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Abstract. The recent availability of freely and openly available satellite remote sensing products has enabled
the implementation of global surface water monitoring at a level not previously possible. Here we present a
global set of satellite-derived time series of surface water storage variations for lakes and reservoirs for a pe-
riod that covers the satellite altimetry era. Our goals are to promote the use of satellite-derived products for the
study of large inland water bodies and to set the stage for the expected availability of products from the Surface
Water and Ocean Topography (SWOT) mission, which will vastly expand the spatial coverage of such products,
expected from 2021 on. Our general strategy is to estimate global surface water storage changes (1V ) in large
lakes and reservoirs using a combination of paired water surface elevation (WSE) and water surface area (WSA)
extent products. Specifically, we use data produced by multiple satellite altimetry missions (TOPEX/Poseidon,
Jason-1, Jason-2, Jason-3, and Envisat) from 1992 on, with surface extent estimated from Terra/Aqua Moderate
Resolution Imaging Spectroradiometer (MODIS) from 2000 on. We leverage relationships between elevation
and surface area (i.e., hypsometry) to produce estimates of 1V even during periods when either of the variables
was not available. This approach is successful provided that there are strong relationships between the two vari-
ables during an overlapping period. Our target is to produce time series of 1V as well as of WSE and WSA for
a set of 347 lakes and reservoirs globally for the 1992–2018 period. The data sets presented and their respective
algorithm theoretical basis documents are publicly available and distributed via the Physical Oceanography Dis-
tributed Active Archive Center (PO DAAC; https://podaac.jpl.nasa.gov/, last access: 13 May 2020) of NASA’s
Jet Propulsion Laboratory. Specifically, the WSE data set is available at https://doi.org/10.5067/UCLRS-GREV2
(Birkett et al., 2019), the WSA data set is available at https://doi.org/10.5067/UCLRS-AREV2 (Khandelwal and
Kumar, 2019), and the 1V data set is available at https://doi.org/10.5067/UCLRS-STOV2 (Tortini et al., 2019).
The records we describe represent the most complete global surface water time series available from the launch
of TOPEX/Poseidon in 1992 (beginning of the satellite altimetry era) to the near present. The production of
long-term, consistent, and calibrated records of surface water cycle variables such as in the data set presented
here is of fundamental importance to baseline future SWOT products.

Published by Copernicus Publications.

https://podaac.jpl.nasa.gov/
https://doi.org/10.5067/UCLRS-GREV2
https://doi.org/10.5067/UCLRS-AREV2
https://doi.org/10.5067/UCLRS-STOV2


1142 R. Tortini et al.: Global surface water storage change from 1992 to 2018

1 Introduction

Information about surface water dynamics is required to sup-
port monitoring and reporting programs associated with wa-
ter management as well as to support scientific objectives
such as understanding the space–time variability in water
stored at or near the land surface (Lettenmaier and Famigli-
etti, 2006). However, surface water storage data are scarce
and often inaccessible in many regions of the world due to
geographic remoteness and/or closed data policies in addi-
tion to the costs associated with maintaining extensive wa-
ter monitoring programs. This is especially the case in areas
with sparse populations and in the developing world, limit-
ing our ability to understand the surface water balance at the
global scale and therefore its effect on water management
planning, global weather forecasting, ecosystem sustainabil-
ity, and earth system modeling in general (Gao, 2015). The
synoptic nature of satellite-based remote sensing platforms
makes them ideally suited to quantitatively capture and por-
tray conditions over large areas at a given point in time and
to characterize how these conditions change through time
over long periods (Lettenmaier et al., 2015; Crétaux et al.,
2016; Zhang et al., 2017). With the recent availability of free
and open-access satellite remote sensing products, users now
have access to high-quality, analysis-ready imagery at spatial
resolutions that are informative at the relevant scales about
variation in water surface elevation (WSE) and water sur-
face area (WSA), and ultimately storage, at least for rela-
tively large inland water bodies. As a result, in recent years
the hydrology community has been active in developing ap-
proaches to enable the implementation of global surface wa-
ter monitoring strategies (McCabe et al., 2017). Global water
dynamics studies that previously would have only been ap-
proachable with relatively low spatial resolution data sets or
gravimetric remote sensing such as GRACE (e.g., Humphrey
et al., 2016) are now implemented using high-resolution im-
agery such as Landsat. For example, the European Com-
mission Joint Research Centre’s Global Surface Water Ex-
plorer quantifies changes in global surface water at a 30 m
resolution for a 32-year period (Pekel et al., 2016). In addi-
tion, despite being primarily designed to measure water lev-
els over the open ocean, current-generation satellite altime-
try missions have demonstrated their suitability for hydro-
logical studies of large inland water bodies, both for specific
targets such as Lake Chad (Coe and Birkett, 2004) and the
Aral Sea (Aladin et al., 2005; Singh et al., 2012), and at
the regional scale, for example the African Great Rift Val-
ley lakes (Birkett et al., 1999) and the Tibetan Plateau (Lee
et al., 2011; Zhang et al., 2011; Kleinherenbrink et al., 2015;
Cai et al., 2016; Crétaux et al., 2016; Zhang et al., 2019).
Extensive efforts have been made to measure surface height
for large lakes and reservoirs globally; examples include the
French Space Agency Laboratoire d’Etudes en Géophysique
et Océanographie Spatiales Hydroweb database (LEGOS;
Crétaux et al., 2011), the Database for Hydrological Time Se-

