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Abstract. Soil heterotrophic respiration (RH) is one of the largest and most uncertain components of the ter-
restrial carbon cycle, directly reflecting carbon loss from soils to the atmosphere. However, high variations and
uncertainties of RH existing in global carbon cycling models require RH estimates from different angles, e.g.,
a data-driven angle. To fill this knowledge gap, this study applied a Random Forest (RF) algorithm (a machine
learning approach) to (1) develop a globally gridded RH dataset and (2) investigate its spatial and temporal
patterns from 1980 to 2016 at the global scale by linking field observations from the Global Soil Respiration
Database and global environmental drivers (temperature, precipitation, soil water content, etc.). Finally, a glob-
ally gridded RH dataset was developed covering from 1980 to 2016 with a spatial resolution of half a degree and
a temporal resolution of 1 year. Globally, the average annual RH was 57.240.6PgCa~! from 1980 to 2016,
with a significantly increasing trend of 0.036 4 0.007 Pg C a—2. However, the temporal trend of the carbon loss
from RH varied in climate zones, and RH showed a significant and increasing trend in boreal and temperate
areas. In contrast, such a trend was absent in tropical regions. Temperature-driven RH dominated 39 % of global
land and was primarily distributed at high-latitude areas. The areas dominated by precipitation and soil water
content were mainly semiarid and tropical areas, accounting for 36 % and 25 % of global land area, respectively,
suggesting variations in the dominance of environmental controls on the spatial patterns of RH. The developed
globally gridded RH dataset will further aid in the understanding of the mechanisms of global soil carbon dy-
namics, serving as a benchmark to constrain terrestrial biogeochemical models. The dataset is publicly available
at https://doi.org/10.6084/m9.figshare.8882567 (Tang et al., 2019a).
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1 Introduction

Global soils and surface litter store up to 2 or 3 times the
amount of carbon present in the atmosphere (Trumbore,
2009), and therefore a small change in soil carbon content
could have profound effects on atmospheric CO; and climate
change (Kochy et al., 2015). Although global carbon flux
from soil-to-atmosphere is increasing (Zhao et al., 2017), the
degree to which future climate change will stimulate soil car-
bon loss via heterotrophic respiration (RH) remains highly
uncertain (Bond-Lamberty et al., 2018; Friedlingstein et al.,
2014; Trumbore and Czimczik, 2008), particularly for areas
with a high temperature sensitivity or rapid changes in pre-
cipitation frequency and intensity.

Soil RH represents the carbon loss from the decomposi-
tion of litter detritus and soil organic matter by microorgan-
isms (Subke et al., 2006), accounting for one of the largest
components of the terrestrial carbon cycle (Bond-Lamberty
et al., 2016). However, RH’s feedback to climate variability
is poorly understood. RH could affect future climate change
via the mineralization of long-stored soil carbon, offsetting
net primary production (NPP) and even converting terrestrial
ecosystems from a carbon sink to a carbon source (Trem-
blay et al., 2018). Conversion of the sink or source role de-
pends on how strongly large-scale processes are affected by
environmental drivers, e.g., temperature, precipitation, and
soil organic carbon content (Hursh et al., 2017; Sierra et al.,
2015), or extreme conditions, e.g., fire, human disturbance,
and drought (Kurz et al., 2013; Metsaranta et al., 2011). Al-
though it is widely recognized that warming enhances CO»
release from soils, the magnitude of such release is uncertain
due to variations in the temperature sensitivity of soil organic
matter decomposition (Suseela et al., 2012). In addition, en-
vironmental drivers of RH, e.g., temperature and soil mois-
ture, are still undergoing changes under climate warming and
can affect RH individually or interactively. Therefore, reduc-
ing RH uncertainty and clarifying the response of RH to en-
vironmental factors are both essential for future projections
of the impact of climate change on the terrestrial carbon bal-
ance.

Due to the diurnal, seasonal and annual variability in
RH, in addition to the difficulties of large-scale measure-
ments, regional and global RH estimations mainly depend
on modeling approaches using regional or global variables,
such as temperature, precipitation and carbon supply (Bond-
Lamberty and Thomson, 2010b; Hashimoto et al., 2015;
Hursh et al., 2017). Besides temperature and precipitation,
soil variables, such as water, carbon and nitrogen contents,
are also important factors in the regulation of RH and should
be considered for accurate RH estimations (Hursh et al.,
2017; Zhao et al., 2017), although these variables vary with
biome and climate.

Observational studies have examined the responses of
soil respiration to different climatic variables at different
locations across the globe (Bond-Lamberty and Thomson,
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2010a; Zhou et al., 2016). Hashimoto et al. (2015) and Bond-
Lamberty and Thomson (2010b) predicted global soil respi-
ration rates using climate-derived models driven by tempera-
ture and precipitation; however, these models commonly ex-
plain less than 50 % of variations in soil respiration, requiring
new techniques and potential new numerical and algorithmic
methods to better quantify and understand the large-scale soil
carbon fluxes (Bond-Lamberty, 2018). To improve model-
ing accuracy, more recent studies have used linear regres-
sion or machine learning approaches including more abiotic
or biotic variables, such as soil carbon supply, soil properties
and NPP (Hursh et al., 2017; Zhao et al., 2017), and obser-
vations collected from newly published measurements (Jian
et al., 2018; Zhao et al., 2017). On the other hand, includ-
ing more variables in linear or nonlinear regression models
may cause overfitting and autocorrelation issues (Long and
Freese, 2006). To overcome overfitting and autocorrelation,
machine learning approaches, such as the Random Forest
(RF, Breiman, 2001), have been applied to explore the hierar-
chical importance of environmental factors, such as temper-
ature, soil water content (SWC), NPP and soil pH (Hursh et
al., 2017). Machine learning techniques are highly effective
because they are fully data adaptive, do not require initial as-
sumptions on functional relationships and can function with
nonlinear dependencies (Bodesheim et al., 2018). Therefore,
these approaches are beginning to see use in Earth science,
particularly in carbon and water flux modeling (Jung et al.,
2010, 2017; Yao et al., 2018b), and may provide more re-
liable estimates of soil respiration (Bond-Lamberty, 2018;
Zhao et al., 2017). However, no study to date has assessed the
global variability of RH using empirical field observations to
bridge the knowledge gap between local, regional and global
scales.

