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Abstract. Medium-resolution satellite observations show great potential for characterizing seasonal and an-
nual dynamics of vegetation phenology in urban domains from local to regional and global scales. However,
most previous studies were conducted using coarse-resolution data, which are inadequate for characterizing the
spatiotemporal dynamics of vegetation phenology in urban domains. In this study, we produced an annual vegeta-
tion phenology dataset in urban ecosystems for the conterminous United States (US), using all available Landsat
images on the Google Earth Engine (GEE) platform. First, we characterized the long-term mean seasonal pat-
tern of phenology indicators of the start of season (SOS) and the end of season (EOS), using a double logistic
model. Then, we identified the annual variability of these two phenology indicators by measuring the difference
of dates when the vegetation index in a specific year reaches the same magnitude as its long-term mean. The
derived phenology indicators agree well with in situ observations from the PhenoCam network and Harvard
Forest. Comparing with results derived from the moderate-resolution imaging spectroradiometer (MODIS) data,
our Landsat-derived phenology indicators can provide more spatial details. Also, we found the temporal trends
of phenology indicators (e.g., SOS) derived from Landsat and MODIS are consistent overall, but the Landsat-
derived results from 1985 offer a longer temporal span compared to MODIS from 2001 to present. In general,
there is a spatially explicit pattern of phenology indicators from the north to the south in cities in the contermi-
nous US, with an overall advanced SOS in the past 3 decades. The derived phenology product in the US urban
domains at the national level is of great use for urban ecology studies for its medium spatial resolution (30 m)
and long temporal span (30 years). The data are available at https://doi.org/10.6084/m9.figshare.7685645.v5.

1 Introduction

Dynamics of vegetation phenology in urban ecosystems play
an important role in influencing human activities, such as en-
ergy use and public health. The change of vegetation green-
ing and dormancy affects various ecological and environ-
mental processes, such as carbon storage, energy use, wa-
ter cycle, and climate change (Zhou et al., 2016; Keenan et
al., 2014; Peng et al., 2013; Tang et al., 2016). These influ-
ences are amplified in urban ecosystems due to the urban

environment being notably altered by anthropogenic activ-
ities. For example, the urban heat island (UHI) results in
an earlier start and a longer duration of the growing season
than surrounding rural areas (White et al., 2002; Zhang et
al., 2004b; Jochner et al., 2011). The change of vegetation
phenology affects the start and duration of the pollen season
in urban domains, which has become a major concern for
public health authorities due to the potential risks of pollen-
induced respiratory allergies (e.g., asthma) (Aas et al., 1997;
Anenberg et al., 2017; Gong et al., 2012; Li et al., 2019b).
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Furthermore, the rapid pace of urbanization is expected to
continue in the future, with more than 66 % of the world’s
population residing in urban areas by 2050 (United Nations,
2018), which will result in a more notable effect from ur-
ban environment change. Also, changes in the urban envi-
ronment due to atmospheric, soil, and light pollution will af-
fect the plant phenology (e.g., leaf senescence) (Escobedo et
al., 2011), resulting in different phenology characteristics in
urban ecosystems. However, our knowledge about the veg-
etation phenology response to urbanization under different
urban morphology scenarios is still unclear, partly because
of the difficulties in observing and mapping the dynamics of
vegetation phenology at medium spatial and temporal resolu-
tions in and around urban areas. Therefore, knowledge of the
dynamics of vegetation phenology in urban domains is cru-
cial for understanding the response of vegetation phenology
to urbanization, and this further helps to develop process-
based phenology models for prediction under the compound
effect of global warming and urbanization (Jochner and Men-
zel, 2015; Jochner et al., 2011; White et al., 2002).

Coarse-resolution satellite observations are inadequate to
support vegetation phenology studies in urban domains, al-
though they have been extensively used for phenology map-
ping. Relevant studies include using the advanced very high-
resolution radiometer (AVHRR) data (Moody and Johnson,
2001; White et al., 2002; Piao et al., 2006; Cong et al.,
2012) and the moderate-resolution imaging spectroradiome-
ter (MODIS) data (Zhang et al., 2004b; Zhou et al., 2016;
Walker et al., 2012, 2015; Liu et al., 2016). The primary ad-
vantage of these datasets is their long-term observations with
a fine temporal resolution. However, the relatively coarse
(1–8 km) spatial resolution is limited to capture the spatial
heterogeneity of phenology in urban domains (White et al.,
2002; Hogda et al., 2002). In contrast, Landsat observations
with a medium spatial resolution (30 m) and a long temporal
span (since the 1980s) offer the opportunity to overcome this
limitation (Zipper et al., 2016; Li et al., 2017b).

