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Abstract. Multi-scale interactions between the main players of the atmospheric water cycle are poorly under-
stood, even in the present-day climate, and represent one of the main sources of uncertainty among future climate
projections. Here, we present a method to downscale observations of relative humidity available from the Son-
deur Atmosphérique du Profil d’Humidité Intertropical par Radiométrie (SAPHIR) passive microwave sounder
at a nominal horizontal resolution of 10 km to the finer resolution of 90 m using scattering ratio profiles from the
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar. With the scattering ratio
profiles as covariates, an iterative approach applied to a non-parametric regression model based on a quantile
random forest is used. This allows us to effectively incorporate into the predicted relative humidity structure the
high-resolution variability from cloud profiles. The finer-scale water vapour structure is hereby deduced from the
indirect physical correlation between relative humidity and the lidar observations. Results are presented for trop-
ical ice clouds over the ocean: based on the coefficient of determination (with respect to the observed relative hu-
midity) and the continuous rank probability skill score (with respect to the climatology), we conclude that we are
able to successfully predict, at the resolution of cloud measurements, the relative humidity along the whole tro-
posphere, yet ensure the best possible coherence with the values observed by SAPHIR. By providing a method to
generate pseudo-observations of relative humidity (at high spatial resolution) from simultaneous co-located cloud
profiles, this work will help revisit some of the current key barriers in atmospheric science. A sample dataset
of simultaneous co-located scattering ratio profiles of tropical ice clouds and observations of relative humid-
ity downscaled at the resolution of cloud measurements is available at https://doi.org/10.14768/20181022001.1
(Carella et al., 2019).

1 Introduction

The atmospheric water cycle consists of complex processes
covering a wide range of scales. At small scales, the compo-
nents of the atmospheric water cycle – water vapour, clouds,
precipitation (rain and snow), aerosols – interact amongst
each other and with their surrounding environment through
micro-physical, radiative, and thermo-dynamical processes.
At global scales, the atmospheric water cycle interplays with

the global atmospheric circulation and the Earth radiative
balance. These complex multi-scale interactions are not well
understood, and how the global atmospheric water cycle
works in the present-day climate is the subject of intense
research, e.g. within the World Climate Research Program
(WCRP) Global Earth Water cycle Exchanges core project
(GEWEX, http://www.gewex.org/, last access: 19 December
2019) and within the WCRP grand challenge on “cloud, cir-
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culation and climate sensitivity” (https://www.wcrp-climate.
org/grand-challenges, last access: 19 December 2019). Given
this poor understanding, it is challenging to anticipate how
the atmospheric water cycle will evolve in the future as cli-
mate warms (Boucher et al., 2013).

A symptomatic example of this lack of knowledge is the
difficulty state-of-the-art climate models have in reproducing
the observed clouds and precipitation in the present-day cli-
mate (Nam et al., 2012; Cesana and Chepfer, 2012; Zhang et
al., 2005; Kay et al., 2016; Klein et al., 2017; Lacour et al.,
2017). One of the reasons is that small-scale processes act at
space scales and timescales smaller than the model grid box
and smaller than the model time step; therefore, those pro-
cesses are not represented explicitly in climate models. As a
consequence, on a longer term (hundred years), the projec-
tions on how clouds and precipitation will evolve in the fu-
ture differ amongst models (Vial et al., 2016). Observations
collected by field experiments and ground-based sites have
provided essential knowledge on how the atmospheric wa-
ter cycle works at small scales (< 100 m) (Campbell et al.,
2002; Intrieri et al., 2002; Shupe et al., 2006; Long et al.,
2009; Wild, 2009; Manara et al., 2016), but these observa-
tions are sparse and limited in space. Thanks to their global
cover and their long lifetime, satellites have observed the
water cycle components on a global scale for over 25 years
(Gruber and Levizzani, 2008; Raschke et al., 2012; Stuben-
rauch et al., 2013). However, these satellites lack some es-
sential capabilities, such as documenting the detailed verti-
cal structure of the water cycle components. Since 2006, the
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob-
servations (CALIPSO) space lidar (Winker et al., 2017) and
the CloudSat space radar (Stephens et al., 2008, 2018) have
provided a more detailed view of aerosols, clouds, and pre-
cipitation (light rain and snow) on a global scale. These ac-
tive sensors provide new surface-blind detailed vertical pro-
files of aerosols (Liu et al., 2009; Sekiyama et al., 2010),
clouds (Mace et al., 2009; Vaughan et al., 2009; Chepfer et
al., 2010), snow precipitation (Palerme et al., 2014), Arctic
atmosphere (Kay et al., 2008; Cesana and Chepfer, 2012),
light rain precipitation (Lebsock and L’Ecuyer, 2011), atmo-
spheric heating rate profiles, and surface radiation (Kato et
al., 2011; Stephens et al., 2012).

Similarly, atmospheric reanalyses, although suited for the
study of integrated contents of water vapour (Obligis et al.,
2009; Schröder et al., 2017), exhibit noticeable biases in
the tropical water and energy budget on the vertical. As
suggested by comparisons between satellite observations of
single-layer upper tropospheric humidity and atmospheric
reanalyses (Chuang et al., 2010; Chiodo and Haimberger,
2010), reanalyses fail to reproduce the observed vertical cor-
relation structure between the various layers of relative hu-
midity in the upper troposphere, where moisture is mainly
influenced by the shape of the convective detrainment profile
in deep convective clouds (Folkins et al., 2002), together with
drying effects induced by mixing or air intrusion from the

subtropics (Pierrehumbert, 1998; Brogniez et al., 2009). On
the other hand, since 2011, the Sondeur Atmosphérique du
Profil d’Humidité Intertropical par Radiométrie (SAPHIR)
passive microwave sensor has provided over the entire trop-
ical belt (30◦ S–30◦ N) observations of water vapour even in
the presence of (non-precipitating) clouds, which are largely
transparent at frequencies above 100 GHz (Brogniez et al.,
2015). These detailed profiles are observed all over the trop-
ics and thus are good candidates to help improve our current
understanding of how the atmospheric water cycle works.

However, if the new generation of cloud observations from
space has the relevant spatial resolution (60 m vertically,
333 m horizontally, Chepfer et al., 2010) and the global cover
to document processes over the entire Earth, the water vapour
observations do not. The water vapour measured by SAPHIR
is observed at larger spatial resolutions (with a footprint size
at nadir of 10 km), which implies that small-scale horizon-
tal heterogeneities will be missed, critical for understanding
the full water cycle processes. To better understand the at-
mospheric water cycle and the multi-scale interplays, it is
thus of strong interest to build a pseudo-observations dataset
that contains, over the entire tropical belt and during several
years, simultaneous co-located profiles of water vapour and
clouds at a high spatial resolution relevant to process stud-
ies (480 m vertically and 330 m horizontally, Chepfer et al.,
2010). It is the purpose of this paper to build such a pseudo-
observation dataset.