The newly emerged Dynamic Global Vegetation Models
from the TRENDY model ensembles and Earth System Mod-
els have been widely used to investigate major physiological
and ecological processes and ecosystem structures, providing
a novel database and approach to examine and estimate RH
at the global scale (Zhu et al., 2017), although RH improve-
ments in Earth System Models are still required (Shao et al.,
2013). TRENDY and Earth System Model simulations incor-
porating a RH component are commonly calibrated and vali-
dated by eddy covariance measurements, e.g., net ecosystem
carbon exchange; however, modeled RHs from these mod-
els have not yet been calibrated and validated using field
observations. Therefore, these modeled RHs may be funda-
mentally different from observed values and no global obser-
vations exist to evaluate model effectiveness. Consequently,
a data-driven RH dataset could improve our understanding
of the underlying mechanisms of RH variability to climate
change at the global scale and could serve as a benchmark to
constrain terrestrial biogeochemical models.

Thus, we used a RF algorithm to estimate global RH based
on updated RH observations from the Global Soil Respira-
tion Dataset (SRDB, Bond-Lamberty and Thomson, 2010a)
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with the objectives of (1) developing a globally gridded RH
product (named data-derived RH), (2) detecting the spatial
and temporal patterns of RH, (3) identifying the dominant
driving factors for spatial and temporal variabilities of RH,
and (4) comparing the data-derived RH dataset with RH
generated by Dynamic Global Vegetation Models from the
TRENDY ensembles.

2 Materials and methods

2.1 Soil heterotrophic respiration database development

The basis of the database developed here included observed
global RH values from SRDB (Bond-Lamberty and Thom-
son, 2010a), which were freely obtained at https://github.
com/bpbond/srdb (last access: January 2018). The database
was further updated using observations collected from peer-
reviewed Chinese publications at the China Knowledge Re-
source Integrated Database (https://www.cnki.net/, last ac-
cess: March 2018) until March 2018. This study included
the RH data for (1) annual RH, as directly reported in pub-
lications with at least 1 year continuous measurements, and
(2) the start and end years extracted from SRDB, directly
from publications, or calculated by the “years of data” in
the SRDB. (3) Observations measured by alkali absorption
or soda lime approaches were not included because of their
potential underestimation of respiration flux with increas-
ing pressure in the measurement chamber (Pumpanen et al.,
2004). (4) Experiments with treatments, such as nitrogen ma-
nipulation or fertilization were excluded, and only RH mea-
surements from the control treatment were included (Jian et
al., 2018). (5) SRDB observations labeled as “potential prob-
lem” (Q10), “suspected problem” (Q11), “known problem”
(Q12), “duplicate” (Q13) and “inconsistency” (Q14) were
not included (Bond-Lamberty and Thomson, 2010a). In total,
the newly updated database included 504 RH observations in
total. Although most of the observations were from China,
North America, South America and Europe, this database
covered all of the major terrestrial biomes across the world

(Fig. 1).

2.2 Climate and soil data

To investigate the global spatial and temporal RH patterns,
global spatial-temporal grids of RH driving factors were
required. A total of nine global variables were included
(Table S1): monthly gridded data of temperature, precip-
itation, diurnal temperature range from Climatic Research
Unit TS v.4.01 over 1901-2016 (https://crudata.uea.ac.uk,
last access: September 2017, Harris et al., 2014); short-
wave radiation (SWR, https://www.esrl.noaa.gov, last ac-
cess: March 2018, Kalnay et al., 1996); gridded soil or-
ganic carbon content (Hengl et al., 2017) and nitrogen con-
tent from https://webmap.ornl.gov/ogc/index.jsp, last access:
March 2018, (Global Soil Data, 2000); monthly gridded
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nitrogen deposition dataset from the global Earth System
Models of GISS-E2-R, CCSM-CAM3.5 and GFDL-AM3
from 1850 to the 2000s (https://www.isimip.org, last access:
June 2017, Lamarque et al., 2013); monthly Palmer Drought
Severity Index data (PDSI, https://www.esrl.noaa.gov/psd/,
last access: October 2017, Dai et al., 2004) and soil wa-
ter content (SWC, https://www.esrl.noaa.gov, last access:
March 2018, van den Dool et al., 2003). Before further data
analysis, monthly data were aggregated to an annual scale.
These variables could stand for different environmental con-
trols on RH. For example, temperature, precipitation and
SWC are critical environmental controls on microbial activ-
ities for soil organic matter decomposition (Jian et al., 2018;
Suseela et al., 2012; Tremblay et al., 2018). Soil organic mat-
ter, soil carbon stock and soil nitrogen are important carbon
and nitrogen substrates for microbes that are related to the
decomposition of soil organic matter (Tremblay et al., 2018).
The drought index (PDSI) and diurnal temperature range
represent water and temperature stress on RH (Berryman et
al., 2015; Zhu and Cheng, 2011). The global environmental
drivers for each given site were extracted by site longitudes
and latitudes corresponding to annual RH observations. If the
environmental driver is not in a spatial resolution of 0.5°, we
first resampled this environmental driver to a 0.5° resolution
using the bilinear interpolation.