There have been few attempts at mapping vegetation phe-
nology in urban domains using Landsat observations at a re-
gional (or global) scale, due to complex vegetation compo-
sitions in urban ecosystems and the large dataset required
for analysis. Despite the high spatial resolution and long-
term record of Landsat, the 16 d revisit frequency and the
cloud contamination make it difficult to collect adequate ob-
servations to composite the time series of vegetation indices
for investigating vegetation phenology dynamics. Therefore,
the long-term mean pattern of vegetation phenology using
multiyear observations was generally investigated in most
Landsat-based phenology studies. After that, the annual vari-
ability of phenology indicators can be identified through
measuring the difference of dates when the vegetation index
in a specific year reaches the same magnitude as its long-
term mean (Fisher et al., 2006; Melaas et al., 2013). How-
ever, currently this approach has been mainly used in nat-
ural ecosystems (e.g., deciduous forest) or at local scales

(Fisher et al., 2006; Melaas et al., 2013; Li et al., 2017b).
Therefore, there is a lack of large-scale applications in urban
domains. First, vegetation types and compositions in urban
ecosystems are more complicated, and the floral species are
more abundant in cities than surrounding rural areas (Luz
de la Maza et al., 2002). The seasonal pattern of vegeta-
tion growth varies among different vegetation types, which
requires a more generalized approach to filter out available
Landsat observations for a specific year to measure its gap
from the long-term mean (Li et al., 2017b). Second, an im-
proved understanding of vegetation phenology in urban areas
over different regions requires massive Landsat observations
and super-computational power. More than a thousand Land-
sat scenes are needed to map vegetation phenology dynamics
in a given city, and this number becomes huge when expand-
ing the mapping area to the national or global scale.

The advent of the Google Earth Engine (GEE) platform
provides the possibility to map vegetation phenology dy-
namics using the long-term Landsat data at the regional
and global scales. GEE is a state-of-the-art platform for
planetary-scale data analysis, mapping, and modeling, ow-
ing to free access to numerous global datasets and advanced
computational capabilities (Gorelick et al., 2017). There are
several successful studies built on the GEE platform for map-
ping long-term dynamics of forest and water, using all avail-
able Landsat images at the global scale (Hansen et al., 2013;
Pekel et al., 2016). It is convenient to composite time series
data of the vegetation index at the pixel level on the GEE,
using all clear-sky pixels. Also, the capability of cloud-based
computation offered by the GEE enables efficient and effec-
tive mapping practices at different spatial and temporal scales
(Xiong et al., 2017).

To better support vegetation phenology studies in urban
domains with required spatiotemporal details, for the first
time, we mapped annual vegetation phenology (1985–2015)
using long-term Landsat observations at a high spatial resolu-
tion in the US and characterized the dynamics of urban veg-
etation phenology. The remainder of this paper describes the
study area and data (Sect. 2), the adopted method for map-
ping vegetation phenology indicators (Sect. 3), the results
with a discussion (Sect. 4), and concluding remarks (Sect. 5).

2 Study area and data

Our study area includes all urban areas greater than 500 km2

and their surrounding rural areas in the conterminous US.
First, the urban extent was derived from nighttime light
(NTL) observations (2013) (Zhou et al., 2018, 2014). Then,
a buffer zone with the same size as the urban area was iden-
tified as the surrounding rural area. The near equal size of
urban and rural areas enables us to explore the response of
vegetation phenology to urbanization through characterizing
their phenology differences (Li et al., 2017a). In total, 148
urban clusters with different sizes were identified for deriv-
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Figure 1. The proposed framework for deriving long-term (1985–
2015) mean vegetation phenology indicators (start of season, SOS,
and end of season, EOS) (a) and their annual variabilities (b).

ing phenology indicators and their dynamics (Fig. S1 in the
Supplement).

