T. B., and Brown, T. A.: Paleoclimatic implications of glacial and postglacial refugia for *Pinus pumila* in western Beringia, Quaternary Res., 73, 269– 276, https://doi.org/10.1016/j.yqres.2009.008, 2010.
- Andreev, A. A. and Klimanov, V. A.: Vegetation and climate history of central Yakutia during Holocene and late Pleistocene, in: Formirovanie rel'efa, korrelyatnykh otlozhenii i rossypei severovostoka SSSR (Formation of deposits and placers on north-east of the USSR), Magadan, Russia, 26–51, 1989.
- Andreev, A. A. and Klimanov, V. A.: Vegetation History and climate changes in the interfluve of the Rivers Ungra and Yakokit (the southern Yakutia) in Holocene, Botanichesky Zhurnal (Botanical Journal), 76, 334–351, 1991.
- Andreev, A. A. and Klimanov, V. A.: Quantitative Holocene climatic reconstruction from Arctic Russia, J. Paleolimnol., 24, 81– 91, https://doi.org/10.1023/a:1008121917521, 2000.
- Andreev, A. A., Klimanov, V. A., Sulerzhitskii, L. D., and Khotinskii, N. A.: Chronology of environmental changes in central Yakutia during the Holocene, In: Paleoklimaty golotsena i pozdnelednikov'ya (Paleoclimates of Holocene and late glacial), Nauka, Moscow, Russia, 115–121, 1989.
- Andreev, A. A., Manley, W. F., Ingólfsson, Ó., and Forman, S. L.: Environmental changes on Yugorski Peninsula, Kara Sea, Russia, during the last 12,800 radiocarbon years, Global Planet. Change, 31, 255–264, https://doi.org/10.1016/S0921-8181(01)00123-0, 2001.
- Andreev, A. A., Schirrmeister, L., Siegert, C., Bobrov, A. A., Demske, D., Seiffert, M., and Hubberten, H.-W.: Paleoenvironmental changes in northeastern Siberia during the Late Quaternary – evidence from pollen records of the Bykovsky Peninsula, Polarforschung, 70, 13–25, 2002.
- Andreev, A. A., Tarasov, P. E., Siegert, C., Ebel, T., Klimanov, V. A., Melles, M., Bobrov, A. A, Dereviagin, A. Y., Lubinski, D. J., and Hubberten, H.-W.: Late Pleistocene and Holocene vegetation and climate on the northern Taymyr Peninsula, Arctic Russia, Boreas, 32, 484–505, https://doi.org/10.1111/j.1502-3885.2003.tb01230.x, 2003.
- Andreev, A. A., Tarasov, P. E., Schwamborn, G., Ilyashuk, B. P., Ilyashuk, E. A., Bobrov, A. A., Klimanov, V. A., Rachold, V., and Hubberten, H.-W.: Holocene paleoenvironmental records from Nikolay Lake, Lena River Delta, Arctic Russia, Palaeogeogr. Palaeoecol., 209, 197–217, https://doi.org/10.1016/j.palaeo.2004.02.010, 2004.
- Andreev, A. A., Tarasov, P. E., Ilyashuk, B. P., Ilyashuk, E. A., Cremer, H., Hermichen, W. D., Wischer, F., and Hubberten, H.-W.: Holocene environmental history recorded in Lake Lyadhej To sediments, Polar Urals, Russia, Palaeogeogr. Palaeocl., 223, 181–203, https://doi.org/10.1016/j.palaeo.2005.04.004, 2005.
- Andreev, A. A., Morozova, E., Fedorov, G., Schirrmeister, L., Bobrov, A. A., Kienast, F., and Schwamborn, G.: Vegetation history of central Chukotka deduced from permafrost paleoenvironmental records of the El'gygytgyn Impact Crater, Clim. Past, 8, 1287–1300, https://doi.org/10.5194/cp-8-1287-2012, 2012.
- Arkhipov, S. A. and Votakh, M. R.: Palynological characteristics and the absolute age of peat near the mouth of the Tom' River, in: The palynology of Siberia, edited by: Saks, V. N., Nauka, Moscow, 112–118, 1980 (in Russian).