2.3 RH from TRENDY models

Over the last several decades, TRENDY models were de-
veloped to simulate key processes (e.g., photosynthesis, res-
piration, evapotranspiration, phenology and carbon alloca-
tion) that drive the dynamics of global terrestrial ecosystems
(Piao et al., 2015). TRENDY models follow a common pro-
tocol and use the same climate-forcing data from National
Centers for Environmental Prediction at a spatial resolution
of 0.5°. For modeled products with different spatial resolu-
tions, new errors will be produced when resampling to 0.5°.
Therefore, to compare the dynamics in the data-derived RH
dataset and TRENDY RH dataset, we used model outputs
from seven TRENDY models: Community Land Model 4.5
(CLM4, Lawrence et al., 2011), Integrated Science Assess-
ment Model (ISAM, Cao, 2005), Lund-Potsdam-Jena (LPJ,
Sitch et al., 2003), Lund-Potsdam-Jena General Ecosystem
Simulator (LPJ-GUESS, Smith et al., 2001), VEgetation-
Global-Atmosphere-Soil (VEGAS, Zeng et al., 2005), and
Vegetation Integrative Simulator for Trace gases (VISIT,
Kato et al., 2013). Additionally, the RH dataset generated
empirically by Hashimoto et al. (2015) was compared (de-
noted as Hashimoto RH), which is publicly available (http:
/lcse.ftpri.affrc.go.jp/shojih/data/index.html, last access: Jan-
uary 2018) and estimated from a global relationship be-
tween RH and soil respiration (Bond-Lamberty et al., 2004),
and the total soil respiration was predicted from a climate-
driven model using precipitation and temperature based on

Earth Syst. Sci. Data, 12, 1037-1051, 2020


https://github.com/bpbond/srdb
https://github.com/bpbond/srdb
https://www.cnki.net/
https://crudata.uea.ac.uk
https://www.esrl.noaa.gov
https://webmap.ornl.gov/ogc/index.jsp
https://www.isimip.org
https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov
http://cse.ffpri.affrc.go.jp/shojih/data/index.html
http://cse.ffpri.affrc.go.jp/shojih/data/index.html

1040 X. Tang et al.: Spatial and temporal patterns of global soil heterotrophic respiration

_ ©  Shrubland (n=6)

' 1 0 ' |
-150° -120° -90° -60° -30°

Figure 1. Distributions of the study sites for RH observations.

the observations from SRDB. More details can be found in
Hashimoto et al. (2015).

2.4 RF-based RH modeling

RF is a machine learning approach that uses a large number
of ensemble regression trees with a random selection of pre-
dictive variables (Breiman, 2001). Two free parameter set-
tings are required, which are the number of trees and candi-
date variables for each split. However, the RF model is not
usually sensitive to the number of trees or variables. A RF
regression can deal with a large number of features, assist-
ing a feature selection based on the importance value of each
variable and the avoidance of overfitting (Bodesheim et al.,
2018; Jian et al., 2018). In the present study, a RF model
was trained using nine variables (Table S1) in the caret pack-
age (version 6.0-80, accessed on 27 May 2018) in R (R Core
Team, 2018), which was then implemented to predict RH for
each grid at a spatial resolution of 0.5°. To characterize the
performance of RF, a 10-fold cross-validation was applied,
which meant that the dataset was stratified into 10 parts,
and each part contained a roughly equal number of samples.
The target values for each of these 10 parts were predicted
based on the training models using the remaining 9 parts.
Two model evaluation statistics were used, including model-
ing efficiency (R?) and root-mean-square error (RMSE, Tang
et al., 2019b; Yao et al., 2018b).

2.5 Trend analysis

A trend analysis of RH was estimated using the Theil-Sen
linear regression and tested with the Mann—Kendall nonpara-
metric test. The Theil-Sen estimator is a nonparametric slope
estimator based on median values, and this approach was
widely used for time series analysis, e.g., carbon fluxes (Dai
et al., 2016) and vegetation greening and browning (Pan et
al., 2018). The Mann—Kendall nonparametric test was em-
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ployed to investigate the significant changes in RH trend at a
significance level of 0.05.

2.6 Relationships between RH and temperature,
precipitation and SWC

Although previous studies have used precipitation as a proxy
for SWC (Bond-Lamberty and Thomson, 2010b; Chen et al.,
2010), this may result in variability in soil respiration esti-
mates (Jassal et al., 2007; Zhang et al., 2006) because the re-
lationship between SWC and soil respiration was much more
complex than that between soil respiration and temperature
or precipitation (Jian et al., 2018). Therefore, mean annual
temperature (MAT), precipitation (MAP) and SWC were all
considered potentially important proxies driving RH (Bond-
Lamberty et al., 2016; Reichstein and Beer, 2008). Annual
mean RH was regressed against the three proxies. The rela-
tionships between the data-derived RH and MAT, MAP, and
SWC were assessed locally for each grid cell by calculating
the correlations using partial correlation analysis. When an-
alyzing the partial correlations between RH and the proxy,
the other two proxies were controlled to remove their con-
founding effects on RH. The correlation strengths of MAT,
MAP and SWC were used to derive RGB combinations and
indicate the drivers of RH.

2.7 The comparison map profile method

To detect the spatial similarity and difference patterns be-
tween the data-derived RH and TRENDY and Hashimoto
RH values from 1981 to 2010, we utilized the comparison
map profile (CMP) method (Gaucherel et al., 2008). This
method was based on the absolute distances (D) and cross-
correlation coefficients (CC) across multiple scales, with D
and CC reflecting the similarity and the spatial structures
of two compared images with the same sizes, respectively
(Gaucherel et al., 2008). The D value between moving win-
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Figure 2. Spatial patterns of (a) mean data-derived RH, (b) standard deviations, (¢) temporal trends of annual heterotrophic respiration (RH)
from 1980 to 2016 and (d) dominant environmental drivers for the interannual variability of global RH. MAT is mean annual temperature,

MAP is mean annual precipitation and SWC is soil water content.

dows (from 3 x 3 to 1 x 41 pixels in present study) of two
compared images was calculated by Eq. (1):

D = abs(x —y), (1)

where ¥ and y represent mean values calculated over two
moving windows. Finally, the mean D value was calculated
as an average of different moving windows.