Landsat surface reflectance data are the primary dataset
used for vegetation phenology mapping. Images obtained
from different sensors, i.e., Thematic Mapper (TM), En-
hanced Thematic Mapper Plus (ETM+), and Operational
Land Imager (OLI), were used to composite the time se-
ries of the enhanced vegetation index (EVI) of each pixel
(Huete et al., 2002). The surface reflectance data have been
corrected for the radiometric and topographic effects. The
correction of the atmospheric effect was performed using the
Landsat ecosystem disturbance adaptive processing system
(LEDAPS) (Masek et al., 2006), and clouds and shadows
were removed using the function of mask procedure (Fmask)
(Zhu and Woodcock, 2012) before compositing the EVI time
series. Thus, all available clear-sky pixels during 1985–2015
were used in our analysis.

3 Method

We developed an automatic approach to map urban veg-
etation phenology indicators using long-term (1985–2015)
Landsat images on the GEE platform (Fig. 1). First, we com-
posited the EVI time series using all clear-sky observations
at the pixel level, ordered by the day of year (DOY). A dou-
ble logistic model was then applied to the derived EVI time
series to obtain the long-term mean pattern of phenology in-
dicators (start of season, SOS, and end of season, EOS, in
Fig. 1a). Second, we derived the annual variability of phenol-
ogy indicators in urban and surrounding rural areas (Fig. 1b),
by measuring the difference of dates when the EVI in a spe-
cific year reaches the same magnitude as its long-term mean
(Li et al., 2017b). Details of each step are presented in the
following sections.

3.1 Long-term mean phenology indicators

We composited EVI observations over the years to capture
their seasonal change before the implementation of the dou-
ble logistic model. First, we used all clear-sky observations
of EVI and ordered them by their DOYs. This step allows us
to retrieve the seasonal pattern of vegetation dynamics using

multiyear data because the temporal distribution of Landsat
data is uneven due to the satellite revisit time and sky condi-
tions. Then, we applied a smoothing procedure using a mov-
ing average of continuous observations within 2 d to mini-
mize the impact of abnormal observations. This procedure
can keep the raw seasonal pattern of EVI (Fig. S2) and fur-
ther helps to reduce the uncertainty of parameter estimation
in the double logistic model.

We characterized the seasonal change of vegetation
growth using a double logistic model. This model has several
advantages compared to other approaches such as the splines
and harmonic models (Melaas et al., 2016b; Carrão et al.,
2010): (1) it captures the green-up and senescence phases us-
ing different sigmoid functions, and (2) the physical meaning
of parameters is related to the vegetation growth and senes-
cence (Fisher et al., 2006; Li et al., 2017b). The derived EVI
time series data were fitted using the double logistic model
as Eq. (1).

f (t)= v1+ v2(
1

1+ e−m1(t−n1) −
1

1+ e−m2(t−n2) ), (1)

where f (t) is the fitted EVI value at the day t ; v1 and v2 are
the background and amplitude of EVI over the entire year,
respectively; and m1 & n1, m2 & n2 are the paired param-
eters that capture the trends of the green-up and senescence
phases of vegetation growth, respectively. That is, n1 and n2
are dates with maximum increasing and decreasing rates of
green-up and senescence in sigmoid curves, and m1 and m2
are the slopes that determine the shape of sigmoid curves.

We developed a stepwise statistical approach to estimate
the parameters of the double logistic model on the GEE plat-
form for large-scale applications because the GEE platform
currently does not support the optimization of parameters.
Calculation of these parameters was presented in the Ap-
pendix. In general, the performance of this GEE-based dou-
ble logistic model is robust for different land cover types,
and the derived results are close to that from the optimiza-
tion algorithm (Fig. 2). For example, although the magni-
tude of EVIs is relatively low in urban areas with low vegeta-
tion cover, a distinctive seasonal pattern of vegetation growth
can be captured by the double logistic model. Also, sigmoid
curves during green-up and senescence phases are notably
different across different vegetation cover types (e.g., forest
and cropland). We evaluated the performance of the fitted
double logistic model based on the correlation between the
fitted and observed EVI observations. Pixels affected by land
use/cover change during the study period or having weak
vegetation signals (e.g., extremely high built-up area or bar-
ren land) could have a lower fitting performance (i.e., correla-
tion coefficient), and these pixels can be excluded for specific
applications. A more detailed explanation of this procedure
is reported in Li et al. (2017b). This stepwise statistical ap-
proach can be implemented at the pixel level on the GEE
platform in a parallel manner, which significantly improved
our mapping efficiency at the large scale.
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Figure 2. Seasonal patterns of vegetation growth captured by the double logistic model for three distinctly different land cover types. The
extent of a snapshot is 100 m× 100 m, and the red dot in the snapshot is the location of the enhanced vegetation index (EVI) plot. EVI
observations were composited using all clear-sky pixels during the past 3 decades (1985–2015).