ries of Inland Waters (DAHITI; Schwatke et al., 2015), and
the U.S. Department of Agriculture (USDA) Global Reser-
voirs and Lakes Monitor (G-REALM) data sets. Further ex-
amples of global data sets are the University of Stuttgart’s
HydroSat (http://hydrosat.gis.uni-stuttgart.de/; last access:
27 February 2020) and, despite being no longer actively
maintained, the European Space Agency’s River and Lake
Altimetry products (http://altimetry.esa.int/riverlake; last ac-
cess: 27 February 2020). However, surface water storage es-
timation at the global scale remains challenging and still
largely unexplored (Gao et al., 2012; Gao, 2015). NASA’s
upcoming Surface Water and Ocean Topography (SWOT)
mission (scheduled launch 2021) will fill a major void in the
global observational capabilities of the hydrology commu-
nity. SWOT is expected to produce accurate WSE and WSA
estimates on average every 10.5 d (depending on specific
location) with the ability to estimate surface water storage
variations for lakes and reservoirs as small as about 1 km2

with a height accuracy of around 10 cm (Biancamaria et al.,
2010). However, until SWOT data are available, the devel-
opment of satellite-based long-term hydrological records for
the study of variability and changes in the terrestrial water
cycle will demand accurate data homogenization and har-
monization from existing sensors, with transparent and re-
producible methods playing a pivotal role in obtaining con-
sistent and defensible results (McCabe et al., 2017). More-
over, given that the current generation of altimeters are nadir-
pointing, i.e., they provide information along tracks rather
than swaths (typically with track separation on the order of
100 km or so), long-term records can be obtained exclusively
by merging data sets from a constellation of sensors with a
range of (often overlapping) data records. For example, Cré-
taux et al. (2016) estimated that the constellation of Jason-2,
Jason-3, the France–India SARAL AltiKa mission (Verron
et al., 2015), and the European Space Agency’s Sentinel-3
tandem (Donlon et al., 2012) has the potential to capture wa-
ter surface elevation (WSE) for nearly the entirety of 3720
global lakes with areas larger than 50 km2 and 71 % of the
14 411 lakes larger than 10 km2, for a total of approximately
40 % of the global water storage of lakes on Earth.

However, this merging of records from heterogeneous
satellite sources has practical drawbacks such as discontinu-
ities in the derived water storage estimates, and the harmo-
nization of these sources is fundamental to achieving more
effective data assimilation for use in, for example, hydrolog-
ical models, with the direct consequence of triggering a better
understanding of any underlying physical process (McCabe
et al., 2017). Here we summarize results of the integration
of long-term satellite remote sensing data collected by opti-
cal and microwave sensors to produce global surface water
storage records for large lakes and reservoirs, beginning with
the launch of TOPEX/Poseidon (T/P) in 1992. We use data
produced by multiple satellite altimetry missions, including
but not limited to T/P, Jason-1, Jason-2, and Jason-3, with
surface extent estimated from MODIS from 2000 on. We
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Figure 1. Location of the global targets (blue bubbles, by average lake size) and Lake Sakakawea (approximate coordinates: 47.50◦ N,
101.41◦W) within the Mississippi River basin (shaded).