The CC was calculated according to Eq. (2):

(xz] X)X (yij — .V)
N ZZ pa @)

i=1j=

ZZ(xl, ), 3)

lljl

where x;; and y;; are pixel values at the ith row and jth col-
umn of the moving windows of two compared images, re-
spectively. N represents the total number of pixels covered
by each of moving windows. o, and o, stand for standard
deviations of two moving windows. Low D values reflect a
goodness of fit between the compared images, while low CC
values suggest a low similarity. Finally, the mean D and CC
were calculated as the average from different moving win-
dows.

All data analyses mentioned above were conducted in R
(version 3.5.0, access on April 2018).

3 Results

3.1 Spatial patterns of RH

Based on the 10-fold cross-validation, R? and RMSE were
50% and 143 gCm~2a~! (Fig. S1), respectively. This indi-
cates that the RF algorithm effectively captured the spatial

www.earth-syst-sci-data.net/12/1037/2020/

and temporal variability of RH, therefore enabling derivation
of a global gridded RH dataset.

The data-derived RH dataset showed a strong spatial
pattern globally (Fig. 2a). The largest RH fluxes oc-
curred in tropical areas, e.g., Amazonian tropical forests, at
>700gCm~2a~!; followed by the subtropics, e.g., south-
ern China and America; and humid temperate areas, e.g.,
North America and western and central Europe, with an an-
nual RH of 400-600 g C m—2 a~!. Relatively low annual RH
of less than 200gCm~2a~! was generally observed in ar-
eas with cold and dry climates, such as boreal areas, charac-
terized by low temperatures and short growing seasons and
dry or semiarid regions (e.g., northwestern China), where
water availability limits ecosystem development. However,
the most variable changes in RH over the time from 1980
to 2016, using standard deviation and coefficient of variation
(CV, the ratio of the standard deviation and the mean) as a
proxy (Figs. 2b and S3), were found in boreal regions with
RH higher than 70gCm~2a~! or a CV > 0.7. The majority
of areas of RH variabilities were lower than 30gCm™2a~!
or a CV < 0.3. Similarly, TRENDY RH showed similar pat-
terns, with the highest RH in warm and humid areas and
the lowest RH in cold and dry regions (Fig. S2). How-
ever, differences existed in the absolute RH fluxes (Fig. S2).
For example, CLM4 and VISIT models predicted RH to be
higher than 1400 g Cm~2a~! within Amazon forest regions,
while ISAM and LPJ-GUESS estimates were typically low
at around 1000 g Cm~2a~!. However, the data-derived RH
dataset and Hashimoto RH showed the highest RH fluxes in
tropical regions of about 800gCm~2a~!.

To examine the similarity in the patterns between the
data-derived RH dataset and TRENDY-Hashimoto RH, the
CMP method was employed (Fig. 3). Larger D and lower
CC values indicate less consistent magnitudes and a lo-
cal gradient distributions between the two compared im-
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Figure 3. Comparing the data-derived RH dataset with Hashimoto RH (a, ¢) and mean RH of TRENDY models (b, d) based on absolute
distances (g C m2a-l, a, b) and cross-correlations (¢, d). The absolute distances and cross-correlations were calculated using comparison

map profile method (Gaucherel et al., 2008).

ages. The data-derived RH dataset and Hashimoto RH dif-
fered greatly in eastern Canada and the Middle East with
D values higher 200 gCm™2a~! and CC values lower than
—0.5. Interestingly, the most noticeable differences between
the data-derived RH and mean TRENDY RH occurred in
East Asia and the Middle East, where D was higher than
SOOng_2 a~!, while CCs were around —0.1. When as-
sessing each TRENDY model individually (Figs. S4 and S5),
the differences between the data-derived RH dataset and
TRENDY RH were even larger. The most remarkable dif-
ferences were found for CLM4 and VISIT models in re-
gions where D was above 800 gCm~2a~! with CC values
of about —0.3 (East Asia and America).

Across the latitudinal gradients, zonal mean RH values in-
creased from cold or dry areas (e.g., tundra, and desert or
semiarid areas) to warm or humid areas (e.g., temperate and
tropical areas, Fig. S6). The data-derived RH dataset varied
from 60 4 12 at about 75° N to 640+ 71 gCm~2a~! at the
Equator, reflecting higher resource limitation in high-latitude
areas and lower resource limitation in low-latitude areas. In
the dry tropical areas (10-25°S and 10-25° N) limited by
water, the zonal mean RH decreased slightly. With the in-
crease in water availability, RH showed a second peak in the
Northern and Southern hemispheres around 20° N and 40° S,
respectively. Nonetheless, there was a high level of variabil-
ity between the data-derived RH and TRENDY-Hashimoto
RH in equatorial regions (Fig. S6), with predictions gener-
ally overestimating RH at the Equator. Peak RH values in
the equatorial region ranged from 660 4 65gCm~2a~! for
ORCHIDEE model to above 1200 £460gCm~2a~! for the
CLM4 model, resulting in a considerably higher peak RH
value for the model mean (950 +300g C m~2a~l).

Earth Syst. Sci. Data, 12, 1037-1051, 2020
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Figure 4. Interannual changes in global heterotrophic respiration
(RH) from 1980 to 2016. The grey area indicates 95 % confi-
dence intervals. For the linear regression model, R? =0.429 and
p < 0.01.