Figure 3. Illustration of the generalized Landsat phenology (GLP)
approach for identifying the annual variability of phenology indi-
cators. The solid circles are long-term enhanced vegetation index
(EVI) observations and the empty circles are observations at a spe-
cific year. The shaded frames colored as green and brown are the
rational ranges of day of year (DOY) and EVI to be used during the
green-up and senescence phases, respectively.

We derived phenology indicators of SOS and EOS using a
half-maximum criterion method (Fisher et al., 2006). In this
method, SOS and EOS were calculated as the dates when the
first derivative of EVI reaches the maximum increasing and
decreasing rates during the green-up and senescence phases,
respectively. Although there are other definitions of SOS and
EOS, such as inflection points (i.e., at the base of sigmoid
curve) (Zhang et al., 2003), the criterion used in our study
is more temporally stable and can be applied to plants with
different canopy structures (Fisher and Mustard, 2007). The
growing season length (GSL) was defined as the difference
between EOS and SOS.

3.2 Annual variability of phenology indicators

We derived the annual variability of vegetation phenology in-
dicators using the developed generalized Landsat phenology
(GLP) approach (Li et al., 2017b). Considering the tempo-
rally uneven distribution of available Landsat observations
over the years, the annual variability of phenology indica-
tors was measured as the difference of dates when the EVI in
a specific year reaches the same magnitude as its long-term
mean (Fisher et al., 2006; Melaas et al., 2013). Only EVI
observations in the rational ranges of DOY and EVI (empty
circles in shaded frames) in a given year were used in the
GLP approach (Fig. 3). Observations outside this range (the
shaded frames), which are either outliers or beyond the tem-
poral ranges of the green-up and senescence phases, were
not used in calculating the annual variability. In the GLP ap-
proach, we also designed a self-adjusting strategy to derive
the bounds of the shaded frames in the green-up and senes-
cence phases (Fig. 3). For the green-up phase, the rational
DOY ranges (two points on the long-term mean curve that
intersected with the shaded green frame in Fig. 3) were de-
fined as the dates when change rates (or derivative) of EVI
reach the half-maximum before and after the date of SOS
(i.e., the date with the maximum change rate). Thus, the
corresponding EVI ranges were calculated based on the de-
rived DOY ranges and the long-term mean curve. The ratio-
nal ranges of the senescence phase were determined using a
similar approach. This approach already showed its applica-
tions for different vegetation types (e.g., cropland or forest)
with varying seasonal patterns of EVI. More details about
this approach can be found in Li et al. (2017b).
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Figure 4. Performance of the Google Earth Engine (GEE)-based double logistic model from the south to the north in the United States using
forest as an example. Each snapshot indicates a 1 km2 square, and the red dot in the middle is the location (30 m) of the enhanced vegetation
index (EVI) time series fitting.

Figure 5. Performance of the Google Earth Engine (GEE)-based double logistic model for sites from the urban center to rural areas in the
Chicago metropolitan area. Each snapshot indicates a 1 km2 square, and the red dot in the middle is the location (30 m) of the enhanced
vegetation index (EVI) time series fitting.

4 Results and discussion

4.1 Performance of the GEE-based double logistic
model

The performance of the developed GEE-based double logis-
tic model is reasonably good across different latitudes and
different vegetation cover types in urban ecosystems. Take

forest as an example, the seasonal pattern of EVI varies from
the south to the north in the US, with notably different sig-
moid curves for the green-up and senescence phases (Fig. 4).
Our fitting approach can capture the diverse seasonal patterns
of EVI for forest across space well. At the city scale, the
proposed double logistic model shows a good performance
for fitting EVI time series from urban to rural areas (Fig. 5),
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Figure 6. Comparison of the period (2001–2015) mean phenol-
ogy indicators of the start of season (SOS) (a) and the end of sea-
son (EOS) (b) derived from Landsat and PhenoCam observations.
COR: the correlation coefficient between the raw and fitted EVIs
using the double logistic model.

where the vegetation composition and the seasonal pattern of
EVI are more complicated compared to natural ecosystems.
For sites in the urban center, despite their low value of EVIs,
a distinctive seasonal pattern of phenology is also captured
by the proposed double logistic function with a good fitting
performance.