X. Cao et al.: A standardized late Quaternary pollen dataset for Siberia

- Bakhareva, V. A.: Palynological characteristics of sediments of the second floodplain terrace of the lower Irtysh River, in: Glaciation and paleoclimates of Siberia during the Pleistocene, edited by: Arkhipov, S. A., Volkova, V. S., and Skabichevskaya, N. A., Institute of Geology and Geophysics, Siberian Branch, USSR Academy of Sciences, Novosibirsk, 79–82, 1983 (in Russian).
- Bazarova, V. B., Klimin, M. A., Mokhova, L. M., and Orlova, L. A.: New pollen records of Late Pleistocene and Holocene changes of environment and climate in the Lower Amur River basin, NE Eurasia, Quatern. Int., 179, 9–19, https://doi.org/10.1016/j.quaint.2007.08.015, 2008.
- Bezrukova, E. V., Belov, A. V., Abzaeva, A. A., Letunova, P. P., Orlova, L. A., Sokolova, L. P., Kulagina, N. V., and Fisher, E. E.: First High-Resolution Dated Records of Vegetation and Climate Changes on the Lake Baikal Northern Shore in the Middle–Late Holocene, Dokl. Earth Sci., 411, 1331–1335, https://doi.org/10.1134/S1028334X0608037X, 2006.
- Bezrukova, E. V., Belov, A. V., and Orlova, L. A.: Holocene vegetation and climate variability in North Pre-Baikal region, East Siberia, Russia, Quatern. Int., 237, 74–82, https://doi.org/10.1016/j.quaint.2011.01.012, 2011.
- Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P. M., Andreev, A. A., Bartlein, P. J., Christensen, T. R., Cramer, W., Kaplan, J. O., Lozhkin, A. V., Matveyeva, N. V., Murray, D. F., McGuire, A. D., Razzhivin, V. Y., Ritchie, J. C., Smith, B., Walker, D. A., Gajewski, K., Wolf, V., Holmqvist, B. H., Igarashi, Y., Kremenetskii, K., Paus, A., Pisaric, M. F. J., and Volkova, V. S.: Climate change and arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present, J. Geophys. Res., 108, 8170, https://doi.org/10.1029/2002JD002558, 2003.
- Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P. M., Andreev, A. A., Bartlein, P. J., Christensen, T. R., Cramer, W., Kaplan, J. O., Lozhkin, A. V., Matveyeva, N. V., Murray, D. F., McGuire, A. D., Razzhivin, V. Y., Ritchie, J. C., Smith, B., Walker, D. A., Gajewski, K., Wolf, V., Holmqvist, B. H., Igarashi, Y., Kremenetskii, K., Paus, A., Pisaric, M. F. J., and Volkova, V. S.: Climate change and arctic ecosystems: 1. Vegetation changes north of 55° N between the last glacial maximum, mid-Holocene, and present, J. Geophys. Res., 108, 8170, https://doi.org/10.1029/2002JD002558, 2008.
- Binney, H., Edwards, M. E., Macias-Fauria, M., Lozhkin, A., Anderson, P., Kaplan, J. O., Andreev, A., Bezrukova, E., Blyakharchuk, T., Jankovsha, V., Khazina, I., Krivonogov, S., Kremenetski, K., Nield, J., Novenko, E., Ryabogina, N., Solovieva, N., Willis, K. J., and Zernitskaya, V.: Vegetation of Eurasia from the last glacial maximum to present: key biogeographic patterns, Quaternary Sci. Rev., 157, 80–97, https://doi.org/10.1016/j.quascirev.2016.11.022, 2017.
- Binney, H. A., Willis, K. J., Edwards, M. E., Bhagwat, S. A., Anderson, P. M., Andreev, A. A., Blaauw, M., Damblon, F., Haesaerts, P., Kienast, F., Kremenetski, K. V., Krivonogov, S. K., Lozhkin, A. V., MacDonald, G. M., Novenko, E. Y., Oksanen, P., Sapelko, T. V., Väliranta, M., and Vazhenina, L.: The distribution of late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database, Quaternary Sci. Rev., 28, 2445–2464, https://doi.org/10.1016/j.quascirev.2009.04.016, 2009.

- Biskaborn, B. K., Subetto, D. A., Savelieva, L. A., Vakhrameeva, P. S., Hansche, A., Herzschuh, U., Klemm, J., Heinecke, L., Pestryakova, L. A., Meyer, H., Kuhn, G., and Diekmann, B.: Late Quaternary vegetation and lake system dynamics in north-eastern Siberia: implications for seasonal climate variability, Quaternary Sci. Rev., 147, 406–421, https://doi.org/10.1016/j.quascirev.2015.08.014, 2016.
- Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457–474, 2011.
- Blyakharchuk, T. A.: Istorija rastitel'nosti yugo-vostoka Zapadnoi Sibiri v golotsene po dannym botanicheskogo I sporovopyl'tsevogo analiza torfa (The Holocene history of vegetation of south-eastern West Siberia by botanical and pollen analyses of peat deposits), PhD thesis, Tomsk State University, Tomsk, Russia, 248 pp., 1989.
- Blyakharchuk, T. A.: Four new pollen sections tracing the Holocene vegetational development of the southern part of the West Siberian Lowland, Holocene, 13, 715–731, https://doi.org/10.1191/0959683603hl658rp, 2003.
- Borisova, O. K., Novenko, E. Y., Zelikson, E. M., and Kremenetski, K. V.: Lateglacial and Holocene vegetational and climatic changes in the southern taiga zone of West Siberia according to pollen records from Zhukovskoye peat mire, Quatern. Int., 237, 65–73, https://doi.org/10.1016/j.quaint.2011.01.015, 2011.
- Cao, X., Ni, J., Herzschuh, U., Wang, Y., and Zhao, Y.: A late Quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: set up and evaluation, Rev. Palaeobot. Palyno., 194, 21–37, https://doi.org/10.1016/j.revpalbo.2013.02.003, 2013.
- Cao, X., Herzschuh, U., Ni, J., Zhao, Y., and Böhmer, T.: Spatial and temporal distributions of major tree taxa in eastern continental Asia during the last 22,000 years, Holocene, 25, 79–91, https://doi.org/10.1111/oik.01525, 2015.
- Cao, X., Tian, F., Andreev, A., Anderson, P. M., Lozhkin, A. V., Bezrukova, E. V., Ni, J., Rudaya, N., Stobbe, A., and Herzschuh, U.: A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 ka, PAN-GAEA, https://doi.org/10.1594/PANGAEA.898616, 2019a.
- Cao, X., Tian, F., Li, F., Gaillard, M.-J., Rudaya, N., Xu, Q., and Herzschuh, U.: Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP, Clim. Past, 15, 1503–1536, https://doi.org/10.5194/cp-15-1503-2019, 2019b.
- Demske, D., Heumann, G., Granoszewski, W., Nita, M., Mamakowa, K., Tarasov, P. E., and Oberhansli, H.: Late glacial and Holocene vegetation and regional climate variability evidenced in high-resolution pollen records from Lake Baikal, Global Planet. Change, 46, 255–279, https://doi.org/10.1016/j.gloplacha.2004.09.020, 2005.
- Dirksen, V., Dirksen, O., Christel, V. D. B., and Diekmann, B.: Holocene pollen record from Lake Sokoch, interior Kamchatka (Russia), and its paleobotanical and paleoclimatic interpretation, Global Planet. Change, 58, 46–47, https://doi.org/10.1016/j.gloplacha.2015.07.010, 2012.
- Firsov, L. V., Levina, T. P., and Troitskii, S. L.: The Holocene climatic changes in northern Siberia, in: Climatic changes in arctic areas during the last ten thousand years, Acta Universitatis Onlensis, Section A, edited by: Vasari, V., Hyvarinen, H. and Hicks,