3.2 Total RH

Over the last 37 years, the global RH has increased from
55.8PgCa~! (1Pg=1x 10" g) in 1992 to 58.3PgCa~!
in 2010, with an average of 57.24+0.6PgCa~! and strong
annual variabilities (Fig. 4). Compared to the data-derived
RH dataset, TRENDY-Hashimoto RH was underestimated
(Fig. 5a), with the exception of the VISIT model. ISAM pre-
dicted the lowest global RH of 34.8+£0.4 PgCa~!, while the
VISIT model produced the highest RH of 59.9+0.6 PgCa™!
(Fig. 5a). The model mean RH was 47.6 +0.5PgCa~!, un-
derestimating RH by 9.6PgCa~! (16 %) in comparison to
the data-derived RH dataset. Due to this large divergence,
the strength of correlation between the data-derived RH and
TRENDY-Hashimoto RH varied greatly from 0.06 to 0.72
(Fig. 5b). Boreal, temperate and tropical regions were the
three most important contributors for the global RH ac-
cording to the Koppen—Geiger climate classification system
(Peel et al., 2007), contributing 76 % of the total global RH.
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Figure 5. (a) Total global heterotrophic respiration (RH, mean + standard deviation of annual RH from 1981 to 2010) fluxes and (b) the
correlation coefficient analyzed by Pearson correlation between data-derived RH and TRENDY-Hashimoto RH. The dashed red line in (a)

represents the average of data-derived RH from 1981 to 2010.

The mean RH of boreal, temperate and tropical areas were
10.840.3, 12.940.1 and 19.5+0.2PgCa~!, accounting
for 19 %, 22 % and 35 % of the total global RH, respectively
(Fig. S8).

3.3 Trends in RH

Globally, although there was a great interannual variabil-
ity in RH, the total RH has significantly increased at a
rate of 0.036+0.007PgCa~2 from 1980 to 2016 (p =
0.000, Fig. 4). Comparison of the data-derived RH dataset
and TRENDY RH during the period of 1981 to 2010
was performed. The data-derived RH increased at 0.041 &
0.01PgCa~2 (Fig. S7), which was lower than that of
TRENDY RH (0.057 4 0.009 Pg C a—2) and Hashimoto RH
(0.057 £ 0.009 Pg C a~2). Additionally, temporal trends var-
ied greatly among TRENDY models (Fig. S7), with the
largest increasing trend of 0.123 +£0.013 PgCa~2 for LPJ-
GUESS and the largest decreasing trend of —0.018 &+
0.007 PgCa~2 for ISAM.

Temporal trends varied among climate zones. RH in boreal
and temperate areas increased by 0.020 0.004 and 0.007 £
0.002 PgCa’2 from 1980 to 2016 (p < 0.001, Fig. S8), re-
spectively, while RH in tropical areas did not show a signifi-
cant temporal trend, although interannual variabilities were
observed (p = 0.362, Fig. S8). TRENDY-Hashimoto RHs
showed significant increasing temporal trends in boreal, tem-
perate and tropical regions, except in the ISAM and OR-
CHIDEE models (Figs. S9-11). However, the increasing
magnitude varied among different TRENDY models.

From 1980 to 2016, the global RH was expected to be
driven by multiple environmental factors, such as tempera-
ture and precipitation. During this period, MAT and MAP
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Figure 6. The relationships between heterotrophic respiration (RH)
and mean annual temperature (a) or precipitation anomalies (b).
The change was calculated as the difference of each given year to
the average over 1980 to 2016. Grey areas indicate 95 % confidence
intervals.

levels increased significantly by 0.34 +0.032°C and 6.69 +
2.399 mm per decade, respectively (p < 0.01, Fig. S12a
and b). Therefore, the correlations between RH and MAT and
MAP were evaluated. Globally, RH was significantly cor-
related with MAT (R? = 0.56, p < 0.001) and MAP (R? =
0.42, p < 0.001, Fig. 6) anomalies. On average, the global
RH increased by 1.08+0.163PgCa~! per 1°C increase
in MAT and 0.23 +0.046PgCa~! per 10 mm increment in
MAP.

3.4 Spatial pattern of RH trends

Spatially, the data-derived RH trends presented heteroge-
neous geographical patterns (Fig. 2c). Positively increasing
trends of RH were found for more than half of the global land
areas (59 %, calculated from cell areas; Fig. S13). Generally,
the increasing rates of RH were lower than 3gCm™2a2. In
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contrast, the highest RH increase was above 6gCm~2a~2

in boreal regions, such as Russia, northern Canada and the
Tibetan Plateau. RH exhibited a decreasing trend in 41 %
of the global land area and most considerably in South
Asia (Fig. 2c). Similar to the data-derived RH trends, RH
trends estimated by the TRENDY-Hashimoto RH trend
also showed heterogeneous geographical patterns (Fig. S14).
However, large discrepancies were found among TRENDY-
Hashimoto RH (Figs. 2c and S14). Generally, the largest in-
crease in RH trends occurred in boreal areas, except for out-
puts by LPJ-GUESS and LPJ models, which showed a de-
creasing trend for most boreal areas. There was a decreasing
trend across most of the tropics (e.g., Southeast Asia), with
the exception of VEGAS model (Fig. S14).