4.2 Comparison with PhenoCam data

Overall, the derived phenology indicators (SOS and EOS)
are spatially consistent with those from in situ PhenoCam
data at the large (e.g., national) scale (Fig. 6). PhenoCam is
a regional-scale network of digital cameras that provide high
temporal resolution vegetation canopy and phenology infor-
mation (Richardson et al., 2018). The records in PhenoCam
are the observed green chromatic coordinate (GCC), which
is used as the indicator of vegetation dynamics. We used all
PhenoCam sites in the US and compared the mean SOS and
EOS with Landsat-derived results. The definition of SOS and
EOS we used in the PhenoCam data (i.e., the half-maximum
criterion) is consistent with our result derived from Land-
sat data. Overall, correlations of the derived SOS and EOS
from the Landsat and PhenoCam are 0.66 and 0.43, respec-
tively. Most indicators are around the 1 : 1 line, indicating a
close correspondence of phenology indicators derived from
these two independent datasets. For those sites (blue or light-
blue dots) with relatively large differences, the performance
of fitting Landsat EVIs using the double logistic model is
relatively low because these sites are mainly embedded in
ecosystems that are dominated by shrubs, evergreen forests,
or wetlands (Fig. S3). With correlation coefficients lower
than 0.85 (worse fitting) excluded, as suggested by Melaas
et al. (2016b), the overall agreements between Landsat- and
PhenoCam-derived results were notably improved to 0.86
and 0.94, for SOS and EOS, respectively. Discrepancies be-
tween these two sets of phenology indicators derived from
Landsat and PhenoCam are mainly attributed to factors such
as (1) two different vegetation indices (i.e., EVI and GCC);

and (2) the scale effect between in situ PhenoCam and Land-
sat observations (Liu et al., 2017).

Overall, the annual variability of SOS derived from Land-
sat observations is consistent with that from the in situ
PhenoCam observations (Fig. 7). We selected 11 deciduous
broadleaf forest sites for comparison with continuous obser-
vations of more than 5 years (Fig. 7a). Landsat pixels lo-
cated within 500 m of each PhenoCam station were used to
ensure adequate samples to reflect the vegetation phenology
dynamic at the local scale for this comparison (Melaas et al.,
2016a). The temporal dynamics of Landsat-derived SOS and
EOS generally follow the changes captured by PhenoCam
observations (Fig. 7b–c). A detailed illustration of the Aca-
dia site indicates the SOS derived from the two datasets is
notably advanced during period 2006–2010 and their corre-
sponding EOS is delayed after 2011. Although magnitudes
of SOS and EOS are different over the years, their tempo-
ral trends (i.e., advanced or delayed) are relatively consistent.
The magnitude differences of SOS from Landsat and MODIS
are likely attributed to the scale effect, which determines dif-
ferent phenology patterns within a particular remotely sensed
pixel. Overall, the annual SOS indicator derived from Land-
sat shows a better agreement (0.74) with the result obtained
from in situ PhenoCam observations (Fig. 7d). The agree-
ment of annual variability of Landsat and PhenoCam EOS
is relatively weak (0.26) (Fig. 7e), which is consistent with
previous results reported by Melaas et al. (2016a). The main
reason for the weak agreement of annual variability of EOS is
the difference in greening represented by GCC and EVI. That
is, in the green-up phase, both GCC and EVI are rapidly in-
creasing. While in the senescence phase, the EVI detected by
Landsat slightly decreases, which is notably different from
the pattern reflected by GCC that rapidly decreases once the
leaf color changes.