When combining measurements from different platforms,
care must be taken to account for the different spatial reso-
lutions of the instruments (Atkinson, 2013). For spaceborne
instruments, the horizontal spatial resolution or support is
determined by the sensor’s instantaneous field of view and
is approximately equal to the size of a pixel in an image
provided by that sensor. Although ideally we would like all
spaceborne measurements to have the finest possible hori-
zontal spatial resolution, in practice there is a limit imposed
by the trade-off between spatial resolution, revisit time, and
spatial coverage: on the one hand, CALIPSO and CloudSat
provide images with a fine horizontal spatial resolution (see
Sect. 2.2) but have a sparse coverage and a long revisit time
due to their polar orbiting; on the other hand, SAPHIR, ow-
ing to the low inclination of its orbit, is characterized by a
much higher revisit frequency and a more complete coverage
but has a lower horizontal spatial resolution (see Sect. 2.1).
The support therefore provides a limit on what a spaceborne
sensor can retrieve and effectively acts as a “filter on reality”
(Atkinson, 2013): different instruments with different sup-
ports will indeed view the Earth differently.

Statistical downscaling methods (Bierkens et al., 2000;
Vaittinada Ayar et al., 2015) involve reconstructing a coarse-
scale measured variable at a finer resolution based on statisti-
cal relationships between large- and local-scale variables. Al-
though the typical application for these methods is to derive
sub-grid-scale climate estimates from GCM outputs or re-
analysis data to drive impact studies (Gutierrez et al., 2018),
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recent studies have started adopting the standard downscal-
ing techniques to enhance the resolution of satellite images
using available covariate data at a finer resolution (Liu and
Pu, 2008; Malone et al., 2012). Following the approach taken
in these studies, here we are interested in modelling, at the
finer scale of the cloud measurements, the statistical rela-
tionship between the water vapour layered-vertical structure
associated with ice clouds in the tropical belt and the ver-
tical profiles of clouds provided by CALIPSO. The method
employed in this study provides a general framework to ef-
fectively perform a downscaling of SAPHIR observations of
relative humidity and, for unsampled locations and times, to
predict the (downscaled) relative humidity (RH) layered pro-
files using cloud profiles only. The main interest of this study
is to test a statistical approach to overcome the barrier of the
coarse footprint size of the radiometer, which implies that
small-scale heterogeneities in the RH field are missed. The
coarse vertical resolution is also critical, especially in cases
where there are strong vertical gradients of moisture. For in-
stance, at the top of the atmospheric boundary layer over the
oceans in regions of shallow clouds (stratocumulus or cu-
mulus) the boundary layer can be really moist, near satura-
tion, whereas the free troposphere above can be extremely
dry. Similarly, at the upper troposphere–lower stratosphere
boundary, the moisture is really low, and this is critical for
the ozone budget. However, downscaling the coarse vertical
resolution is a different topic that could indeed be tackled
with similar approaches, but requires different sets of prox-
ies, and will be addressed in future work.

The paper is organized as follows. In Sect. 2 we present
the satellite data sources used in this study and in Sect. 3
we discuss the physical background for our approach and its
related limitations; Sect. 4 describes the downscaling method
used to downscale water vapour observations from vertical
cloud profiles; results are discussed in Sect. 5 and, finally,
conclusions and future perspectives are drawn.

2 Data

2.1 SAPHIR

SAPHIR is a cross-track passive microwave sounder onboard
the Megha-Tropiques mission. It observes the Earth’s atmo-
sphere with an inclination of 20◦ to the Equator, a foot-
print size at nadir of 10× 10 km2, and a 1700 km swath
made of scan lines containing 130 non-overlapping foot-
prints (for more details, see e.g. Brogniez et al., 2016, and
references therein). SAPHIR provides indirect observations
of the RH in the tropics (28◦ S–28◦ N) by measuring the up-
welling radiation with six double-sideband channels close to
the 183.3 GHz water vapour absorption. In this line of strong
absorption of radiation by water vapour, the measured ra-
diation is affected by both the absorber amount (the water
vapour) and the thermal structure, making the retrieval of RH

more straightforward and less dependent on a priori temper-
ature or absolute humidity data (Brogniez et al., 2013).

In this work, we used the layer-averaged RH (six lay-
ers distributed between 100 and 950 hPa) derived by Brog-
niez et al. (2016), which is available for the period Octo-
ber 2011–present. In this study, the authors adopted a purely
statistical technique to retrieve for each atmospheric layer
the full distribution of RH from the space-borne observa-
tions of the upwelling radiation and training RH data derived
from radiosonde profiles. This retrieval scheme was found to
have similar performances compared to other methods that
also rely on some other physical constraints (e.g. the surface
emissivity, temperature profile, and a prior for RH profiles
for brightness temperature simulations). Figure 1a shows an
example for each atmospheric layer of the mean of the re-
trieved RH distribution, derived as detailed in Brogniez et al.
(2016).

Given the purpose of this study, we also note that the re-
trieval of RH from the SAPHIR microwave sounder is not
biased by the presence of ice particles as soon as the ice crys-
tals are small enough not to scatter the microwave radiation
(Burns et al., 1997). Situations with large ice crystals, such
as those produced during strong convective events, are dis-
carded during the processing of the SAPHIR measurements
(Brogniez et al., 2016).

2.2 CALIPSO

The lidar profiles in the CALIPSO GCM-Oriented Cloud
Product (CALIPSO-GOCCP, Chepfer et al., 2010) are de-
signed to compare in a consistent way the cloudiness de-
rived from satellite observations to that simulated by gen-
eral circulation models (GCMs, Chepfer et al., 2008).
CALIPSO-GOCCP is available for the period June 2006–
December 2018. CALIPSO is a nearly Sun-synchronous
platform that crosses the Equator at about 01:30 LST
(Winker et al., 2009) and carries aboard the Cloud-Aerosol
LIdar with Orthogonal Polarization (CALIOP). CALIOP ac-
cumulates data of the attenuated backscattered (ATB) profile
at 532 nm over 330 m along track with a beam of 90 m at the
Earth’s surface. The lidar scattering ratio (SR) is measured
relative to the backscatter signal that a molecular atmosphere
(without clouds or aerosols) would have produced. Within a
cloud the SR value represents a signature of the amount of
condensed water within each layer convoluted with the opti-
cal properties of the cloud particles that depend on their size
and shape. Values of the SR greater than 5 are taken as indi-
cations of layers containing clouds (Fig. 1b; see Chepfer et
al., 2010, for more details). On the other hand, values of SR
lower than 0.01 correspond to layers that are not documented
by CALIPSO. Indeed, layers located below clouds opaque to
radiations are not sounded by the laser (Guzman et al., 2017;
Vaillant de Guélis et al., 2017).