S., Scientitae Rerum Naturalium Number 3, Geologica Number 3, University of Oula, Oula, 341–349, 1972.

- Gaillard, M.-J., Sugita, S., Mazier, F., Trondman, A.-K., Broström, A., Hickler, T., Kaplan, J. O., Kjellström, E., Kokfelt, U., Kuneš, P., Lemmen, C., Miller, P., Olofsson, J., Poska, A., Rundgren, M., Smith, B., Strandberg, G., Fyfe, R., Nielsen, A. B., Alenius, T., Balakauskas, L., Barnekow, L., Birks, H. J. B., Bjune, A., Björkman, L., Giesecke, T., Hjelle, K., Kalnina, L., Kangur, M., van der Knaap, W. O., Koff, T., Lagerås, P., Latałowa, M., Leydet, M., Lechterbeck, J., Lindbladh, M., Odgaard, B., Peglar, S., Segerström, U., von Stedingk, H., and Seppä, H.: Holocene landcover reconstructions for studies on land cover-climate feedbacks, Clim. Past, 6, 483–499, https://doi.org/10.5194/cp-6-483-2010, 2010.
- Gajewski, K.: The global pollen database in biogeographical and palaeoclimatic studies, Prog. Phys. Geog., 32, 379–402, https://doi.org/10.1177/0309133308096029, 2008.
- Hoff, U., Biskaborn, B. K., Dirksen, V. G., Dirksen, O. V., Kuhn, G., Meyer, H., Nazarova, L. B., Roth, A., and Diekmann, B.: Holocene environment of Central Kamchatka, Russia: Implications from a multi-proxy record of Two-Yurts Lake, Global Planet. Change, 134, 101–117, https://doi.org/10.1016/j.gloplacha.2015.07.011, 2015.
- Ivanov, V. F.: Quaternary deposits of the coast of eastern Chukotka, North East Interdisciplinary Research Institute, Far East Branch, USSR Academy of Sciences, Vladivostok, 1986 (in Russian).
- Ivanov, V. F., Lozhkin, A. V., Kal'nichenko, S. S., Kyshtymov, A. I., Narkhinova, V. E., and Terekhova, V. E.: The late Pleistocene and Holocene of Chukchi Peninsula to the north of Kamchatka, in: Geology and useful minerals of northeast Asia, edited by: Goncharov, V. I., Far East Branch, USSR Academy of Sciences, Vladivostok, 33–42, 1984 (in Russian).
- Jankovská, V., Andreev, A. A., and Panova, N. K.: Holocene environmental history on the eastern slope of the Polar Ural Mountains, Russia, Boreas, 35, 650–661, 2006.
- Juggins, S.: rioja: Analysis of Quaternary Science Data, version 0.7-3, available at: http://cran.r-project.org/web/packages/rioja/ index.html (last access: October 2016), 2012.
- Kats, S. V.: History of vegetation of western Siberia during the Holocene, Bulletin of commission for study the Quaternary, 13, 118–123, Nauka, Moscow, 1953 (in Russian).
- Khomutova, V. and Pushenko, M.: Evolution of lake ecosystem of Southern Ural (Russia) from palynological data, Abstract of 14 Symposium "Palynologie & changements globaux", Paris, 1995.
- Klemm, J., Herzschuh, U., and Pestryakova, L. A.: Vegetation, climate and lake changes over the last 7,000 years at the boreal treeline in north-central Siberia, Quaternary Sci. Rev., 147, 422–434, https://doi.org/10.1016/j.quascirev.2015.08.015, 2016.
- Korotky, A. M.: Paleographic conditions of the formation of Quaternary peats (south of Far East), in: Modern sedimentation and morpholithogenesis of the Far East, edited by: Pletnev, S. P. and Pushkar, V. S., Far Eastern Science Center, USSR Academy of Sciences, Vladivostok, 58–71, 1982 (in Russian).
- Korotky, A. M. and Karaulova, L. P.: New data about the stratigraphy of Quaternary deposits of Primor'ye, in: Questions of geomorphology and Quaternary geology of the southern Far East, edited by: Korotky, A. M. and Kulakov, A. P., Far Eastern Branch, USSR Academy of Sciences, Vladivostok, 79–110, 1975 (in Russian).