4.3 Comparison with Harvard Forest phenology data

Our Landsat-derived phenology indicators have a similar
temporal pattern with that from Harvard Forest (HF) over the
past decades (Fig. 8). The HF data were collected by field
observers in spring and fall seasons for more than 25 years
(Richardson et al., 2006). Our Landsat-derived indicators
were compared with dates of SOS and EOS recorded in the
HF data, in which SOS and EOS are defined as the dates
when the leaf length reaches 50 % of its final size and the
leaf color reaches 10 % of the color change to the greenest,
respectively (Melaas et al., 2016a). Three dominant species
of deciduous forest in the HF, including red oak (Quercus
rubra; QURU), red maple (Acer rubrum; ACRU), and yel-
low birch (Betula alleghaniensis; BEAL), were used in our
analysis. However, for other vegetation types (e.g., evergreen
forest), discernible phenology patterns can be also captured
using the proposed methodology (e.g. Fig. 4, Site 1). Over-
all, the SOS of the three dominant species in the HF is sim-
ilar and has a similar temporal trend with SOS derived from
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Figure 7. Selected PhenoCam sites of deciduous broadleaf forest (a). Annual time series of phenology indicators in the station of Acadia for
the start of season (SOS) (b) and the end of season (EOS) (c). Comparison of annual variability of SOS (d) and EOS (e) between Landsat
and PhenoCam phenology indicators across all stations. The annual variability for each site is defined as (x−µ)/σ , where x is the annual
value of SOS and EOS and µ and σ are mean and standard deviation of SOS or EOS over the years.

Figure 8. Annual dynamics of the start of season (SOS) (a) and
the end of season (EOS) (b) derived from Landsat and Harvard For-
est (HF) observations and their scatter plots of SOS (c) and EOS
(d) over the years.

Landsat observations (Fig. 8a). The RMSE between Landsat
SOS and the HF data is 3.5 d, and the correlation coefficient
is 0.81 (Fig. 8c), indicating a comparable SOS and a rela-
tively consistent temporal pattern. EOS shows a relatively
large gap among species (Fig. 8b), i.e., the EOS of red oak is
notably later compared to other two species of red maple and
yellow birch. The Landsat-derived EOS is within the range
of EOS of the three species, and the temporal variabilities of
the two data sources are similar, although their magnitudes
are different. The RMSE between Landsat EOS and the HF
data is 3.7 d, and the correlation coefficient is 0.51 (Fig. 8d).

4.4 Comparison with MODIS data

Phenology indicators (e.g., SOS) derived from Landsat ob-
servations provide more spatial details in and around urban
areas and are spatially consistent with those from MODIS
(Fig. 9). Taking the Chicago metropolitan area as an exam-
ple, we compared the Landsat-derived SOS with that from
MODIS in two ways. First, we estimated SOS from the
MODIS EVI (16 d) using the same approach for Landsat.
Second, we retrieved SOS from the widely used MODIS phe-
nology product (MCD12Q2) (Zhang et al., 2003) for com-
parison with Landsat-based SOS. It is worthy to note that
the SOS defined in MCD12Q2 is the inflection point of EVI
growth during the green-up phase, and this definition is dif-
ferent from our half-maximum criterion (Fisher and Mustard,
2007). Therefore, the SOS of MCD12Q2 is generally ear-
lier than the other two. Also, there might be uncertainties
in MCD12Q2 in highly urbanized regions with SOS above
180 d (Zhou et al., 2016) (Fig. 9a). Overall, more spatial de-
tails of SOS can be revealed in results derived from Landsat
compared to MODIS (Fig. 9b). In highly urbanized regions,
Landsat SOS can also capture the seasonal pattern of vege-
tation growth. Normalized SOSs derived from MODIS and
Landsat show a relatively consistent trend along the gradient
of developed areas (Fig. 9c), although their magnitudes are
different (Fig. 9a).

Landsat-derived phenology indicator of SOS exhibits a
consistent temporal pattern compared to MODIS with a
longer temporal span (Fig. 10). Although the temporal distri-
bution of Landsat is uneven compared to MODIS, the annual
variability of phenology indicators can be captured well us-
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Figure 9. Spatial patterns of the mean start of season (SOS) (2001–2014) derived from Landsat, the Moderate Resolution Imaging
Spectroradiometer (MODIS) enhanced vegetation index (EVI), and MCD12Q2 and the land cover from the national land cover database
(NLCD) (2011) in the Chicago metropolitan area (a). Enlarged views (b) at the location of the black square in (a). Change of normalized
SOS and impervious surface area (ISA) (c) along the white rectangle in (a) (from left to right). Pixels without good fitting performance (i.e.,
the correlation coefficient is lower than 0.85) were removed in the derived SOS from Landsat and MODIS EVI.