Following Chepfer et al. (2010), layers corresponding to
values located below the surface (SR=−888), rejected val-

www.earth-syst-sci-data.net/12/1/2020/ Earth Syst. Sci. Data, 12, 1–20, 2020
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Figure 1. (a): RH (mean) observed by SAPHIR for all six pressure layers in the Indian Ocean on 2 January 2017 between 03:38 and
06:45 UTC. Overlaid is the CALIPSO track line (red line). (b): example of the SR profile measured by CALIPSO. (c): schematic represen-
tation of SAPHIR–CALIPSO co-location: M = 1, . . .,N SAPHIR measurements at coarse resolution encapsulating m= 1, . . .,n(M) finely
resolved CALIPSO observations.

ues (SR=−777), missing values (SR=−9999), and noisy
observations (−776< SR< 0) were all set to missing. More-
over, in order to reduce the noise and the number of missing
data, each SR profile (40 equidistant layers with a height in-
terval of 480 m) was averaged as follows: in the boundary
layer (below 2 km), the original vertical spacing was used
(four layers in total), while, above, the layers were aver-
aged every 1 km, giving in total p = 21 vertical layers. Only
the averaged SR profiles without any missing layer were re-
tained: the choice of setting to missing all noisy layers im-
plies retaining mostly night-time data only (after exclud-
ing the averaged profiles with missing layers, the percent-
age of day-time profiles dropped from about 50 % to less
then 15 %).

3 Physical approach and related limitations

Among the clouds forming in the troposphere, tropical ice
clouds are of particular interest, because of their exten-
sive horizontal and vertical coverage and their long lifetime
(Sassen et al., 2008), and above all because they are inti-
mately related to water vapour (Udelhofen and Hartmann,
1995).

This work is based on the following physical assumption:
the small-scale cirrus cloud properties’ (microphysics and
contours) variations interplay with the small-scale relative
humidity (mixed of water vapour amount and temperature)
variations. Indeed, cirrus clouds are composed of ice crystals,
and ice crystal microphysical processes, such as nucleation,
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growth, and evaporation, depend on the presence of ice nu-
clei, water vapour amount, and local cold temperatures. As a
consequence, the latter influence the cloud contours, the den-
sity of the ice crystals within the cirrus clouds, as well as the
ice crystal sizes and shapes. These ice microphysical pro-
cesses are embedded in large-scale atmospheric circulation
and in local dynamical motions.

In this study, we rely on the physical interplay between the
small-scale variations in the cloud properties (microphysics
and structure/contours) and the small-scale relative humidity
variations to downscale coarse observations of relative hu-
midity to higher resolution (smaller scale).

For instance, at the microphysical scale the available wa-
ter vapour is used for the growth of the ice crystals, which
explains partly the drying of the upper troposphere during
the formation of thin cirrus (Jensen et al., 1996; Rosenfield,
1998). Detrainment of moisture induced by the evaporation
of droplets, yielding to situations of in-cloud supersaturation
of water vapour, has also been highlighted around optically
thick ice clouds (Krämer et al., 2017; Hoareau et al., 2016).

To characterize the small-scale variation in the cloud prop-
erties (microphysics and cloud contours), we use cloud ob-
servations at high resolution (< 500 m) collected with the
CALIPSO space lidar. CALIPSO does not directly observe
the particle microphysical properties, but it observes the li-
dar scattering ratio (SR) profiles that depend on the amount
of condensed water and therefore on a mix of concentration,
size, and shape of ice crystals in the atmosphere (Cesana and
Chepfer, 2013) as stated in the standard lidar equation. SR in-
creases from 1 to 80 with the amount of condensed ice in the
atmosphere, only when the cloud optical depth < 3, which
is the case for most ice clouds. Indeed, the variations ob-
served in the values of the SR are caused by small-scale vari-
ations in the cloud properties: these variations are primarily
driven by the ice crystal number concentration and secondly
by the variations in the phase (single phase or mixed phase),
the shape, and the size phase of the particles. In the absence
of clouds, the ice crystal number concentration is zero, and
SR< 5, which delimits the contours of the cirrus cloud.

As there is an “indirect correlation” between ice particles
(shape, size, density, etc.) and RH, we can reasonably expect
some correlation between SR profiles from CALIPSO and
water vapour profiles. For a given profile the vertical varia-
tions of SR are modulated by the in-cloud variations in the
vertical velocity, forced by large-scale dynamics, which af-
fect the RH through the condensation and the evaporation of
cloud droplets (see Korolev and Mazin, 2003, and references
therein). Added together, these properties influence and af-
fect the surrounding RH.

Therefore, in the following, we assumed that the RH re-
trieved from SAPHIR can be reasonably linked to ice clouds
measured by CALIOP. Even further, we assumed that the
measurements of ice clouds by CALIOP can be used to pre-
dict a particular RH profile. Although the approach that we
present in this study could in principle be extended to other

cloud types, here we decided to focus on ice clouds over the
ocean, for which the connection to water vapour is docu-
mented as being strong.

To avoid any misuse of the RH high-resolution pseudo-
observation dataset built in this paper, we remind the reader
that the small-scale water vapour is not measured directly by
the CALIOP lidar. The small-scale water vapour is deduced
from the indirect physical correlation between RH and the li-
dar observations. For this reason, the high-resolution dataset
of RH pseudo-observations is not applicable for the follow-
ing purposes: (1) to prove a correlation between water vapour
and cloud observations from other lidar products and (2) to
prove a correlation between water vapour and cloud proper-
ties.

4 Methods

A three-step method was applied to downscale water vapour
observations from vertical cloud profiles. First, we co-located
SAPHIR and CALIPSO observations (Sect. 4.1); then, using
a statistical clustering technique, we selected only CALIPSO
profiles corresponding to ice clouds (Sect. 4.2), and finally
we applied the downscaling method (Sect. 4.3).

4.1 SAPHIR–CALIPSO co-location

To identify the times and locations where the orbits of
SAPHIR and CALIPSO overlap, we first extracted all the
observations at nadir falling within a distance of 50 km and
within 30 min (for details of the software used for the co-
location of the orbits, see http://climserv.ipsl.polytechnique.
fr/ixion, last access: 19 December 2019). SAPHIR mea-
surements (both at and off nadir) corresponding to the se-
lected orbits were then matched to CALIPSO observations
falling within each SAPHIR pixel, defined as the 10 km cir-
cle around its geographical coordinates (see Fig. 1c). In the
following analysis, each SAPHIR measurement at coarse
resolution (M = 1, . . .,N ) encapsulates n(M) CALIPSO ob-
servations at a fine scale (m= 1, . . .,n(M)), where n(M)
changes depending on the spatial alignment of the two satel-
lites. Figure 2 shows a sample of co-located CALIPSO and
SAPHIR profiles. For SAPHIR measurements both the mean
and the standard deviation of the retrieved distribution are
shown. As Fig. 2c shows, larger uncertainties in the retrieved
RH are expected at lower altitudes because of the distribu-
tion of the sounding channels of the radiometer and because
of their bandwidth (Clain et al., 2015). The latter is narrow
(0.2 GHz) for the central channels of the 183.31 GHz absorp-
tion line, which translates into a low uncertainty for the up-
per tropospheric estimates, and it stretches (2 GHz) for the
channels located in the wings of the line, implying a larger
uncertainty for the retrieval. In this study, we did not account
for errors in the RH retrieval (we used the mean of the RH
distribution from the retrieval algorithm), but this point can
be further developed in future studies.
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6 G. Carella et al.: Statistical downscaling of water vapour satellite measurements

Figure 2. Reconstructed SR profiles for a selection of CALIPSO samples in the Indian Ocean, July 2013 (a), and co-located RH observations
from SAPHIR (mean and uncertainty (standard deviation), b and c). As in Chepfer et al. (2010), SR> 5 correspond to cloudy observations,
0< SR< 0.01 (light yellow) correspond to fully attenuated observations, 0.01< SR< 1.2 (grey) correspond to clear sky, and 1.2< SR< 5
(dark yellow) correspond to unclassified observations. Note that the reconstructed SRs were only used for layers indicating clouds to avoid
mixing of cloud and clear-sky values. The x axis represents the co-location index. Overall, RH measurements with a standard deviation larger
than 30 % might be considered very uncertain.