- Korotky, A. M. and Kovalyukh, N. N.: Rhythms of perrenial permafrost: a reflection of climate changes during the late Pleistocene and Holocene, in: Paleogeographic investigations in the Far East, edited by: Korotky, A. M. and Pushkar, V. S., Far Eastern Science Center of the USSR Academy of Sciences, Vladivostok, 20–36, 1987 (in Russian).
- Korotky, A. M., Karaulova, L. P., and Troitskaya, T. S.: The Quaternary deposits of Primor'ye, Nauka, Novosibirsk, 1980 (in Russian).
- Korotky, A. M., Pletnev, S. P., Pushkar, V. S., Grebennikova, T. A., Razzhigaeva, N. G., Sakhebgareeva, E. D., and Mokhova, L. M.: Evolution environment of south Far East (late Pleistocene and Holocene), Nauka, Moscow, 1988 (in Russian).
- Korotky, A. M., Mokhova, L. M., and Pushkar, V. S.: The climate changes of the Holocene and landscape evolution of bald mountains of central Yam-Alin', in: Paleogeographic investigations in the Far East, edited by: Korotky, A. M. and Pushkar, V. S., Far Eastern Science Center of the USSR Academy of Sciences, Vladivostok, 5–22, 1985 (in Russian).
- Korotky, A. M., Volkov, V. G., Bazarova, V. B., and Kovalyukh, N. N.: The catalog of radiocarbon dates of Quaternary deposits of the Far East, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 1993 (in Russian).
- Korotky, A. M., Razzhigaeva, N. G., Grebennikova, T. A., Ganzey,
 L. A., Mokhova, L. M., Bazarova, V. B., and Sulerzhitsky, L.
 D.: Holocene marine terraces of Kunashir Island, Kuril Islands.
 Quaternary Res., 34, 359–375, 1995.
- Korotky, A. M., Razzhigaeva, N. G., Mokhova, L. M., Ganzey, L. A., Grebennikova, T. A., and Bazarova, V. B.: Coastal dunes as an indicator of period of global climatic deterioration (Kunashir Island, Kuriles), Geol. Pac. Ocean, 13, 73–84, 1996.
- Korotky, A. M., Grebennikova, T. A., Razzhigaeva, N. G., Volkov, V. G., Mokhova, L. M., Ganzey, L. A., and Bazarova, V. B.: Marine terraces of western Sakhalin Island, Catena, 30, 61–81, https://doi.org/10.1016/S0341-8162(97)00002-7, 1997a.
- Korotky, A. M., Pushkar, V. S., Grebennikova, T. A., Razzhigaeva, N. G., Karaulova, L. P., Mokhova, L. M., Ganzey, L. A., Cherepanova, M. N., Bazarova, V. B., Volkov, V. G., and Kovalyukh, N. N.: Marine terraces and Quaternary history of the Sakhalin Shelf, Dal'nauka, Vladivostok, 1997b (in Russian).
- Kraus, M., Matthiessen, J., and Stein, R.: A Holocene marine pollen record from the northern Yenisei Estuary (southeastern Kara Sea, Siberia), in: Siberian River Run-off in the Kara Sea: Characterisation, Quantification, Variability, and Environmental Significance, edited by: Stein, R., Fahl, K., Fütterer, D. K., Galimov, E. M., and Stepanets, O. V., Proceedings in Marine Sciences, Elsevier, Amsterdam, 6, 433–456, https://doi.org/10.1016/S1568-2692(03)80048-7, 2003.
- Kremenetski, C. V., Bottger, T., Junge, F. W., and Tarasov, A. G.: Late- and postglacial environment of the Buzuluk area, middle Volga region, Russia, Quaternary Sci. Rev., 18, 1185–1203, https://doi.org/10.1016/S0277-3791(98)00074-2, 1999.
- Kremenetskii, K. V., Tarasov, P. E., and Cherkinski, A. E.: Istoriva ostrovnykh borov Kazakhstana v golotsene (Holocene history of the Kazakhstan "island" pine forests), Botanicheski Zhurial (Botanical Journal), 79, 13–29, 1994.
- Leipe, C., Nakagawa, T., Gotanda, K., Müller, S., and Tarasov, P. E.: Late Quaternary vegetation and climate dynamics at the northern limit of the East Asian summer monsoon and its re-

X. Cao et al.: A standardized late Quaternary pollen dataset for Siberia

gional and global-scale controls, Quaternary Sci. Rev., 116, 57–71, https://doi.org/10.1016/j.quascirev.2015.03.012, 2015.