Figure 10. Annual start of season (SOS) derived from Landsat, the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced
vegetation index (EVI), and MCD12Q2 in the Chicago metropolitan area in representative years (a) and the temporal trend at the regional
level (b). Solid lines are the mean SOSs at the regional level and shadowed frames indicate the range of SOS within the 25th and 75th
quantile levels. Pixels without good fitting performance (i.e., the correlation coefficient is lower than 0.85) were removed in the derived SOS
from Landsat and MODIS EVI.
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Figure 11. Spatial patterns of the mean (1985–2015) vegetation phenology indicators (start of season, SOS, end of season, EOS, and growth
season length, GSL) in American cities (a) and SOS in representative cities over the past 3 decades (b). Each dot in (a) represents the center
of the urban cluster, and the spatial extent of selected cities in (b) is 25 km× 25 km. The mean SOS of each city and its standard deviation
within each period (in parentheses) are provided in (b).

ing the clear EVI observations in a given year relative to the
long-term mean pattern. For example, there is a notable ad-
vancement of SOS in 2012, and all three SOSs capture this
variability at the pixel and regional levels (Fig. 10a and b).
The magnitude difference of derived SOS between Landsat
and MCD12Q2 is mainly due to their definitions, and the dif-
ference of SOS between Landsat and MODIS EVI is likely
caused by the scale effect (e.g., mixed pixels). It is worth
noting that SOS derived from the half-maximum criterion in
this study is consistently later when compared to the MODIS
product using the criterion of the inflection point.

4.5 Spatiotemporal patterns of phenology indicators

Phenology indicators (SOS, EOS, and GSL) in urban do-
mains exhibit a spatially explicit pattern from the north to the
south in the conterminous US, with an overall advanced SOS
in the past 3 decades (Fig. 11). SOS becomes earlier and EOS
becomes later along the latitudinal gradient, although such
spatial difference is more discernible in SOS compared to
EOS at the national scale. As a result, GSL shows a generally
extended trend from the north to the south (Fig. 11a). This
spatial pattern of latitudinal change of phenology indicators
(e.g., SOS) is also confirmed at the city level with more de-
tail (Fig. 11b) and benefits from the higher spatial resolution
of Landsat data. Meanwhile, the SOS in the last decade (P3:

2005–2015) is generally earlier than that in the first decade
(P1: 1985–1995), although the temporal trend with an earlier
SOS in the past 3 decades is not significant for all cities. The
spatiotemporal patterns of phenology indicators in the con-
terminous US reflect the response of vegetation phenology to
regional differences of elevation, temperature, precipitation,
vegetation type, and global warming in past decades (Zhang
et al., 2004a; Li et al., 2017a). In addition, changes in urban
environments such as impervious surfaces, air pollution, and
species compositions can affect the spatiotemporal pattern of
vegetation phenology in urban ecosystems (Li et al., 2015;
Escobedo et al., 2011).

5 Data availability

The derived vegetation phenology data in urban domains are
available at https://doi.org/10.6084/m9.figshare.7685645.v5
(Li et al., 2019a).

6 Conclusions

This study generated the first national-scale dynamics of an-
nual vegetation phenology in urban domains (all urban ar-
eas greater than 500 km2 and their surrounding rural areas)
using long-term (1985–2015) Landsat observations on the
GEE platform. First, we mapped the long-term mean sea-
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sonal pattern of vegetation dynamics using a double logistic
model. In this step, we proposed a stepwise statistical ap-
proach to estimate parameters in the double logistic model
and implemented it on the GEE platform. Next, we identi-
fied annual dynamics of phenology indicators (i.e., SOS and
EOS) by measuring the difference of dates when the EVI in
a specific year reaches the same magnitude as its long-term
mean. Finally, we developed the first medium spatial resolu-
tion (30 m) phenology product in urban areas in the conter-
minous US over the past 3 decades (1985–2015).

Overall, the Landsat-based phenology indicators agree
with those derived from independent in situ observations
(PhenoCam and HF) and another widely used satellite ob-
servations from MODIS. Overall, the phenology indica-
tors derived from Landsat and PhenoCam are consistent for
their long-term mean and annual variability. The compari-
son with field observations collected in the HF suggests the
Landsat-derived indicators can capture the temporal dynam-
ics of vegetation phenology in this forest ecosystem. Besides,
the Landsat-derived phenology indicators can provide more
spatial details in and around urban areas compared to the
coarse-resolution MODIS results. Also, the temporal trends
of the phenology indicator (e.g., SOS) derived from Land-
sat and MODIS are consistent overall, and Landsat addition-
ally extends the temporal span of MODIS back to the past
3 decades.