4.2 Selection of tropical ice cloud profiles

In order to select only profiles characterized by tropical ice
clouds, the co-located samples were separated into clusters
based on indicators of the types of clouds present at the mo-
ment of the observation.

The clusters were obtained by a k-means unsupervised
classification of the reconstructed SR profiles (e.g. Lloyd,
1982) rather than using the cloud-phase flags associated with
each vertical level as defined in Cesana and Chepfer (2013)
(e.g. a profile corresponding only to clear-sky and liquid ob-
servations is classified as LIQUID; see the caption in Fig. 3
for more details). In fact, by averaging the SR profiles above
the boundary layer to a 1 km resolution with the aim of re-
ducing the noise and the amount of missing data, we also had
to apply the same averaging procedure to the cloud-phase
flag profiles in order to maintain a coherence between the SR
profiles used in the regression model and the corresponding
cluster.

The reason for using a statistically based clustering ap-
proach is 2-fold. First, the “mixed” flags resulting from the
averaging procedure require some physical interpretation of
these mixed pixels (e.g. do ICE-MIX, ICE-LIQ-MIX profiles
represent the same vertical cloud structure?), while a statis-
tically based clustering method encompasses this problem.
Additionally, by using the k-means approach, which allows
us to increase the number of clusters, the method might be
better generalizable to boundary-layer clouds. The latter are
in fact characterized by a much larger variety in the SR verti-
cal structure (cf. Fig. 2), which leads to more varied profiles
(not shown) when using a global cloud flag that does not ac-
count for the order of the pixel values.

Prior to clustering, and for clustering only, in order to fur-
ther reduce the noise in the SR profiles, these were trans-
formed using a principal component analysis (PCA, von
Storch and Zwiers, 1999), where 90 % of the variance was
retained. Moreover, since layers with SR values in the same
range are associated with the same micro-physical properties,
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Figure 3. Mean SR profile per cluster for different choices of the clustering method (Indian Ocean, July 2013). (a): mean SR profile per
cluster obtained by a k-means classification setting k = 8. (b): as (a) but setting k = 13. (c): mean SR profiles per cluster derived by combining
the cloud-phase flags in Cesana and Chepfer (2013). ICE: observations classified as ice only. LIQUID: observations classified as liquid only.
MIX: profiles containing SR values derived by averaging observations classified as liquid and observations classified as ice. UNDEFINED:
observations for which the cloud-phase flag in Chepfer et al. (2010) is “undefined”, “horizontally oriented”, or “unphysical”. The cluster type
is then defined as the combination of these flags. Profiles characterized by other combinations of flags (e.g. FALSE LIQUID, FALSE ICE)
correspond to fewer than 250 observations and have been omitted. Selected anvil-type clusters are outlined by a red square.

the reconstructed SR profiles were first binned according to
the interval boundaries suggested in Chepfer et al. (2010),
as detailed in Fig. 5 in their study. Given an optimal num-
ber of clusters (k), this method partitions the observations
into k clusters with each observation belonging to the cluster
with the nearest mean by minimizing the within-cluster-sum
of squares (wss). Since the initial assignment of the obser-
vations to a cluster is random, the algorithm is run several
times (here 100) and the partition with the smallest wss is
chosen amongst the different ensemble members. However,
when k is not known a priori, it must be selected from a range
of plausible values (here: k ∈ {2, . . .,15}) and chosen so that
adding another cluster does not produce a drastic decrease in
wss and therefore does not improve significantly the quality
of the clustering. For example, for reconstructed SR profiles
in July 2013 over the Indian Ocean, this criterion yields be-
tween 8 and 13 clusters (not shown).

As Fig. 3 shows, both clusters named “1” derived by k-
means with k = 8 and k = 13 show a similar mean SR pro-
file, with layers classified as cloudy mostly in the upper tro-
posphere. As a further check that these profiles indeed corre-
spond to ice clouds, we compared the k-means result with the
clusters derived by combining the cloud-phase flags associ-
ated with each vertical level. As Fig. 3 shows, a similar char-
acteristic SR profile is again observed for the cloud-phase
flag-based profiles classified as ICE/ICE-MIX.

This is further confirmed by the analysis of the distance
between the mean SR profile for each k-means-derived clus-
ter and that classified by the ICE/ICE-MIX phase flag, which
was found to be smallest for the clusters named “1” for
both k = 8 and k = 13. The distance was computed as the
weighted Euclidean distance between each pixel of the mean
SR k-mean-derived profile and the corresponding pixel in the
mean ICE/ICE-MIX SR profile, with weights defined by the
presence/absence of clouds (we used unitary weights if both
pixels were cloudy (SR> 5) and a weight of 9999 other-
wise).

Therefore, in the following, the k-means classification is
used to select all SAPHIR–CALIPSO co-located observa-
tions belonging to SR clusters characterized by this typical
mean SR profile (in Fig. 3, clusters outlined by a red square).

4.3 Downscaling of water vapour measurements from
cloud profiles

Given the SAPHIR–CALIPSO co-located samples belong-
ing to ice cloud-type clusters as derived in the previous
section, SAPHIR relative humidity at the lth pressure level
(RHl , here corresponding to the mean of the distribution in
Brogniez et al., 2016), can be estimated in terms of an un-
known function 8 of the SR profile

RHl ∼8(SR1,SR2, . . .,SRp), (1)
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where SR1,SR2, . . .,SRp designate SR at each altitude level
(p = 21, following the vertical averaging implemented as de-
scribed in Sect. 4.2) and here represent the covariate data
sources, also known as predictors. The method to downscale
SAPHIR observations of relative humidity from CALIPSO
SR profiles consists of a two-stage regression model imple-
mented directly at the observed spatial resolution (Liu and
Pu, 2008; Malone et al., 2012). First, RHl is estimated based
on the chosen statistical regression model (Sect. 4.3.1). Sec-
ondly, the same regression model is applied iteratively to the
predictions R̂Hl , and at each iteration step the multi-site re-
sults are corrected to harmonize the average of the estimates
at fine resolution with its value at a coarser scale (Sect. 4.3.2).

4.3.1 Choice of the regression model

The aim of this section is to compare different regression
models for RHl given the set of predictors SR1,SR2, . . .,SRp
and to select the model with the “best” predictions in a sense
that will be clarified later. The models tested in this study are
summarized in Table 1.