- Lisitsyna, O. V., Giesecke, T., and Hicks, S.: Exploring pollen percentage threshold values as an indication for the regional presence of major European trees, Rev. Palaeobot. Palyno., 166, 311– 324, https://doi.org/10.1016/j.revpalbo.2011.06.004, 2011.
- López-García, P., López-Sáez, J. A., Chernykh, E. N., and Tarasov, P. E.: Late Holocene vegetation history and human activity shown by pollen analysis of Novienki peat bog (Kargaly region, Orenburg Oblast, Russia), Veg. Hist. Archaeobot., 12, 75–82, https://doi.org/10.1007/s00334-003-0009-4, 2003.
- Lozhkin, A. V.: Questions concerning radiocarbon data and palynological characteristics of the mammoth burials, Berelyekh River, lower Indigirka drainage, in: Environmental changes in Beringia during the Quaternary, North East Interdisciplinary Research Institute, edited by: Simakov, K. V., Far East Branch, Russian Academy of Sciences, Magadan, 45–62, 1998 (in Russian).
- Lozhkin, Α. and Anderson, P.: Late Quaternary lake records from the Anadyr Lowland, Central Chukotka (Russia), Quaternary Sci. Rev., 68, 1-16. https://doi.org/10.1016/j.quascirev.2013.02.007, 2013.
- Lozhkin, A. V. and Glushkova, O. Y.: New palynological assemblages and radiocarbon dates from the late Quaternary deposits of northern Priokhot'ye in: Late Pleistocene and Holocene of Beringia, edited by: Gagiev, M. K., North East Interdisciplinary Research Institute, Far East Branch, Russian Academy of Sciences, Magadan, 70–79, 1997a (in Russian).
- Lozhkin, A. V. and Glushkova, O. Y.: Boreal peats in the upper Kolyma basin in: Late Pleistocene and Holocene of Beringia, edited by: Gagiev, M. K., North East Interdisciplinary Research Institute, Far East Branch, Russian Academy of Sciences, Magadan, 55–62, 1997b (in Russian).
- Lozhkin, A. V. and Postolenko, G. A.: New data about the environmental evolution of the mountain region of the Kolyma region during the late Anthropogene, Dokl. Akad. Nauk, 307, 1184– 1188, 1989.
- Lozhkin, A. V. and Prokhorova, T. P.: New data about the history of alas deposits from the Kolyma lowland (radiocarbon and palynological material), in: Stratigraphy and paleogeography of the late Cenozoic of eastern USSR, edited by: Biske, S. F., North East Interdisciplinary Research Institute, Far East Branch, USSR Academy of Sciences, Magadan, 96–102, 1982 (in Russian).
- Lozhkin, A. V. and Vazhenina, L. N.: The characteristics of vegetational development from the Kolyma lowland in the early Holocene, in: Quaternary period of northeast Asia, edited by: Pokhialainen, V. P., North East Interdisciplinary Research Institute, Far East Branch, USSR Academy of Sciences, Magadan, 135–144, 1987 (in Russian).
- Lozhkin, A. V., Prokhorova, T. P., and Parii, V. P.: Radiocarbon dates and palynological characteristics of sediments of the alas complex of the Kolyma Lowland, Dokl. Akad. Nauk, 224, 1395– 1398, 1975 (in Russian).
- Lozhkin, A. V., Skorodumov, I. N., Meshkov, A. P., and Rovako, L. G.: Changed paleogeographic environments in the region of Glukhoye Lake (north coast of the Okhotsk Sea) during the Pleistocene-Holocene transition, Dokl. Akad. Nauk, 316, 184– 188, 1990 (in Russian).
- Lozhkin, A. V., Anderson, P. M., Eisner, W. R., Ravako, L. G., Hopkins, D. M., Brubaker, L. B., Colinvaux, P. A.,

and Miller, M. C.: Late Quaternary lacustrine pollen records from southwestern Beringia, Quaternary Res., 39, 314–324, https://doi.org/10.1006/qres.1993.1038, 1993.