leverage the relationship between WSE and WSA (i.e., hyp-
sometry) to produce estimates of storage changes (1V ) even
during periods when either of the variables is not available,
as long as there are strong relationships between the two dur-
ing an overlapping period. If the correlation coefficient be-
tween the two variables was smaller than 0.85 and the vari-
ance of either variable was smaller than 2 %, we simplified
the model into a single variable (i.e., noninvariant) function.
Our intent is to produce the most complete possible satellite-
derived records of water 1V over the period from the T/P
launch up to the launch of the SWOT mission, with the goal
of providing long-term, consistent, and calibrated records of
baseline surface water cycle variables up to the time of the
SWOT launch and beyond.

2 Data and methods

In this section, we describe the remote sensing data sources
and the methods we used to estimate WSE, WSA, and 1V .
Given the technological limitations of the currently opera-
tional satellite platforms we used, we targeted water bodies
globally with (i) WSE time series overlapping with WSA
time series so that a hypsometric curve could be established
for the 2000–2016 period, (ii) reference WSAs larger than
30 km2 (approximately 120 MODIS pixels with 500 m reso-
lution), and (iii) lakes or reservoirs that were clearly distin-
guishable from other nearby water bodies (improved accu-
racy of both WSE and WSA estimates). As an example of the
records we analyzed and their capabilities, we perform a de-
tailed analysis of Lake Sakakawea (47.50◦ N, 101.41◦W), a
large reservoir located in the Missouri River basin in the Fort
Berthold Indian Reservation in central North Dakota (USA)
and impounded by the Garrison Dam. Figure 1 shows the lo-
cation of the lakes and reservoirs selected for this work, with
a close-up of Lake Sakakawea.

2.1 Water surface elevation

G-REALM10 merges T/P, Jason-1, Jason-2, and Jason-3
time series of relative WSE variations with respect to a given
Jason-2 reference cycle at 10 d intervals (Birkett, 1995; Bir-
kett and Beckley, 2010; Birkett et al., 2011), whereas, when-
ever 10 d measurements are not available, G-REALM35 is
created using the Envisat time series of relative water level
variations, for which the mean level of Envisat retrievals at
35 d intervals is the reference. 1V monitoring of inland wa-
ter bodies at the global scale has proved a challenging task
(Gao et al., 2015; Crétaux et al., 2016), and the use of a single
WSE data source significantly limits the creation of global
1V data set. For these reasons, we used G-REALM10 as
our primary elevation source for the creation of our global
1V data set and, whenever G-REALM10 was not available
for a specific target, supplemented it with LEGOS, DAHITI,
and G-REALM35 (in this order) based on factors such as
density and trend of the available measurements. Full de-
tails of the processing to create the G-REALM10 and G-
REALM35 products can be found in the algorithm theoret-
ical basis document (ATBD; Birkett et al., 2019). This in-
cludes the descriptions of the atmospheric corrections ap-
plied in the height reconstructions, the intermission height
bias application, and the inherent differences between mis-
sion data set versions.

Figure 2 shows the radar altimeter ground tracks over Lake
Sakakawea, where we merged multiple data sources to create
the G-REALM10 and G-REALM35 records. We extracted
WSE data for the portions of the ground tracks over the water
body and used them to construct a time series of WSE vari-
ations. We used 10 d records from the TOPEX/Poseidon and
Jason instrument series (1992–2002 and 2008–2017) with
35 d Envisat mission data used during the 2002–2008 period.
A more detailed description of the methods we used can be
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Figure 2. Radar altimeter ground tracks over Lake Sakakawea
(blue) overlaid to the SRTM 1 arcsec digital terrain model. Purple:
10 d resolution instrument series and satellite pass 204; red: 35 d
resolution series and satellite pass 323.

found in Birkett (1995), Birkett and Beckley (2010), and Bir-
kett et al. (2011). Ricko et al. (2012) performed both abso-
lute and relative validations between the various G-REALM,
DAHITI and LEGOS available product types and for the ma-
jority found an acceptable level of accuracy between them.