3.5 Dominant factors in RH annual variability

MAT and MAP were the most important factors dominat-
ing RH in 39 % and 36 % of global land areas, respectively
(Fig. S15), while SWC dominated the remaining 25 % of
global land areas. Spatially, the dominant drivers controlling
RH varied greatly across the globe (Fig. 2d), with the area
dominated by temperature mainly distributed in boreal areas
above 50° N. This was also observed in the relatively high
and positive partial correlation coefficient between tempera-
ture and RH (Fig. S15a). In contrast, precipitation dominated
temperate areas between 25 and 50° N (such as northern
China, the Middle East and America), where a wide distri-
bution of desert or semiarid regions occur, SWC dominated
in tropical areas, such the Amazon, India and Africa. Sim-
ilarly, water availability (SWC and precipitation) were also
main driving factors for RH in Australia.

Spatial patterns in environmental controls on TRENDY-
Hashimoto RH varied greatly compared to the data-derived
RH dataset or among TRENDY models (Figs. 2d and S15-
17). Water availability (including precipitation and SWC)
appeared to be more important than temperature. The per-
centage of the areas dominated by temperature (mainly dis-
tributed in boreal areas, except for in ISAM model out-
puts) was less than the areas dominated by precipitation
and SWC (globally distributed) (Fig. S17). In terms of the
mean TRENDY RH, precipitation dominated most of global
land areas (43 %), followed by SWC (36 %) and temperature
(21 %) (Fig. S15).

4 Discussion

4.1 Annual RH
4.1.1 Comparison with Hashimoto RH

Despite increasing efforts to quantify the global carbon cy-
cle, large uncertainties still remain in the spatial and temporal
patterns in RH. To the best of our knowledge, this is the first
study to apply the RF approach to predict the spatial and tem-
poral patterns of global RH using field observations. Glob-
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ally, the mean RH amounted to 57.240.6 Pg Ca~! from 1980
t0 2016, 13.6 PgCa~! higher than RH from a satellite-driven
estimate (Konings et al., 2019) and 6.4 PgCa~! higher than
Hashimoto RH (Hashimoto et al., 2015). The differences be-
tween the data-driven RH and Hashimoto may be due to
several reasons. Firstly, the two RH products covered dif-
ferent land areas, with the data-derived RH dataset cover-
ing a higher land area. If the data-derived RH dataset was
masked by Hashimoto RH over 1981-2010, the total RH
was 51.8+0.6PgC a—!, close to that of Hashimoto RH with
51.140.7PgCa~! (Fig. S18). However, the spatial and tem-
poral patterns varied greatly (Figs. 3 and 5).

Secondly, the two RH products used different variables
and algorithms for RH predictions. RH was not only af-
fected by temperature and precipitation but also by carbon
substrates, soil nutrient levels and other variables (Hursh et
al., 2017). Besides temperature and precipitation, we also in-
cluded SWC, soil nitrogen and carbon contents as indica-
tors for environmental and nutrient constraints on RH. Con-
versely, Hashimoto RH was estimated from a climate-driven
model including only temperature and precipitation as the
driving variables (Hashimoto et al., 2015). This simple model
can partly explain the reasons that Hashimoto RH could not
capture the significant decrease in RH in 1982 and 1991
due to the El Chichén and Pinatubo eruptions, respectively
(Zhu et al., 2016), while the data-derived RH dataset and
TRENDY RH successfully captured such effects.

Thirdly, the linear model between total soil respiration
and RH was developed based on forest ecosystems (Bond-
Lamberty et al., 2004; Hashimoto et al., 2015), which could
be another uncertainty when applying this linear model to
other ecosystems, e.g., croplands and grasslands.

4.1.2 Comparison with TRENDY models

As the data-derived RH dataset often serves as a bench-
mark for terrestrial biogeochemical models, the data-derived
RH dataset was compared with TRENDY models from
1980 to 2010. Although the data-derived RH dataset lay
within the model range (34.840.4PgCa~! for ISAM to
59.940.6PgCa~! for VISIT, Fig. 5a), the mean TRENDY
RH was underestimated by 16 % compared to the data-
derived RH dataset. Due to the different temporal trends
among TRENDY models and their low spatial correlations
to the data-derived RH dataset (correlation efficiencies rang-
ing from 0.06 to 0.72, Fig. 6b), TRENDY RHs clearly have
different sensitivities to climate variations. Additionally, the
difference in RH magnitude and spatial pattern varied con-
siderably, as shown by analysis of absolute distances and
cross-correlations. This effect was mostly notable in tropical
areas in VISIT and CLM4 models (Figs. S4 and S5). This
phenomenon may be associated with several factors. Firstly,
plant functional types differed among TRENDY models. For
example, the VEGAS model included 4 plant functional
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types (Zeng et al., 2005), while the LPJ model defined 10
plant functional types (Sitch et al., 2003).

Secondly, for each set of equations, constant vegeta-
tion parameters (e.g., photosynthetic capacity) were applied
across time and space for most TRENDY models, which may
induce an RH bias. Model parameters using short-term ob-
servations do not account for the interannual variability of
climatic and soil conditions, generating a simplistic repre-
sentation of RH due to its inability to capture the response
of RH to new environmental controls in short-term observa-
tions.

Thirdly, models that do not consider nitrogen constraint
could overestimate the increasing trend of RH because nitro-
gen limitation was globally observed (LeBauer and Treseder,
2008). This could explain why the CLM4 model with a ni-
trogen constraint produced a much smaller increasing trend
compared to other TRENDY models, with the exception of
ISAM (Fig. S7). Therefore, including soil nitrogen as a driv-
ing variable in modeling RH in this dataset had the advantage
of detecting the nitrogen constraints on RH.

Fourthly, the lack of the representation of human activi-
ties and agricultural management (e.g., fertilization and irri-
gation) may underestimate RH because fertilization and ir-
rigation were important practices to increase RH (Chen et
al., 2018; Zhou et al., 2016). This could explain why five of
seven TRENDY models could not explain the significant in-
creasing change of RH in central China (Fig. S14), which
experienced an intensive use of fertilization for food security
in recent decades.