- Lozhkin, A. V., Anderson, P. M., Belaya, B. V., Glushkova, O. Y., and Stetsenko, T. V.: Vegetation change in northeast Siberia at the Pleistocene-Holocene boundary and during the Holocene, in: The Quaternary period of Beringia, edited by: Simakov, K. V., North East Interdisciplinary Research Institute, Far East Branch, Russian Academy of Sciences, Magadan, 53–75, 2000a (in Russian).
- Lozhkin, A. V., Anderson, P. M., Belaya, B. V., Glushkova, O. Y., Kotova, L. N., and Trumpe, M. A.: Palynological characteristics and radiocarbon dates from late Holocene lacustrine sediments of northern Priokhot'ye, in: The Quaternary period of Beringia, edited by: Simakov, K. V., North East Interdisciplinary Research Institute, Far East Branch, Russian Academy of Sciences, Magadan, 76–87, 2000b (in Russian).
- Lozhkin, A. V., Kotov, A. N., and Ryabchun, V. K.: Palynological and radiocarbon data of the Ledovyi Obryv exposure (the south east of Chukotka), in: The Quaternary Period of Beringia, North East Interdisciplinary Research Institute, edited by: Simakov, K. V., Far East Branch, Russian Academy of Sciences, Magadan, 118–131, 2000c (in Russian).
- Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich, V., DeConto, R. M., Anderson, P. A., Andreev, A. A., Coletti, A., Cook, T. L., Haltia-Hovi, E., Kukkonen, M., Lozhkin, A. V., Rosén, P., Tarasov, P. E., Vogel, H., and Wagner, B.: 2.8 Million years of Arctic climate change from Lake El'gygytgyn, NE Russia, Science, 337, 315–320, https://doi.org/10.1126/science.1222135, 2012.
- Neustadt, M. I. and Zelikson, E. M.: Neue Angaben zur stratigraphie der Torfmoore Westsibiriens, Acta Agralia Fennica, 123, 27–32, 1985.
- Magri, D.: Patterns of post-glacial spread and the extent of glacial refugia of European beech (*Fagus syvatica*), J. Biogeogr., 35, 450–463, https://doi.org/10.1111/j.1365-2699.2007.01803.x, 2008.
- Marsicek, J., Shuman, B. N., Bartlein, P., Shafer, S. L., and Brewer, S.: Reconciling divergent trends and millennial variations in Holocene temperatures, Nature, 554, 92–96, https://doi.org/10.1038/nature25464, 2018.
- Mauri, A., Davis, B. A. S., Collins, P. M., and Kaplan, J. O.: The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multiproxy evaluation, Quaternary Sci. Rev., 112, 109–127, https://doi.org/10.1016/j.quascirev.2015.01.013, 2015.
- Mokhova, L., Tarasov, P., Bazarova, V., and Klimin, M.: Quantitative biome reconstruction using modern and late Quaternary pollen data from the southern part of the Russian Far East, Quaternary Sci. Rev., 28, 2913–2926, https://doi.org/10.1016/j.quascirev.2009.07.018, 2009.
- Müller, S., Tarasov, P. E., Andreev, A. A., and Diekmann, B.: Late Glacial to Holocene environments in the present-day coldest region of the Northern Hemisphere inferred from a pollen record of Lake Billyakh, Verkhoyansk Mts, NE Siberia, Clim. Past, 5, 73–84, https://doi.org/10.5194/cp-5-73-2009, 2009.
- Müller, S., Tarasov, P. E., Andreev, A. A., Tütken, T., Gartz, S., and Diekmann, B.: Late Quaternary vegetation and environments in the Verkhoyansk Mountains region

(NE Asia) reconstructed from a 50-kyr fossil pollen record from Lake Billyakh, Quaternary Sci. Rev., 29, 2071–2086, https://doi.org/10.1016/j.quascirev.2010.04.024, 2010.

- Naidina, O. D. and Bauch, H. A.: A Holocene pollen record from the Laptev Sea shelf, northern Yakutia, Global Planet. Change, 31, 141–153, https://doi.org/10.1016/S0921-8181(01)00117-5, 2001.
- Neishtadt, M. I. (Ed.): Holocene processes in western Siberia and associated problems, in: Studying and mastering the environment, USSR Academy of Sciences, Institute of Geography, Moscow, 90–99, 1976a (in Russian).
- Neishtadt, M. I.: About environmental changes in middle taiga of western Siberia during the Holocene, in: Palynology of the USSR, edited by: Zaklinskaya, E. D. and Neishtadt, M. I., Nauka, Moscow, 156–161, 1976b (in Russian).
- Ni, J., Cao, X., Jeltsch, F., and Herzschuh, U.: Biome distribution over the last 22,000 yr in China, Palaeogeogr. Palaeocl., 409, 33– 47, https://doi.org/10.1016/j.palaeo.2014.04.023, 2014.
- Niemeyer, B., Klemm, J., Pestryakova, J. A., and Herzschuh, U.: Relative pollen productivity estimates for common taxa of the northern Siberian Arctic, Rev. Palaeobot. Palyno., 221, 71–82, https://doi.org/10.1016/j.revpalbo.2015.06.008, 2015.
- Oganesyan, A. S., Prokhorova, T. P., Trumpe, M. A., and Susekova, N. G.: Paleosols and peats of Wrangel Island, Pochvovedenie, 2, 15–28, 1993 (in Russian).
- Panova, N.: Novye dannye po paleoekologii i istorii rastitelnosti yuzhnogo Yamala v golotsene (New data for paleoecology and vegetation history of southern Yamal during the Holocene), in: Chetvertichnyi period: metody issledovania, strat, 45–46, 1990.
- Panova, N.: Palinologicheskoe issledovanie Karasieozerskogo torfyanika na srednem Urale (Palynological study of Karasieozerskiy peatland on Middle Ural), in: Issledovanie lesov Urala. Materialy nauchnykh chteniy posvyaschennykh pamyati B, 28– 31, 1997.
- Panova, N., Makovsky, V. I., and Erokhin, N. G.: Golotsenovaya dinamika rastitelnosti v raione Krasnoufimskoi stepi (Holocene dynamics of vegetation in Krasnoufimskaya forest-steppe area), in: Lesoobrazovatelnyi protses na Urale i v Zaurali, 80–93, 1996.
- Peteet, D. M., Andreev, A. A., Bardeen, W., and Mistretta, F.: Longterm Arctic peatland dynamics, vegetation and climate history of the Pur-Taz region, Western Siberia, Boreas, 27, 115–126, https://doi.org/10.1111/j.1502-3885.1998.tb00872.x, 1998.
- Pisaric, M. F. J., MacDonald, G. M., Velichko, A. A., and Cwynar, L. C.: The Lateglacial and Postglacial vegetation history of the northwestern limits of Beringia, based on pollen, stomate and tree stump evidence, Quaternary Sci. Rev., 20, 235–245, https://doi.org/10.1016/S0277-3791(00)00120-7, 2001.
- Pitkänen, A., Turunen, J., Tahvanainen, T., and Tolonen, K.: Holocene vegetation history from the Salym-Yugan Mire Area, West Siberia, Holocene, 12, 353–362, https://doi.org/10.1191/0959683602hl533rp, 2002.
- Rudaya, N., Nazarova, L., Nourgaliev, D., Palagushkina, O., Papin, D., and Frolova, L.: Mid-late Holocene environmental history of Kulunda, southern West Siberia: vegetation, climate and humans, Quaternary Sci. Rev. 48, 32–42, https://doi.org/10.1016/j.quascirev.2012.06.002, 2012.
- Sánchez Goñi, M. F., Desprat, S., Daniau, A.-L., Bassinot, F. C., Polanco-Martínez, J. M., Harrison, S. P., Allen, J. R. M., Anderson, R. S., Behling, H., Bonnefille, R., Burjachs, F., Carrión, J. S.,