WSE accuracy is highly affected by the presence of ice,
and for practical purposes, reliable 1V estimates can only
be produced under ice-free conditions. We assessed ice-on
conditions (i.e., presence of snow-covered ice on the sur-
face of a water body) using the MODIS Terra Snow Cover
Daily Global product (Collection 5 MOD10A1). For each el-
evation record, we estimated lake ice phenology (i.e., ice-
on and ice-off dates, defined as the beginning and end
of the freezing period) as the proportion of frozen pix-
els identified in the NDSI-based 500 m spatial resolution
Snow_Cover_Daily_Tile band (Hall and Riggs, 2007), and
we determined a threshold for each water body as half of the
maximum observed WSA. This algorithm uses the basic as-
sumption that a water body, when deep and clear, absorbs the
solar radiation incident upon it in almost its entirety. When-
ever ice was identified, we created a flag that is provided as
part of the 1V records. Water bodies with high turbidity, al-
gal blooms, or other conditions of relatively high reflectance
from the water (e.g., salt crust) may be erroneously detected
as snow and/or ice covered; in these cases we manually re-
moved the ice flag. We classified data gaps within the freez-
ing period as ice-on for continuity purposes. Additionally,
we excluded observations during polar darkness because of a
lack of complete data and likely ice-on conditions.

2.2 Surface water area

The Global Optical Lake Area (GOLA) determination pro-
cess estimates the WSA of lakes and reservoirs from
Terra/Aqua MODIS satellite optical imagery with a 500 m

spatial resolution and an 8 d temporal resolution for the
2000–2016 period. In order to estimate the WSA of the tar-
get, a static spatial extent is required as one of the inputs
(Khandelwal et al., 2017). We defined the initial spatial ex-
tents of water bodies using the vector polygons available as
part of the Global Reservoir and Dam Database (GRanD;
Lehner et al., 2011) and Global Lakes and Wetlands Database
(GLWD; Lehner and Döll, 2004), with quality checks en-
sured by visual comparison with high-resolution satellite im-
agery (i.e., Google Earth, ESRI World Map). Whenever we
identified a mismatch (i.e., polygon spatial extent not over-
lapping properly with the satellite imagery due to inaccu-
rate georeferencing), the polygon was edited to match the
expected location. In cases where a water body was not
available as part of either database, a polygon was drawn
by hand using high-resolution imagery from various sources
(e.g., Global Surface Water Explorer, Google Earth, ESRI
World Map). Once correctly identified, these locations were
used to construct a mask for MODIS data extraction. We
then used the mask to extract all of the data from three
MODIS products whose nominal footprint overlapped the
polygon of the corresponding lake. Specifically, we used
(i) two multispectral reflectance data products from the
MODIS instruments onboard NASA’s Terra and Aqua satel-
lites as an input to the water–land classification algorithm
(Collection 5 MCD43A4 and MOD0911), and (ii) static wa-
ter and land classification labels to train the classification
model (MODIS MOD44W). The primary reflectance prod-
uct was the bidirectional-reflectance-distribution-function-
adjusted (BRDF-adjusted) MCD43A4 16 d composite prod-
uct. The MCD43A4 product is generated by the U.S. Geo-
logical Survey (USGS) using data from both the Terra and
Aqua satellites to assure that the combined data product is of
the highest possible quality. However, by ignoring poor-data-
quality pixels, the MCD43A4 product suffers from a high de-
gree of missing values, especially before Aqua data became
available in 2002. This can introduce a high degree of incom-
pleteness in classification maps.

To alleviate this issue, we also used the MOD09A1 8 d
composite product collected solely from the Terra satellite.
Since the MOD09A1 product is generally less reliable than
MCD43A4 as it is not BRDF-adjusted, we combined these
two products to compensate for the primary limitations of
each, in addition to compensating for noise and missing val-
ues following methods outlined by Khandelwal et al. (2017).
We also used quality flags to filter out pixels with snow, ice,
or clouds. For the MOD10A1 product, information about the
data quality is available along with the multispectral values in
the 16 bit quality assessment state flags, whereas the quality
flags for the MCD43A4 product are available as a separate
product (MCD43A2 BRDF/Albedo Quality product). In or-
der to distinguish between land and water bodies, we used
static water extent masks derived from the MODIS prod-
uct (Carroll et al., 2009) to train the supervised classifica-
tion models. This product, distributed publicly by the USGS,
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Figure 3. Examples of the GOLA WSA classification results for Lake Sakakawea: (a) dry scenario (1 November 2008); (b) wet scenario
(25 April 2011). Differences in WSA estimates are noticeable in the northwestern and southwestern branches of the reservoir, the farthermost
from the Garrison Dam.