Finally, uncertainties and differences in model structures
could also lead to inconclusive RH estimations. Although the
same climatic data, e.g., temperature and precipitation, were
used for TRENDY models to reduce the uncertainty caused
by various meteorological forcings, systematic errors may be
caused by applying a particular forcing, and the errors might
be propagated to model outputs (Anav et al., 2015). There-
fore, TRENDY models should be improved by incorporating
more processes such as nutrient constrains and an assessment
of the model response to environmental variability (Keenan
et al., 2012; Wang et al., 2014; Yao et al., 2018Db).

4.2 Linkage to global carbon balance

Assuming that the global ratio of RH / total soil respiration
ranged from 0.56 (Hashimoto et al., 2015) to 0.63 (Bond-
Lamberty et al., 2018), annual soil respiration varied from
90.8 to 102.1PgCa~!, within the reported values of 83 to
108 PgCa~! based on recent studies (Bond-Lamberty and
Thomson, 2010b; Hursh et al., 2017). This indirectly high-
lights the reliability of the use of RF for global RH pre-
diction. Moreover, these findings also have important indi-
cations of carbon balance estimations. According to a re-
cent NPP estimate from observations and IPCC report data
(IPCC, 2013; Li et al., 2017), the global NPP ranged from
61.5 to 60PgCa~!, respectively. The residual between RH
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and NPP (net ecosystem production) was 2.8-4.3PgCa~!,
which is similar to the global estimates of net ecosystem
production from the International Geosphere-Biosphere Pro-
gramme, which ranged from 1.9 to 4.1PgCa~! from 1959
to 2016 (Le Quéré et al., 2013, 2016, 2014). With a 1°C
increase in global MAT, RH will increase by 1.08 PgCa™!
globally, and such an increase is 0.23PgCa~! for a 10mm
increment in global MAP. These findings indicate that car-
bon fluxes from the decomposition of soil organic matter and
litter (RH) may positively feedback to global climate change
— typically characterized by increasing temperature and the
changes in precipitation (IPCC, 2013).

4.3 Dominant factors in RH

Dominant factors driving RH varied spatially. As tempera-
ture and energy were the most limited climatic factors in
high-latitude areas, temperature was a dominant factor for
RH in high-latitude regions above 50° N (Fig. 2d), with low
temperatures leading to low RH (Fig. 2a). Similarly, due to
the limited amount of precipitation, RH in semiarid areas
was mainly controlled by precipitation, which was consis-
tent with both reported field observations (Bai et al., 2008)
and modeling studies (Gerten et al., 2008). SWC control
of RH in tropical areas could be explained by the mecha-
nisms of RH. Excessively high SWC can reduce the diffu-
sion of oxygen, while excessively low SWCs could limit wa-
ter and soluble substrate availabilities, preventing microbial
activities (Luo and Zhou, 2006; Xu et al., 2004). Suseela et
al. (2012) proposed that RH fluxes declined sharply when
volumetric soil moisture reduced below ~ 15 % or exceeded
~ 26 %, which supported the findings of the present study.
However, it should be noted that dominant environmental
controls on spatial carbon flux gradients might vary among
different years (Reichstein et al., 2007), such as with climatic
extremes.

4.4 Temporal variability of tropical, temperate and
boreal areas

RH in tropical areas did not exhibit a significant temporal
pattern between 1981 and 2010 (Fig. S8, p = 0.362), indicat-
ing that in our model climate change did not affect RH fluxes
in these areas. However, RH in boreal and temperature ar-
eas experienced significant increasing trends of 0.0201+0.004
and 0.007 £ 0.002 Pg C a=2, respectively (Fig. S7), suggest-
ing that a positive feedback may occur with climate change.
Tremblay et al. (2018) proposed that the increased RH was
mainly related to the increasing temperature in boreal forest
soils, which supported the findings of the present study. It
should be noted that both the data-derived RH dataset and
Hashimoto/TRENDY RH in boreal areas showed a tempo-
rally increasing trend from 1981 to 2010, although the mag-
nitude of increase differed (Fig. S9). Furthermore, despite the
ISAM model showing a decreasing trend for temperate and
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tropical regions, the ISAM model had an increasing trend in
RH from 1981 to 2010 in boreal areas (Fig. S9). These re-
sults indicate that boreal regions are becoming increasingly
important in global carbon cycling and that the increasing
trend may continue due to a large amount of carbon stored
in soils. Therefore, climate change may fundamentally alter
carbon cycling in boreal areas through changes in the decom-
position rate of soil organic matter (Crowther et al., 2016;
Hashimoto et al., 2015; Schuur et al., 2015). Furthermore,
the response of RH to climate variability varied with climate
zone, indicating that different carbon loss rates from RH will
occur in different regions to climate change.