Cheddadi, R., Clark, J. S., Combourieu-Nebout, N., Mustaphi, Colin. J. Courtney, Debusk, G. H., Dupont, L. M., Finch, J. M., Fletcher, W. J., Giardini, M., González, C., Gosling, W. D., Grigg, L. D., Grimm, E. C., Hayashi, R., Helmens, K., Heusser, L. E., Hill, T., Hope, G., Huntley, B., Igarashi, Y., Irino, T., Jacobs, B., Jiménez-Moreno, G., Kawai, S., Kershaw, A. P., Kumon, F., Lawson, I. T., Ledru, M.-P., Lézine, A.-M., Liew, P. M., Magri, D., Marchant, R., Margari, V., Mayle, F. E., McKenzie, G. M., Moss, P., Müller, S., Müller, U. C., Naughton, F., Newnham, R. M., Oba, T., Pérez-Obiol, R., Pini, R., Ravazzi, C., Roucoux, K. H., Rucina, S. M., Scott, L., Takahara, H., Tzedakis, P. C., Urrego, D. H., van Geel, B., Valencia, B. G., Vandergoes, M. J., Vincens, A., Whitlock, C. L., Willard, D. A., and Yamamoto, M.: The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period, Earth Syst. Sci. Data, 9, 679-695, https://doi.org/10.5194/essd-9-679-2017, 2017.

- Shichi, K., Takahara, H., Krivonogovc, S. K., Bezrukova, E. V., Kashiwaya, K., Takehara, A., and Nakamura, T.: Late Pleistocene and Holocene vegetation and climate records from Lake Kotokel, central Baikal region, Quatern. Int., 205, 98–110, https://doi.org/10.1016/j.quaint.2009.02.005, 2009.
- Shilo, N. A., Lozhkin, A. V., Titov, E. E., and Schumilov, Y. V.: Kirgirlakh mammoth: paleography aspect, Nauka, Moscow, 1983 (in Russian).
- Stetsenko, T. V.: A pollen record from Holocene Lake deposits in the Malyk-Siena depression, upper Kolyma basin, in: Environmental changes in Beringia during the Quaternary, edited by: Simakov, K. V., North East Interdisciplinary Research Institute, Far East Branch, Russian Academy of Sciences, Magadan, 63– 68, 1998 (in Russian).
- Stobbe, A., Gumnior, M., Roepke, A., and Schneider, H.: Palynological and sedimentological evidence from the Trans-Ural steppe (Russia) and its palaeoecological implications for the sudden emergence of Bronze Age sedentarism, Veg. Hist. Archaeobot., 24, 393–412, https://doi.org/10.1007/s00334-014-0500-0, 2015.
- Sugita, S., Parshall, T., Calcote, R., and Walker, K.: Testing the Landscape Reconstruction Algorithm for spatially explicit reconstruction of vegetation in northern Michigan and Wisconsin, Quaternary Res., 74, 289–300, https://doi.org/10.1016/j.yqres.2010.07.008, 2010.
- Tarasov, P. E., Webb, T., Andreev, A. A, Afanas'Eva, N. B., Berezina, N. A., Bezusko, L. G., Blyakharchuk, T. A., Bolikhovskaya, N. S., Cheddadi, R., Chernavskaya, M. M., Chernova, G. M., Dorofeyuk, N. I., Dirksen, V. G., Elina, G. A., Filimonova, L. V., Glebov, F. Z., Guiot, J., Gunova, V. S., Harrison, S. P., Jolly, D., Khomutova, V. I., Kvavadze, E. V., Osipova, I. M., Panova, N. K., Prentice, I. C., Saarse, L., Sevastyanov, D. V., Volkova, V. S., and Zernitskaya, V. P.: Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the Former Soviet Union and Mongolia, J. Biogeogr., 25, 1029–1053, https://doi.org/10.1046/j.1365-2699.1998.00236.x, 1998.
- Tarasov, P. E., Volkova, V. S., Webb, T., Guiot, J., Andreev, A. A., Bezusko, L. G., Bezusko, T. V., Bykova, G. V., Dorofeyuk, N. I., Kvavadze, E. V., Osipova, I. M., Panova, N. K., and Sevastyanov, D. V.: Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia, J. Biogeogr.,

27, 609–620, https://doi.org/10.1046/j.1365-2699.2000.00429.x, 2000.