combines MODIS 250 m reflectance data with the SRTM
Water Body Data from 60◦ N to 60◦ S, with reflectance data
used solely poleward of 60◦ N. We aggregated the MOD44W
product from 250 to 500 m to match the resolution of the
other MODIS products. In particular, if the 500 m pixel had
all of its four pixels at 250 m labeled as water or land in the
MOD44W product, then we considered the pixel as a water
or land pixel. We excluded partial pixels from the training
set pool. Figure 3 shows an example of the classification re-
sults for Lake Sakakawea under a dry and a wet scenario. A
more detailed description of the classification algorithm and
its validation can be found in Khandelwal et al. (2017). All
MODIS data used to create the GOLA records are publicly
available via the USGS Land Processes Distributed Active
Archive Center (LP DAAC; http://lpdaac.usgs.gov, last ac-
cess: 13 May 2020).

2.3 Global storage change

During time periods when both WSEs from G-REALM
(supplemented with DAHITI and LEGOS) and WSAs from
GOLA were available, we derived the elevation–surface area
relationships (i.e., hypsometry) for each target. We then used
these relationships to estimate reservoir 1V using an ap-
proach similar to that of Gao et al. (2012). Specifically, for
overlapping G-REALM and GOLA periods, we calculated
increments of volume for the corresponding changes in WSE
and WSA as

1V = (WSAt+1+WSAt )(WSEt+1−WSEt )/2, (1)

where WSAt and WSEt are surface area and elevation at the
smallest step t and At+1 and ht+1 are surface area and eleva-
tion at the next incremental step t + 1.

We used linear regression to approximate the relation-
ship between elevation (WSE) and surface area (WSA),
WSA= f (WSE). We then applied this relationship to esti-
mate WSA from WSE for periods when WSA is unavailable

(1992–1999) and the inverse function WSE= f−1(WSA) to
estimate WSE from WSA for periods when WSE is unavail-
able during the MODIS era (2017–2018). Finally, the 1V

equation can be simplified into a single variable function, as
a function of either WSE or GOLA WSA, by substituting
WSA= f (WSE) or WSE= f−1(WSA) into it. If the corre-
lation coefficient between the two variables was smaller than
0.85 (i.e., weak to moderate correlation between WSE and
WSA) and the variance of either variable was smaller than
2 % (i.e., near-invariant variable), then we parameterized the
invariant variable using its mean value.

3 Results

We created water storage records for 347 global lakes
and reservoirs, distributed via the Physical Oceanog-
raphy Distributed Active Archive Center (PO DAAC;
https://podaac-tools.jpl.nasa.gov/drive/files/allData/
preswot_hydrology/L3/lakes_reservoirs, last access:
13 May 2020) of NASA’s Jet Propulsion Laboratory.
Table 1 summarizes WSE, WSA, and 1V per continent of
the water bodies with records in the period of this work (i.e.,
1992–2018). The majority of the water bodies (223, 64.26 %
of the total) is located in Asia (110, of which 30 are in the
Tibetan Plateau) and North America (113), with Australasia
represented by just eight targets. Globally, approximately
22 % of the WSE measurements overlap with WSA records,
enabling hypsometric curves to be constructed, with no sig-
nificant regional exception. Africa and North America lead
in terms of average WSA, with an average of ∼ 4864 km2

(39 water bodies) and ∼ 4100 km2 (113 water bodies),
respectively. In fact, the dynamics of the water bodies in
Africa are dominated by the Great Rift Valley lakes, whereas
the size range of the water bodies in North America is
more varied. South American water bodies instead show the
highest variability (i.e., standard deviation) per average area
(118.47 and 1072.33 km2, respectively), compatible with the
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Table 1. Summary by continent of the observed characteristics of the 347 water bodies.