Random forests (RFs, Breiman, 2001), similarly to other
machine learning techniques, do not require us to specify
the functional form of the relationship between the response
variable and the predictors and, provided with a large learn-
ing sample, have been shown to perform well (Hastie and
Tibshirani, 2009) in the context of prediction of a response
variable even with a non-linear relationship with a set of pre-
dictors. RF belongs to the family of classification and regres-
sion decision trees (Breiman et al., 1984). Decision trees split
the predictor space into boxes (or leaves) such that the homo-
geneity of the corresponding values of the response variable
in each box is maximized. For regression trees, the homo-
geneity is defined as the sum of the residual sum of squares
(rss) with respect to the mean of the response variable within
each box. As described in detail for example in Hastie and
Tibshirani (2009), this method is implemented by sequen-
tially splitting the predictor space into the regions xi < c and
xi ≥ c, where the predictor xi and the cutting point c give
the greatest possible reduction in rss. This binary split is re-
peated until a minimum number of observations in each leaf
is reached or because of an insufficient decrease in rss. An-
other possibility, which prevents overfitting, is to grow a tree
with a large number of leaves but prune it at each split by
controlling the trade-off between the tree complexity (i.e. the
number of leaves) and the fit to the data. Finally, the model
estimate of the response variable is given by the mean of all
the observations in each terminal leaf and, for predictions for
a new set of values of the predictors, one has then simply to
follow the path in the tree until the final leaf is found. In or-
der to reduce the variance in the predictions, Breiman (1996)
proposed to grow a tree on several bootstrapped samples of
the original data and then take the average result from the
different trees (bagging). This approach is justified by the
property that by taking the average of N independent obser-

vations with variance σ 2 we reduce the variance by σ 2/N . To
avoid overfitting, the number of bootstrapped samples and
that of the corresponding trees can be adjusted, while the
trees are not pruned. With RF, the variance in the predic-
tions can be even further reduced by retaining at each split
a random selection from the full set of predictors, therefore
reducing the correlation between the trees generated by boot-
strapping only.

Bagging and RF only estimate the conditional mean of
the response variable but not its distribution, which can give
information on the uncertainty in the predictions. On the
other hand, quantile regression forests (QRFs, Meinshausen,
2006), by computing the cumulative distribution function
(CDF) of the response variable in each terminal leaf instead
of its mean, represent a straightforward extension of the RF
method, allowing us to estimate any quantile of the response
variable.

Non-parametric methods, like RF and QRF, do not allow
us to specify the functional form of the relationship between
the response variable and the predictors. For this reason, we
also tested the results obtained with a generalized additive
model (GAM, Hastie and Tibshirani, 1986), which is a sta-
tistical semi-parametric regression technique. A GAM is a
generalized linear model (GLM) with predictors involving a
sum of non-linear smooth functions:

g
(
E
[
y|x
])
=

p∑
i=1

fi (xi)+ ε, (2)

where g(·) is a link function between the expectation of the
response variable y (here the RH of an atmospheric layer
l) conditionally on a set of p predictors x1, . . .,xp (here
SR1, . . .,SRp) and a sum of unknown univariate smooth
functions of each predictor, fi(·). ε represents a zero-mean
Gaussian noise. Here, RHl is assumed to follow a beta dis-
tribution, which is the usual choice for continuous propor-
tion data, and its canonical link function, the logit g(x)=
log

(
x

1−x

)
, is used (Wood, 2011), which ensures that all val-

ues are in the (0,1) interval. To estimate each f , we can rep-
resent it as a weighted sum of known basis functions zk(·),

f (x)=
∑
k

βkzk (x) , (3)

in such a way that Eq. (2) becomes a linear model, and
only the βk are unknown. Here, we chose to represent the
basis functions as piecewise cubic polynomials joined to-
gether so that the whole spline is continuous up to the sec-
ond derivative. The borders at which the pieces join up are
called knots, and their number and location control the model
smoothness. To fit the model in Eq. (2), we used the ap-
proach of Wood (2011): the appropriate degree of smooth-
ness of each spline is determined by setting a maximal set
of evenly spaced knots (i.e. bias(f )� var(f )) and then con-
trolling the fit by regularization, by adding a “wiggliness”
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Table 1. Summary of the regression models tested in this study.

Model Model type Spatial correlation Prediction type

RF Non-parametric – Conditional mean
QRF Non-parametric – Conditional quantiles
GAM Semi-parametric – Conditional mean
GAM with GMRF smoother Semi-parametric Neighbour structure Conditional mean
Geoadditive Semi-parametric Exponential correlation function Conditional mean

penalty
∫
f ′′(x)dx = βT S β to the likelihood estimation:

L(β)−βT Sβ, (4)

where L is the likelihood function of the β parameters and
S the penalty matrix, with elements for the kth–̃kth terms
Skk̃ =

∫
z′′k (x)z′′

k̃
(x)dx .

Ideally, we would like to account for a neighbouring struc-
ture; i.e. neighbouring SR profiles should be characterized by
similar model parameters. This effect can be accounted for
by assuming, under the Markovian property, that the model
parameters for themth profile are independent of all the other
parameters given the set of its neighbours N (m). This neigh-
bouring structure can then be modelled by adding to Eq. (2)
a smooth term with penalty

0(γ )=
n∑

m=1

∑
m̃∈N (m)

(γm− γm̃)2, (5)

where γm is the smooth coefficient for region m and N (m)
denotes the elements of N (m) for which m̃ > m. The penalty
in Eq. (5) can be then rewritten as 0(γ )= γ T Sγ with Smm̃ =
−1 if m̃ ∈N (m) and Smm̃ = n(m) where n(m) is the num-
ber of profiles neighbouring profile m (not including m it-
self). This specification is very computationally efficient,
given the sparsity of the parameters precision matrix, and is
known as a Gaussian Markov random field (GMRF, Rue and
Held, 2005). Here, we implemented this augmented model
by defining two CALIPSO SR profiles as neighbours if they
belong to the same SAPHIR pixel.

Another possibility, although more computationally ex-
pensive, is to explicitly include in our model the spatial corre-
lation structure of the predictors by a fusion of geostatistical
and additive models, known as geoadditive models (Kam-
mann and Wand, 2003). These models allow us to account
not only for the non-linear effects of the predictors (under
the assumption of additivity), but also for their spatial dis-
tribution: two SR profiles, and therefore the corresponding
water vapour structures, are more likely to be dependent if
they are close by some metric. Given a set of geographical
locations s, a (bivariate) smooth term f (s) can be represented
as the random effect f (s)= (1, sT )γ +

∑
jwjC(s,sj ), with

w ∼N (0, (λC)−1), γ a vector of parameters and C(s,sj )=
c(||x− xj ||) a non-negative function such that c(0) = 1 and

lim
d→∞

c(d)= 0, which is interpretable as the correlation func-

tion of the smooth f (Wood, 2011). By adding this term to
the model in Eq. (2), we explicitly include the spatial auto-
correlation in the SR data without changing the mathematical
structure of the minimization problem, and we can still use
the GAM basis-penalty representation (Wood, 2011). Here,
we assumed an isotropic exponential correlation function
C(s,sj )= exp(− ‖ s−sj ‖ /r) with the range r chosen equal
to the size of SAPHIR pixels (10 km).