The Landsat phenology product in urban areas is of great
use in urban phenology studies such as phenology response
to urbanization. There is a spatially explicit pattern of phe-
nology indicators from the north to the south in US cities,
with an overall advanced SOS in the past 3 decades. With
this new phenology dataset (i.e., a long temporal coverage
and a medium spatial resolution), the response of vegetation
phenology to urbanization (e.g., UHI) can be further inves-
tigated, particularly for plants in the urban center or subur-
ban areas with urban environment that have been notably al-
tered by anthropogenic activities, where most people reside
(Zhang et al., 2004b; Alberti et al., 2017). This dataset, to-
gether with ground-based pollen concentration data, is also
of help in decision making relevant to pollen-induced allergy
diseases (Li et al., 2019b). In addition, the derived leaf on and
off information in this dataset is potentially useful for many
vegetation–air pollution deposition models (Escobedo and
Nowak, 2009). However, it is worth noting that this dataset
is most applicable for deciduous forest type. For grassland
and evergreen forests in tropical areas, the uncertainty could
be high in the derived phenology indicators. In addition, our
phenology algorithm did not specifically consider pixels with
land cover changes, which could be further improved when
the product of annual urban dynamics becomes available.
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Figure A1. Illustration of the double logistic model and corre-
sponding parameters. EVI: enhanced vegetation index; DOY: day
of year.

Appendix A

The double logistic model used in the GLP approach includes
two sigmoid curves indicating the green-up and senescence
phases of vegetation growth (Eq. A1).

f (t)= v1+ v2(
1

1+ e−m1(t−n1) −
1

1+ e−m2(t−n2) ), (A1)

where f (t) is the fitted EVI value at the day t ; v1 and v2 are
the background and amplitude of EVI over the entire year,
respectively; the first sigmoid (Sig1 :

1
1+e−m1(t−n1) ) with pair-

parameters of m1 and n1 captures the green-up phase of veg-
etation growth; and the second sigmoid (Sig2 :

1
1+e−m2(t−n2) )

with pair-parameters of m2 and n2 captures the senescence
phase of vegetation growth (Fig. A1).

We derived six parameters (i.e., v1, v2, m1, n1, m2, and
n2) in the double logistic model using a statistics approach
on the GEE platform. First, we estimated v1 and v2 based on
the smoothed EVI time series, with abnormal observations
(or noise) excluded. We calculated the quantile levels of 5th
and 95th as the minimum v1 and maximum EVI vmax over the
entire DOY range to avoid possible biases caused by extreme
values. Thus, v2 can be determined with Eq. (A2).

v2 = vmax− v1 (A2)

The first part (Sig1) of the double logistic model in the
green-up phase (Eq. A3) can be translated to Eq. (A4) by
using the smoothed EVI time series only during the green-up
phase before doymax and converted into a logarithmic form
as Eq. (A5).

Sig1 =
f (t)− v1

v2
=

1
1+ e−m1(t−n1) , (A3)

v1+ v2− f (t)
f (t)− v1

= e−m1(t−n1), (A4)

ln(
v1+ v2− f (t)
f (t)− v1

)=−m1 (t − n1) , (A5)

where the left term in Eq. (A5) can be calculated using v1
and v2, together with the smoothed EVI time series f (t) only
during the green-up phase before doymax. m1 and n1 can be
estimated using the least-squares-regression approach.

Finally, based on the estimated parameters (i.e., v1, v2,m1
and n1), the second part (Sig2) of the double logistic model in
the senescence phase can be formulated as Eqs. (A6)–(A8),
respectively. In a similar manner, the pair-parameters of m2
and n2 can be estimated using the least-squares-regression
approach together with the smoothed EVI time series during
the green-up and senescence phases.

Sig2 =
v1+ v2Sig1− f (t)

v2
=

1
1+ e−m2(t−n2) (A6)

v2
(
1−Sig1

)
− v1+ f (t)

v1+v2Sig1− f (t)
= e−m2(t−n2) (A7)

ln(
v2

(
1−Sig1

)
− v1+ f (t)

v1+v2Sig1− f (t)
)= −m2 (t − n2) (A8)
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