Average per target WSE (m) WSA (km2) 1V (km3)

Water Water level Hypsometric Standard Standard Standard
Continent bodies records records Mean deviation Mean deviation Total deviation

Africa 39 378.87 237.61 −0.62 1.87 4864.36 100.12 −377.74 3.77
Asia 110 361.84 187.63 −1.22 3.61 1736.74 114.45 −171.86 2.40
Australasia 8 231.00 179.62 −0.98 3.97 385.85 43.34 −159.76 0.60
Europe 28 554.11 236.07 +0.06 0.59 2665.49 98.91 −116.67 1.35
North Am. 113 458.44 169.85 −0.34 1.67 4099.97 65.34 −115.01 1.92
South Am. 49 291.84 178.08 −0.43 2.60 1072.33 118.47 −120.73 1.91

Global 347 379.35 198.14 −0.59 2.38 2470.79 90.10 −176.96 1.99

generally modest topographic relief and frequent flooding of
the major rivers and reservoirs. However, Africa also has the
largest observed mean decrease in both 1V (−377.74 km3)
and standard deviation (3.77 km3), suggesting shallow
topography and highly dynamic variations.

Figure 4 shows the monthly frequency of the observations
used to create the hypsometric curve for the 347 targets we
analyzed. The total number of hypsometric observations was
65 872 (average observations per target 189.83 or ∼ 11 per
overlapping year). With the majority of the targets located in
the Northern Hemisphere (272 targets, 78.4 % of the total),
55.86 % of the total hypsometric records are observed in the
boreal late spring and summer months (May–September) and
only 26.76 % in the boreal late fall and winter (November–
March), due to a combination of factors such as fewer optical
images with cloud cover, absence of ice cover, and in general
more accurate WSE estimates.

Figure 5 shows the temporal trends of the observed G-
REALM elevation and GOLA surface area records for Lake
Sakakawea. Both data sets show consistent trends and sea-
sonal variations for the overlapping period (2000–2016).
The smoother seasonality associated with the GOLA records
may be a direct consequence of the spectral heterogene-
ity associated with the low spatial resolution (i.e., 500 m)
of the pixels along the target boundary. In addition, the
sparser G-REALM35 records only partially compensate for
the unavailability of G-REALM10 records from 2003 to
2008 (Fig. 5a). However, the denser GOLA time series in
the same period (Fig. 5b) offers the potential to supple-
ment further 1V records based on the observed relation-
ship with elevation records. This is especially relevant be-
cause the drainage area to Lake Sakakawea suffered a sig-
nificant drought in the early 2000s. In fact, by May 2005
Lake Sakakawea had fallen to a documented all-time low
of ∼ 550.4 m a.m.s.l. (1805.8 ft a.m.s.l.; US Army Corps of
Engineers, 2007). However, thanks to a wet early summer in
2008 and the spring runoff of 2009, by 2010 Lake Sakakawea
was nearly at full capacity. These dynamics are reflected in
both the G-REALM and GOLA records (Fig. 5) and are con-
sistent with the results obtained by Gao et al. (2012).

Figure 4. Monthly frequency of the observations used to create the
hypsometric curve for the 347 targets analyzed in this study, with
total number of observations for each month.

Figure 6 shows the hypsometric curve for Lake Sakakawea
(R2
= 0.908). Such a high correlation usually indicates good

quality for both data sets; conversely, low correlations can
result from many conditions. These include systematic er-
rors in either water elevation or surface area records (or both)
and/or in geomorphic properties of the target, with the pos-
sibility that, within the range of variation of either variable,
the hypsometry is more or less independent of surface area
(i.e., in the extreme vertical walls) or elevation (i.e., shallow
lakes). Whenever direct observations of WSE were unavail-
able, we used the hypsometric curve to derive two associated
products: inferred water elevation records and inferred sur-
face area records.

For the overlapping period (2000–2016) when both WSE
and WSA were available, G-REALM was used in the final
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Figure 5. Time series of (a) water elevation variation by mission
(1144 records) and (b) MODIS-estimated surface area (578 records)
for Lake Sakakawea. Presence of surface ice is indicated by a light
blue cross.

Figure 6. Water elevation and surface area relationship for Lake
Sakakawea (277 records). Presence of surface ice is indicated by a
light blue cross.

product to compute the relative storage because of its more
relevant role played in the modeling of 1V (cf. Eq. 1). Fig-
ure 7 shows the estimated relative storage time series for
Lake Sakakawea.