Following Ferro et al. (2008), Ferro (2014), and Taillardat
et al. (2016) in assessing the prediction skills of such models,
scoring rules can be used to assign numerical scores to prob-
abilistic forecasts and measure their predictive performance.
Given an observation y, for a model ensemble forecast with
members x1, ..,xK , a fair estimator (Ferro, 2014) of the con-
tinuous ranked probability score (CRPS) is

CRPS(y)=
1
K

K∑
i=1
| xi − y | −

1
2K (K − 1)

K∑
i=1

K∑
j=1
| xi − xj |, (6)

where lower values of the CRPS indicate better predictive
skills. For regression techniques that estimate the conditional
mean only (RF, GAM, GAM with GRMF, and the geoaddi-
tive method), the CRPS score accounts only for the accuracy
of the forecast (the second term in Eq. (6) is zero), while
for probabilistic methods, like the QRF method, it also ac-
counts for the forecast precision. Typically, in order to di-
rectly compare a prediction system to a reference forecast
(e.g. a climatology), the continuous ranked probability skill
score (CRPSS) is needed:

CRPSS= 1−
CRPSmod

CRPSref
. (7)

The CRPSS is positive if and only if the model forecast is
better than the reference forecast for the CRPS scoring rule.

4.3.2 Iterative downscaling

Following the approach of Liu and Pu (2008) and Malone et
al. (2012), the predictions were further optimized by ensuring
that, for all layers, the observed relative humidity is as close
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as possible to the average of the predicted RH distributions
within the corresponding encapsulating SAPHIR pixel. This
approach is meant to preserve the so-called “mass balance”
with the coarse-scale SAPHIR information and can be easily
implemented with the following iterative approach:

1 within each SAPHIR pixel (M), update the pre-
dictions R̂Hl : R̃Hl(m)= R̂Hl(m)+RHl(M)−

1
n(M)

∑
j∈n(M)R̂Hl(j );

2 with the chosen regression model, regress the updated
predictions R̃Hl with respect to the set of predictors
SR1,SR2, . . .,SRp;

3 if the coefficient of determination (R2) with respect to
the observed relative humidity RHl(M) of the updated
predictions is larger than that of the previous iteration,
then repeat steps 1–2; otherwise, stop at the previous
iteration.

For ensemble models, like QRF, the update predictions and
R2 are computed on the median of the distribution only.

4.3.3 Remarks on the definition of the term
“downscaling”

The downscaling scheme presented in this study differs from
the classical downscaling approach where local variables,
generally point-scale observations, are generated from large-
scale variables, available at the much coarser grid-scale res-
olution typical of climate models and reanalysis outputs, and
some point-scale covariate(s) at the same fine-scale spatial
resolution as the response variable (e.g. elevation data). For
this purpose, amongst other methods, regression-based meth-
ods have also been used (e.g. Vrac et al., 2007), where the
model is trained on the available local variables, representing
the ground truth. In this case, the evaluation of the fidelity of
the downscaling is straightforward, as one can compare the
predictions from the model to local observations that were
not used for training (e.g. Vaittinada Ayar et al., 2015).

However, in the case presented in this study, no RH ob-
servations at the horizontal resolution of the cloud measure-
ments (or higher) are available such that they, when co-
located with CALIPSO data, provide a large enough train-
ing or even testing set for the regression model. This means
that in order to obtain some estimates of RH that vary with
cloud profiles, we are forced to take the opposite approach,
where the coarse RH observations measured by SAPHIR are
taken as the ground truth and are regressed against the cloud
profiles. Given that the cloud profiles are measured at finer
resolution, we refer to the predictions derived in this way as
downscaling, since we can incorporate the higher-resolution
variability of the covariates into the estimates of the response
variable.

In this context, without some additional independent val-
idation with high-resolution measurements, the accuracy of

the predictions cannot be directly assessed since the model
error cannot be quantified at the level of the finer-resolution
observations. On the other hand, by adopting the QRF model,
we are able to provide uncertainty estimates in the model
predictions that account for the RH variability (at the reso-
lution of the coarse-scale measurements), while applying the
“mass-balance” correction ensures the best possible consis-
tency with the original measured values.

Clearly no point-to-point validation can be reasonably per-
formed considering the timescales of in situ or ground-based
measurements vs. satellite measurements. However, it might
still be possible to gain insights into the quality of the down-
scaling by statistically comparing the RH distributions from
available higher-resolution instruments (e.g. water vapour
profiles from lidar collected by recent airborne field cam-
paigns) and the downscaled profiles derived with the method
presented in this study. Nevertheless, this will require exten-
sion of the method on all years and locations of available data
as well as to other cloud types, which is beyond the scope of
the present study.

The fact that within the framework presented in this study,
at the finer resolution scale, the model error cannot be di-
rectly separated from the variability in the response variable
might create some confusion regarding the meaning of the
term “downscaling” as adopted here. Nonetheless, for the
model estimates, the variance explained by the cloud pro-
files is, by construction, higher than that for SAPHIR mea-
surements, and this serves as a justification for the downscal-
ing term: the predictions from the model are better corre-
lated with the higher-resolution cloud profiles and can there-
fore be considered a downscaled product in the sense dis-
cussed above.

5 Results and discussion

Figure 4 shows, for ice cloud profiles in the Indian Ocean in
July 2013 (k = 8), the comparison of the CRPSS computed
for the forecast derived for the different regression methods
(QRF, RF, GAM, GAM with GRMF, and the geoadditive
method) with respect to the reference CRPS computed from
the empirical distribution of the observations. In order to val-
idate the regression results with independent test data, the
predictions were performed using a 5-fold cross-validation
scheme. However, in order to reduce the computation time,
cross-validation was limited to the first iteration step, as, at
this point, we were interested in comparing the performance
of the different models rather than performing the full down-
scaling. For the RF and QRF methods, the sensitivity of the
results to the model parameters (number of trees and num-
ber of predictors selected at random at each split) was also
investigated using a grid search; however, for both models,
variations in the prediction skills (in terms of both R2 and
the CRPSS score) were found to be negligible with respect
to the choice of these parameters that were therefore set to
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Figure 4. CRPSS for ice cloud profiles (k = 8) in the Indian Ocean, July 2013: QRF (red solid line), RF (blue dashed line), GAM (dark grey
solid line), and GAM with GMRF smoother (light grey solid line) and with the geoadditive method (green solid line). The dots at the top of
each panel indicate the median of the distribution. Predictions are from the validation set within a 5-fold cross-validation scheme.