4.5 Advantages, limitations and uncertainties

Based on the updated SRDB database, we used a RF al-
gorithm to predict the spatial and temporal patterns of RH
at the global scale and its response to environmental vari-
ables, and the data-derived RH could serve as a benchmark
for terrestrial biogeochemical models and reduce RH uncer-
tainties. This data-derived RH dataset provided several ad-
vantages to the estimation of global RH compared to pre-
vious studies, e.g., Hashimoto et al. (2015) and Konings
et al. (2019). Firstly, we compiled up-to-date field observa-
tions from SRDB and peer-reviewed Chinese literatures up
to March 2018, including 504 observations in total covering
the majority global terrestrial ecosystems and climate zones
(Fig. 1). Secondly, total RH and its interannual variabil-
ity were assessed for boreal, temperate and tropical zones,
i.e., the three main global climate zones. Analysis from the
data-derived RH dataset further concluded that RH in dif-
ferent climate zones responded differently to global climate
change. Thirdly, we applied the RF to predict and map RH
at the global scale using climate and soil predictors. Com-
pared to the linear regression analysis for predicting soil res-
piration (as no such global RH predictions were previously
available for comparison) with model efficiencies of < 50 %
(Bond-Lamberty and Thomson, 2010b; Hashimoto et al.,
2015; Hursh et al., 2017), the RF algorithm achieved a higher
model efficiency of 50 %. In addition to a feature selection
according the importance value of each variable and avoid-
ing overfitting (Bodesheim et al., 2018; Jian et al., 2018), the
RF algorithm improved RH modeling accuracies and reduced
uncertainties. Meanwhile, the data-derived RH dataset was
cross-validated globally by a 10-fold cross-validation (see
Sect. 2), which could improve its reliability and feasibility
compared to TRENDY-based RH that was not validated and
calibrated by field observations, bridging the knowledge gap
between local, regional and global scales temporally and spa-
tially with a large number of empirical field measurements.
However, although the data-derived RH dataset could be
used as a benchmark for the verification of global carbon cy-
cle modeling, bridging the knowledge gaps between local, re-
gional and global scales, a few uncertainties and limitations
still remain. Firstly, the RF algorithm constructed a model
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based on the training dataset and was typically data-limited
in terms of quantity, quality and representativeness. Uneven
data distribution has been a known issue in many ecological
studies across the world, e.g., Bond-Lamberty and Thom-
son (2010b), Jung et al. (2011), Xu and Shang (2016), and
Yao et al. (2018a). The RH observations were mainly from
China, Europe and North America, while there were a lack
of RH observations in Russia, Africa, Australia and south-
western Asia in our study. Thus, the uneven coverage of the
observations was an important source of uncertainty to de-
velop the data-derived RH dataset, which may cause a bias
in the RF model towards the areas with more observations.
However, our dataset covered a large climatic and edaphic
gradient covering the major land covers and climate zones.
Therefore, in future studies, increasing field observations in
unsampled areas should greatly improve our ability to eval-
uate spatial and temporal patterns of RH at the global scale
and model the global carbon cycle of climate change.

Secondly, the misrepresentation of human activities, par-
ticularly regarding land management and land use change,
could result in uncertainties in RH (Bond-Lamberty et al.,
2016; Tang et al., 2016). These human activities include both
site-level in situ information and the corresponding global
grids. Otherwise, such information must not have been in-
cluded, as the corresponding site information or globally
gridded datasets are missing or insufficient. Although soil
organic carbon stock, soil nitrogen content, SWC and short-
wave radiation were selected as inputs for the development of
the RF model, which could partly capture land use change,
the impacts of land use change on the interannual variabil-
ity of RH have not been fully qualified in the present study.
Therefore, further efforts are required to characterize and
quantify the effects of land use change on the global RH.

Thirdly, the data-derived RH dataset was derived at an an-
nual timescale, which may cause an additional uncertainty
regarding the interannual variability of RH. Therefore, the
needs for a larger number of global observations and to
develop finer-scale temporal dynamics need further explo-
ration, in combination with remote-sensing measurements
and field observations, which may provide new insights
into terrestrial ecosystem carbon dynamics at the global
scale. Aside from this, without consideration of the tempo-
ral changes of soil organic carbon content from 1980 to 2016,
this might be another uncertainty because the increase in pro-
ductivity driven by CO, fertilization would increase litter in-
put into soils. However, there is a lack of global soil organic
carbon content product that considers its temporal changes
based on observations.

Finally, we developed a global RH at a half-degree spa-
tial resolution, which included a scale mismatch between the
observations and global gridded variables. This could be a
great challenge for spatial modeling and using global gridded
variables with a finer resolution is encouraged to overcome
this limitation (Xu and Shang, 2016). On the other hand, the
study sites were globally distributed and there was a large
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climatic and edaphic gradient covering the major land covers
and biomes, which should reflect a larger variability than the
site-to-grid mismatch.

5 Data availability

The developed globally gridded RH database, the field RH
observation dataset and R codes used to produce the main
results are free to the public for scientific purposes and can be
downloaded at https://doi.org/10.6084/m9.figshare.8882567
(Tang et al., 2019a).

6 Conclusions

A data-derived global RH dataset may be used as a bench-
mark for terrestrial biogeochemical models; however, no
such study has yet been conducted to assess the global vari-
ability in RH using a large dataset of empirical measure-
ments to bridge the knowledge gap between local, regional
and global scales. To fill this knowledge gap, we developed
a globally gridded RH dataset, which was 0.5° x 0.5° from
1980 to 2016 with an annually temporal resolution, using a
RF algorithm by linking field observations and global vari-
ables. Our robust conclusions are as follows. (1) Annual
mean RH was 57.2+0.6 PgC a~! between 1980 and 2016,
with an increasing trend of 0.036 +0.007 Pg C a—2, indicat-
ing an increase in carbon loss from soils to the atmosphere.
(2) Significant temporal trends were observed in the RH in
boreal and temperate areas, although none were found in
tropical regions. This indicates that the temporal trend in RH
varied with climate zone, highlighting their different sensi-
tivities to climate change. (3) The magnitude and dominant
factors of the data-derived TRENDY RH varied greatly, in-
dicating that future efforts should focus on improving the
representation of RH and its response to environmental vari-
ability in terrestrial biogeochemical models. (4) More field
observations are required in areas with limited observational
datasets, with the integration of smaller-scale temporal dy-
namics (rather than annual timescales) potentially providing
new insights into terrestrial ecosystem carbon dynamics at
the global scale. (5) The data-derived RH dataset could serve
as a benchmark to constrain the terrestrial biogeochemical
models, further contributing to improving our understanding
of the mechanisms of global soil carbon dynamics.
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