- Tarasov, P. E., Williams, J. W., Andreev, A., Nakagawa, T., Bezrukova, E., Herzschuh, U., Igarashi, Y., Müller, S., Werner, K., and Zheng, Z.: Satellite- and pollen-based quantitative woody cover reconstructions for northern Asia: Verification and application to late-Quaternary pollen data, Earth Planet. Sc. Lett., 264, 284–298, https://doi.org/10.1016/j.epsl.2007.10.007, 2007.
- Tarasov, P. E., Andreev, A. A., Romanenko, F. A., and Sulerzhitskii, L. D.: Palynostratigraphy of upper Quaternary deposits of Sverdrup Island, the Kara Sea, Stratigr. Geol. Correl., 3, 190–196, https://doi.org/10.1016/0037-0738(94)00119-F, 1995.
- Tarasov, P. E., Nakagawa, T., Demske, D., Österle, H., Igarashi, Y., Kitagawa, J., Mokhova, L. M., Bazarova, V. B., Okuda, M., Gotanda, K., Miyoshi, N., Fujiki, T., Takemura, K., Yonenobu, H., and Fleck, A.: Progress in the reconstruction of Quaternary climate dynamics in the Northwest Pacific: A new modern analogue reference dataset and its application to the 430kyr pollen record from Lake Biwa, Earth-Sci. Rev., 108, 64–79, https://doi.org/10.1016/j.earscirev.2011.06.002, 2011.
- Tian, F., Cao, X., Dallmeyer, A., Ni, J., Zhao, Y., Wang, Y., and Herzschuh, U.: Quantitative woody cover reconstructions from eastern continental Asia of the last 22 ka reveal strong regional peculiarities, Quaternary Sci. Rev., 137, 33–44, https://doi.org/10.1016/j.quascirev.2016.02.001, 2016.
- Tian, F., Cao, X., Dallmeyer, A., Lohmann, G., Zhang, X., Ni, J., Andreev, A., Anderson, P. M., Lozhkin, A. V., Bezrukova, E., Rudaya, N., Xu, Q., and Herzschuh, U.: Biome changes and their inferred climatic drivers in northern and eastern continental Asia at selected times since 40 cal ka BP, Veg. Hist. Archaeobot., 27, 365–379, https://doi.org/10.1007/s00334-017-0653-8, 2018.

- Trondman, A.-K., Gaillard, M.-J., Mazier, F., Sugita, S., Fyfe, R., Nielsen, A. B., Twiddle, C., Barratt, P., Birks, H. J. B., Bjune, A. E., Björkman, L., Broström, A., Caseldine, C., David, R., Dodson, J., Dörfler, W., Fischer, E., van Geel, B., Giesecke, T., Hultberg, T., Kalnina, L., Kangur, M., van der Knaap, P., Koff, T., Kuneš, P., Lagerås, P., Latałowa, M., Lechterbeck, J., Leroyer, C., Leydet, M., Lindbladh, M., Marquer, L., Mitchell, F. J. G., Odgaard, B. V., Peglar, S. M., Persoon, T., Poska, A., Rösch, M., Seppä, H., Veski, S., and Wick, L.: Pollenbased quantitative reconstruction of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modeling, Glob. Change Biol., 21, 676– 697, https://doi.org/10.1111/gcb.12737, 2015.
- Velichko, A. A., Andreev, A. A., and Klimanov, V. A.: Paleoenvironmental changes in tundra and forest zones of the former USSR during late Pleistocene and Holocene, in: Environmental changes during the last 15000, 1994.
- Vipper, P. B.: Pollen profile CHERNOE, Chernoe Lake, Russia, https://doi.org/10.1594/PANGAEA.739109, 2010.
- Volkov, I. A. and Arkhipov, S. A.: Quaternary deposits of the Novosibirsk Region, Joint Institute for Geology, Geophysics and Mineralogy, Siberia Branch, USSR Academy of Sciences, Novosibirsk, 1978 (in Russian).
- Werner, K., Tarasov, P. E., Andreev, A. A., Müller, S., Kienast, F., Zech, M., Zech, W., and Diekmann, B.: A 12.5-kyr history of vegetation dynamics and mire development with evidence of Younger Dryas larch presence in the Verkhoyansk Mountains, East Siberia, Russia, Boreas, 39, 56–68, https://doi.org/10.1111/j.1502-3885.2009.00116.x, 2010.
- Zudin, A. N. and Votakh, M. R.: The stratigraphy of Pliocene and Quaternary strata of Priobskogo Plateau, Nauka, Novosibirsk, 1977 (in Russian).