Figure 5. Scatter plot of the median of the predicted distribution vs. observed RH for ice cloud profiles (k = 8) in the Indian Ocean,
July 2013. Predictions are made using the QRF method and are from the validation set within a 5-fold cross-validation scheme. R2 is

computed as 1−
∑
i (yi − ŷi )∑
i (yi − y)2 , where the yi represent SAPHIR observations with mean y and ŷi are the cross-validation predictions.
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12 G. Carella et al.: Statistical downscaling of water vapour satellite measurements

Figure 6. Variable importance (QRF method) for the predicted RH
for ice cloud profiles (k = 8) in the Indian Ocean, July 2013.

their default values (cf. the randomForest R package, R
Core Team, 2017). The largest CRPSS is obtained using the
QRF method, with a median value larger than 0.5 for all lay-
ers. The RH predicted with the RF method is also signifi-
cantly better than what we would obtain from the empiri-
cal distribution of the observations, although the probabilis-
tic approach taken in QRF is more skilful. On the other hand,
all GAM-derived methods have a lower score, with CRPSS
median values overall below 0.5, although, apart from the
highest and lowest layers, all medians are above zero. As the
CRPSS reveals, full non-parametric methods that do not rely
on any assumption about the probability distribution of the
response and that are free to learn any functional form from
the training data perform significantly better.

A positive value of the CRPSS for all RH layers indi-
cates a high level of correlation along the full vertical profile,
which is expected for ice clouds: within and in the neigh-
bourhood of regions of deep convection, which is their pri-
mary source (Hartmann et al., 2001), air masses are rapidly
transported from the boundary layer through the free tropo-
sphere into the tropopause region (Corti et al., 2006). This is
also shown in Fig. 5, which shows the median of the distri-
bution of the predicted RH for each vertical layer using the
QRF method vs. the RH observed by SAPHIR (at 10×10 km
resolution). Here the predictions are the results of the 5-fold
cross-validation procedure and are therefore derived from a
model trained on an independent part of the dataset. For lay-
ers L1–L5, the data are distributed close to the identity line,
with the model explaining a large proportion of the variance
of the observed RH (R2

≥ 0.7). On the other hand, as ex-
pected for ice clouds which populate the upper troposphere,
lower correlation values are found for the lowest layer (L6,
R2
∼ 0.4). It should be noted that although a comparison

with other sources of RH data could be interesting, it will

not necessarily be a validation of the results of our model. In
fact, a part from the difficulty of finding a statistically sig-
nificant sample of, for example, radiosondes or airplane ob-
servations co-located in space and time with CALIPSO mea-
surements, these sources are characterized by different spa-
tial resolutions from lidar data, which makes the comparison
not straightforward.

To assess the importance of the cloud structure for the pre-
dicted relative humidity at different layers, we can compute,
for each predictor, the decrease in accuracy obtained by ran-
domly permuting its values (Fig. 6): the larger this value is,
the more important a predictor is. For the higher layers, as
expected, this metric highlights the larger contribution of SR
layers corresponding to layers classified as cloudy, which are
observed above ∼ 10 km (cf. Fig. 3). On the other hand, for
layers closer to the surface, the contribution of lower (on av-
erage) non-cloudy SR layers is found to be equally important
because of the moisture that originates over warm waters.

Finally, as Fig. 7 shows, the CRPSS distribution is simi-
lar for different choices of clusters (k-means with k = 8 and
k = 13 and for the cluster corresponding to profiles with ice
cloud pixels only) as well as for different seasons (July and
January) and regions (Indian Ocean and Pacific Ocean): for
all the layers the median CRPSS is positive, which confirms
the robustness of the approach. These results are also inde-
pendent (not shown) of the temporal difference and the spa-
tial alignment of the co-located samples, of the distance from
the coast, or of the uncertainty (standard deviation) in the ob-
served relative humidity by SAPHIR.

Overall, these results suggest that, at the instantaneous
scale of cloud measurements, the water vapour response
along the whole troposphere in correspondence to ice cloud
profiles is well predicted only accounting for their capabil-
ity to backscatter radiation (given by the observed SR pro-
file). While the large-scale link between relative humidity
and the cloud properties (vertical distribution, phase, and
opacity) has been well documented in previous studies (Mar-
tins et al., 2011; Reverdy et al., 2012), this work represents
the evidence that this relationship can also be detected at
much smaller spatio-temporal scales. The emergence of a
clear signal at these fine scales also highlights the limita-
tions of SAPHIR measurements: although SAPHIR observes
the water vapour field at a much finer horizontal resolu-
tion than what is currently available in reanalysis products,
in order to explain physical processes, downscaled obser-
vations are needed. Figure 8 compares, for a selection of
ice cloud profiles (n(M)> 25), the corresponding layers of
relative humidity observed by SAPHIR with the median of
the downscaled results derived by implementing the iterative
QRF scheme. For all layers, the iteration typically stops after
two to three steps and, although it increases the R2 between
SAPHIR observations and the predicted relative humidity by
only a few percent, ensures consistency with the observed
data, as described in Sect. 4.3.2. The goal of the downscaling
scheme implemented in this work is to reconstruct the vari-
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Figure 7. CRPSS score for ice cloud profiles (QRF method): Indian Ocean, July 2013, for k-means-derived clusters setting k = 8 (red
solid line), k = 13 (dark blue dashed line), and cloud-phase flag-based profiles classified as ICE (light blue dot-dashed line); Indian Ocean,
January 2013, setting k = 8 (dark grey solid line); Pacific Ocean, July 2013, setting k = 8 (light grey solid line). The dots at the top of each
panel indicate the median of the distribution.

ation of the relative humidity field at the fine resolution of
cloud measurements within each SAPHIR coarsely resolved
pixel: as Fig. 8 shows, the downscaled values exhibit varia-
tions within the same SAPHIR pixel depending on the cor-
responding SR profile (Fig. 8c) that cannot be observed by
SAPHIR (Fig. 8b). As discussed at the beginning of this sec-
tion, a measure of the reliability of these variations can be
derived from the spread of the predicted distribution, given
here as the interquartile range (Fig. 8d). Differences between
the downscaled and observed RH observations will be larger
when the RH field is characterized by finer-scale hetero-
geneities derived from finer-scale processes, as for instance
Fig. 8e seems to suggest for some of the profiles. However,
these differences are expected since with the method pre-
sented here the predicted relative humidity structure incor-
porates the higher-resolution variability from cloud profiles.
On the other hand, as shown in Figs. 4, 5, and 7, the down-
scaling model is able to successfully explain the coarse-scale
RH observations from the finer-scale SR measurements, and
the overall bias is low, which gives us confidence in the pre-
dictions.