4 Validation

We evaluated the statistical accuracy of WSE and storage
estimates at Lake Sakakawea based on monthly in situ wa-
ter measurements made by the U.S. Army Corps of Engi-
neers at Garrison Dam (http://www.nwd-mr.usace.army.mil/
rcc/projdata/garr.pdf, last access: 13 May 2020) and available
from June 1967 to December 2018 (Fig. 8a, b). Specifically,
we utilized the Average Daily Midnight Elevation (ft m.s.l.)
and End-of-Month Storage (1000 AF) products. After aver-
aging the WSE records to the monthly scale, 233 and 270
coincident observations were available for WSE and storage
change, respectively.

The RMSE of the WSE was ∼ 0.68 m. The linear fit had
an R2 of 0.95 (p < 0.001), suggesting very good consistency

Figure 7. Time series of relative storage for Lake Sakakawea. Ob-
served records are in orange; modeled records are in blue.

between in situ water level measurements and the derived op-
tical water levels (Fig. 8c). The RMSE of the storage change
was 0.87 km3. The linear fit had an R2 of 0.94 (p < 0.001),
indicating very good consistency with the in situ storage es-
timates (Fig. 8d).

5 Discussion

In the Lake Sakakawea example, both the G-REALM and
GOLA records show consistent trends and seasonal varia-
tions for the overlapping period (2000–2016). Inaccuracy in
the estimated relative storage can be attributed mainly to
(i) WSE errors, (ii) WSA errors, and (iii) WSE–WSA re-
lationship errors. The accuracy of the elevation records can
be attributed to a number of factors, including satellite orbit,
distance between antenna and target (i.e., altimetric range),
geophysical range corrections, target size, and track loca-
tion relative to the target boundary. Furthermore, each WSE
record is calculated as the average value along the satellite
ground track, with a large standard error implying higher un-
certainty potentially from measurement errors and/or natu-
ral variations (e.g., surface roughness). For example, satellite
tracks over narrow water bodies in complicated terrain will
result in larger errors. Finally, major wind and precipitation
events, as well as tidal effects and the presence of ice, also
affect the quality of the records. The spectral heterogeneity
associated with pixels along the target boundary plays a key
role in the accuracy of the surface area classification. For ex-
ample, Lake Sakakawea is a sinuous water body of 286 km
length at capacity and with an average width of 3–5 km. As a
result, a significant number of the MODIS 500 m pixels used
to analyze the target are spectrally heterogeneous (i.e., par-
tially covered by water and land) and therefore more prone to
misclassification. This is especially true for droughts and/or
periods of low water levels, as sinuous water bodies become
even narrower due to drying. In addition, targets with lim-
ited or near-static water dynamics (defined as “dynamic re-
gion width” by Khandelwal et al., 2017) present land cover
changes in the GOLA product primarily near the boundary of
the static region used in the classification. Due to the mod-
erate spatial resolution of the GOLA records, the effect of
mixed pixels is even more prominent in water bodies with
a low dynamic region width, which can lead to low correla-
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Figure 8. Water levels and storage at Lake Sakakawea. (a) In situ monthly water levels (black) versus WSE records (red); (b) in situ monthly
water storage (black) versus 1V records (red); (c) linear regression of monthly average WSE records and concurrent in situ monthly water
levels, with linear regression in red; (d) linear regression of monthly average 1V records and concurrent in situ monthly water storage, with
linear regression in red.
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tion values between elevation and surface area. Conversely,
the classification of targets with a high dynamic region width
consistently performs better in the GOLA records. The qual-
ity of both elevation and surface area contribute to the ac-
curacy of their relationship, but volume changes are mostly
dominated by elevation changes. High correlations between
elevation and area generally indicate reliable 1V estimation.
However, if either variable is systematically biased, the error
associated with the relationship is carried to the estimated
1V . For example, low correlation may arise when the target
shows nearly constant WSA (vertical walls, in which case a
variation in elevation is reflected in a negligible change in
WSA) or nearly constant elevation (i.e., shallow lakes, in
which case a variation in surface area is reflected in a neg-
ligible change in elevation). In these cases we proceeded in
the modeling of 1V with the parameterization of the invari-
ant variable with its mean value. All the factors listed above
introduce some degree of error in the WSE–WSA relation-
ship; however, in most cases a linear approximation does
not appear to be a major contributor (cf. Gao et al., 2012).
At the global scale, the limited number of altimeter-based
WSE products is a key constraint for satellite remote sensing
observations. In fact, due to the technical limitations listed
above, current-generation spaceborne microwave altimeters
can only monitor WSEs for a relatively small number of large
reservoirs when used individually. In order to maximize the
length and density of global 1V records, in addition to in-
tegrating measurements from multiple altimeters, multiple
MODIS daily overpasses played a crucial role in creating
consistent 8 d GOLA and consequently 1V records.