The intra-pixel RH variations are further analysed in
Fig. 9, which shows, for a single SAPHIR pixel overlaid
on the observed values, the downscaled predictions from the
QRF and the geoadditive model. For the latter, the predic-
tions were extended outside the observed CALIPSO loca-
tions in the direction orthogonal to the CALIPSO track line
up to 1 km on each side. The relative humidity field at these
new locations was predicted using the model fitted through
the iterative scheme for the available CALIPSO observations
and assuming that each SR profile was also representative of
the cloud distribution for locations shifted along the direc-
tion orthogonal to the CALIPSO track within a distance of
1 km. As expected and shown by Fig. 9b, the largest part of
the variance is explained by the SR predictors, while varia-
tions related to the spatial smoothing are almost not notice-
able with the scale used in the plot compared to the varia-
tions in the predictions for a given SR profile. In other words,
once the effect of the SR predictors is taken into account, the
residuals (i.e. the difference between the observed and pre-
dicted RH) do not show spatial autocorrelation. This has the
counter-intuitive effect that each pixel also seems represen-
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Figure 8. (a): SR profiles for a selection of ice cloud profiles from CALIPSO in the Indian Ocean, July 2013. The selected cloud profiles
correspond to SAPHIR pixels with n(M)> 25. The scale is the same as in Fig. 2. (b): co-located layered-RH observations from SAPHIR
(mean). (c): predicted layered RH using the QRF method within the iterative scheme (median). (d): as (c) but for the interquartile range
instead of the median. (e): for each layer, absolute differences between the observed RH from SAPHIR and the average over each SAPHIR
pixel of the predicted RH. The x axis represents the co-location index.

tative of the pixels in the direction orthogonal to the flight
direction (where cloud observations are not available) while
showing strong variations in the flight direction. However,
this does not imply that there are no variations to the side of
each pixel. Instead, what this result shows is that the model
is not improved by accounting for any residual spatial ran-
dom effect.

Although the CRPSS quantifies the quality of the predic-
tions (with respect to the climatology) conditionally on the

regression model and the predictors, for direct validation, ob-
servations of relative humidity at the scale of the cloud mea-
surements would be required. In principle, the network of ra-
diosonde measurements, which provides RH quality-checked
data (Durre et al., 2006) and has been used in previous studies
for validation of satellite measurements, including SAPHIR
(Sivira et al., 2015; Brogniez et al., 2016), could be used
for validation purposes. However, in practice, its limited spa-
tial coverage, with most of the observations also falling over
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Figure 9. Example of predicted RH for a single SAPHIR pixel corresponding to ice cloud profiles using, within the iterative scheme, the
QRF method (a, median) and the geoadditive model (b). The disks correspond to the SAPHIR footprints and the dots inside to the RH
predictions at CALIPSO resolution. Although CALIOP accumulates data over 330 m along track, here for figure clarity we assumed the
profiles to be symmetric and doubled their radius.

land, hampers the feasibility of this approach. On the other
hand, probabilistic approaches, like the QRF method, by as-
sessing the uncertainty in the predictions through the spread
of the distribution, allow the quantification of the confidence
in those predictions and, therefore, in a way, provide an indi-
rect estimate of their quality.

6 Data availability

A sample dataset of simultaneous co-located scattering ra-
tio profiles of tropical ice clouds and observations of rel-
ative humidity downscaled at the resolution of cloud mea-
surements is publicly available and can be freely down-
loaded at https://doi.org/10.14768/20181022001.1 (Carella
et al., 2019).

7 Conclusions

We have presented a method to downscale observations of
relative humidity (RH) available from the SAPHIR passive
microwave sounder at a nominal horizontal resolution of
10 km to the finer resolution of 90 m using scattering ratio
(SR) profiles from the CALIPSO lidar. The method was ap-
plied to ice cloud profiles over the tropical oceans, where the
connection to water vapour is expected to be stronger.

By using an iterative regression model of the satellite-
derived RH with the SR profiles as covariates, we were able
to successfully predict the relative humidity along the whole
troposphere at the resolution of cloud measurements. The
method also ensures that the average of the predicted RH dis-
tributions within the corresponding encapsulating SAPHIR
pixel is as close as possible to the observed value. Amongst

the different regression models tested, the best results were
obtained using a quantile random forest (QRF) method, with
a coefficient of determination (R2) with respect to the ob-
served relative humidity larger than 0.7 and a CRPSS with
respect to the climatology with a median value larger than
0.5 for all layers down to 800 hPa. High explanatory power
along the full vertical profile is expected for ice clouds, for
which deep convection, by transporting air masses from the
boundary layer up to the tropopause region, is their primary
source.

By providing a method to generate profiles of water vapour
(at high spatial resolution) from simultaneous co-located
cloud profiles, this work will be of great help in revisit-
ing some of the current key barriers in atmospheric sci-
ence. While the SAPHIR record only stretches back to 2011,
CALIPSO cloud measurements have been available since
2006, a period that includes three El Niño–Southern Oscil-
lation (ENSO) cycles. A 10-year long high-resolution water
vapour–clouds combined dataset might allow us

– to study how small-scale water cycle processes behave
when exposed to strong variations in large-scale circu-
lation regimes such as those associated with El Niño cy-
cles;

– to “evaluate” how small-scale water vapour inhomo-
geneities affect the water vapour simulated by standard
reanalyses (e.g. ERA-Interim, Dee et al., 2011; NCEP,
Kalnay et al., 1996), which are known to badly param-
eterize clouds and to have biases in water vapour in the
upper troposphere (Jiang et al., 2015; Davis et al., 2017;
Schröder et al., 2017);
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– to put the results of past and current field experiments
into a larger-scale context, e.g. identifying whether re-
sults of specific campaigns are representative of large
portions of the tropical belt;

– to guide the parametrization of unresolved subgrid-scale
water vapour/cloud processes to reduce cloud feedback
uncertainties (Randall et al., 2003) in climate models,
which ultimately will contribute to improving model-
based estimates of climate sensitivity;

– to evaluate the description of water vapour–cloud in-
teractions in regional models – e.g. WRF, Meso-NH
(Chaboureau et al., 2002; Fan et al., 2007) – which al-
though having a fine enough grid spacing to allow ex-
plicit simulations of the mesoscale dynamics associated
with convective clouds (Guichard and Couvreux, 2017)
still integrate parameterizations to represent sub-grid-
scale motions, micro-physics, and radiative processes;

– to test the validity of the fixed anvil temperature hy-
pothesis (Hartmann and Larson, 2002) and estimate the
changes to long-wave fluxes with warming, for exam-
ple using simulated CALIPSO profiles from model vari-
ables (Chepfer et al., 2008); and

– to quantify the limits of current and future space mis-
sions by characterizing the spatial inhomogeneities in
water vapour fields that cannot be observed by present
satellites and that will likely not be observed within the
next 2 decades (e.g. 2017–2027 “Decadal Survey for
Earth Science and Applications from Space”) due to
technological limits.

We also note that the method developed in this study will
be extended to other types of clouds, although additional co-
variates might be required. In fact, while SAPHIR is not able
to retrieve the RH profile in the case of heavy precipitation,
which implies that the majority of ice clouds co-located with
SAPHIR measurements are non-precipitating, this is not true
for light precipitating clouds, which typically correspond to
low-level liquid clouds only. Therefore, for liquid clouds, in-
cluding the radar reflectivity as measured by the CloudSat
radar, which is indicative of the intensity of rainfall, might
increase the model’s explanatory power.

Finally, the downscaling method presented here could also
be applied to other satellite products, with the underlying
assumption of using covariate data that are strongly related
to the target variable. For example, this same method us-
ing CALIPSO SR profiles as predictors can be applied to
downscale the precipitation observed by CloudSat, for which
small-scale observations at global scales are not available.
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