Despite the GOLA product’s moderate spatial resolu-
tion, it can potentially affect the accuracy of 1V estimates;
higher-resolution satellite missions have longer satellite re-
visit times (e.g., 16 d for Landsat, 10 d for Sentinel-2A start-
ing in 2015, and 5 d for Sentinel-2A and -2B in tandem for-
mation starting in 2017). Because we leveraged the relation-
ship between WSE and WSA to estimate 1V , such satellite
revisit times would produce sparser records, especially for
water bodies located at high latitudes and/or altitudes as they
are more affected by cloud cover. In fact, despite being highly
desirable for the monitoring of surface water dynamics, im-
agery from optical sensors is strongly affected by the pres-
ence of cloud cover, which can be extensive in late fall and
winter, and in combination with low sun angles experienced
at high latitudes this may limit its usefulness at the global
scale (Duguay et al., 2014). However, the integration of opti-
cal imagery (e.g., MODIS, Landsat, Sentinel-2) and radar al-
timetry data provides long-term continuity in the production
of consistent and calibrated records, and we encourage the
re-exploration of the lakes in our study using Landsat and/or
Sentinel images with a 20–30 m spatial resolution.

6 Data availability

The data sets presented and their respective ATBDs
are publicly available and distributed via the Physi-
cal Oceanography Distributed Active Archive Center (PO
DAAC; https://podaac-tools.jpl.nasa.gov/drive/files/allData/
preswot_hydrology/, last access: 13 May 2020) of NASA’s
Jet Propulsion Laboratory. Specifically, the WSE data
set is available at https://doi.org/10.5067/UCLRS-GREV2
(Birkett et al., 2019), the WSA data set is avail-
able at https://doi.org/10.5067/UCLRS-AREV2 (Khandel-
wal and Kumar, 2019), and the 1V data set is avail-
able at https://doi.org/10.5067/UCLRS-STOV2 (Tortini et
al., 2019). The links listed provide the location of the data
repositories, and they are all active and publicly accessible.

7 Summary

We generated global water storage change (1V ) esti-
mates based exclusively on satellite remote sensing obser-
vations through the creation of elevation-associated (i.e., G-
REALM) and surface-area-associated (i.e., GOLA) prod-
ucts for 347 selected large water bodies, primarily based on
the availability of water elevation products. G-REALM10
was derived from a constellation of satellite altimeters (i.e.,
TOPEX/Poseidon, Jason-1, Jason-2, Jason-3), whereas G-
REALM35 was created using measurements from Envisat.
We supplemented the G-REALM elevation records with
DAHITI and LEGOS products. We utilized the algorithm de-
veloped by Khandelwal et al. (2017) to create 8 d 500 m sur-
face area estimates from MODIS images. WSE and WSA
were used to derive the hypsometric relationship for each
reservoir, with either variable inferable from its counterpart
when direct observations were unavailable. We computed
1V using an adaptation of the method of Gao et al. (2012).
As an example, we demonstrated the application of the data
set to Lake Sakakawea (North Dakota, USA), the second
largest reservoir in the USA by area and representative of the
challenges encountered in the creation of global 1V records.
The records presented in this paper represent the most com-
plete satellite-derived global surface water storage time se-
ries to date, spanning from 1992 (TOPEX/Poseidon launch)
to the present, with the potential to be extended up to the
launch of the SWOT mission planned for 2021. The data
set presented is dynamic and will continue to be extended
both in terms of the number of water bodies (with ultimate
potential total around 400) and historical time period. De-
spite the coarser spatial resolution of the pre-SWOT records
presented, the production of long-term, consistent, and cal-
ibrated records of surface water cycle variables is of fun-
damental importance to establishing a baseline of what is
known globally about surface water 1V up to the time of
the SWOT launch.
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