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Abstract. A large fraction of fossil fuel CO2 emissions emanate from “hotspots”, such as cities (where direct
CO2 emissions related to fossil fuel combustion in transport, residential, commercial sectors, etc., excluding
emissions from electricity-producing power plants, occur), isolated power plants, and manufacturing facilities,
which cover a small fraction of the land surface. The coverage of all high-emitting cities and point sources
across the globe by bottom-up inventories is far from complete, and for most of those covered, the uncertainties
in CO2 emission estimates in bottom-up inventories are too large to allow continuous and rigorous assessment of
emission changes (Gurney et al., 2019). Space-borne imagery of atmospheric CO2 has the potential to provide
independent estimates of CO2 emissions from hotspots. But first, what a hotspot is needs to be defined for
the purpose of satellite observations. The proposed space-borne imagers with global coverage planned for the
coming decade have a pixel size on the order of a few square kilometers and a XCO2 accuracy and precision of
< 1 ppm for individual measurements of vertically integrated columns of dry-air mole fractions of CO2 (XCO2).
This resolution and precision is insufficient to provide a cartography of emissions for each individual pixel.
Rather, the integrated emission of diffuse emitting areas and intense point sources is sought. In this study, we
characterize area and point fossil fuel CO2 emitting sources which generate coherent XCO2 plumes that may
be observed from space. We characterize these emitting sources around the globe and they are referred to as
“emission clumps” hereafter. An algorithm is proposed to identify emission clumps worldwide, based on the
ODIAC global high-resolution 1 km fossil fuel emission data product. The clump algorithm selects the major
urban areas from a GIS (geographic information system) file and two emission thresholds. The selected urban
areas and a high emission threshold are used to identify clump cores such as inner city areas or large power
plants. A low threshold and a random walker (RW) scheme are then used to aggregate all grid cells contiguous
to cores in order to define a single clump. With our definition of the thresholds, which are appropriate for a
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space imagery with 0.5 ppm precision for a single XCO2 measurement, a total of 11 314 individual clumps, with
5088 area clumps, and 6226 point-source clumps (power plants) are identified. These clumps contribute 72 % of
the global fossil fuel CO2 emissions according to the ODIAC inventory. The emission clumps is a new tool for
comparing fossil fuel CO2 emissions from different inventories and objectively identifying emitting areas that
have a potential to be detected by future global satellite imagery of XCO2. The emission clump data product is
distributed from https://doi.org/10.6084/m9.figshare.7217726.v1.

1 Introduction

Monitoring the effectiveness of emission reductions after the
Paris Agreement on Climate (UNFCCC, 2015) requires fre-
quently updated estimates of fossil fuel CO2 emissions and
a global synthesis of these estimates. The need for emis-
sion monitoring goes beyond national estimates, as many
cities and regions have set concrete objectives to reduce their
greenhouse gas emissions. The CO2 emissions (direct and
indirect) related to final energy use in cities are estimated to
be 71 % of the global total (IEA, 2008; Seto et al., 2014). In
addition, power plants account for ∼ 40 % of direct energy-
related CO2 emissions and are subject to regulations that
require regular reporting of their emissions. The contribu-
tion from cities (excluding electricity-related emissions from
large power plants; see Sect. 2) and power plants to national
and global mitigation efforts is thus critical (Creutzig et al.,
2015; Shan et al., 2018).

The technique called atmospheric CO2 inversion quan-
tifies emissions based on a prior estimate from inven-
tories, atmospheric CO2 measurements, and atmospheric
transport models. Inversions of fossil fuel CO2 emissions
have used in situ surface networks, aircraft measurements
and mobile platforms around cities (Bréon et al., 2015;
Lauvaux et al., 2016; Staufer et al., 2016), but the de-
ployment of a network around each city may be im-
practical. Alternatively, it is possible to measure verti-
cally integrated columns of dry-air mole fractions of CO2
(XCO2) from satellites passing over emission hotspots.
Satellite measurements offer the advantage of global spa-
tial coverage, but research studies consistently outlined that
satellite XCO2 measurements need to have a high pre-
cision (< 1 ppm) and a spatial sampling at high resolu-
tion (< 2–3 km horizontal resolution) (Bovensmann et al.,
2010; O’Brien et al., 2016). For example, the Greenhouse
Gases Observing Satellite 2 (GOSAT-2) aims to measure
XCO2 at 0.5 ppm precision (https://directory.eoportal.org/
web/eoportal/satellite-missions/g/gosat-2, last access: 7 Au-
gust 2018). The single sounding random error in XCO2 from
the Orbiting Carbon Observatory 2 (OCO-2) is on the order
of magnitude of 0.5 ppm (Eldering et al., 2017; Chatterjee et
al., 2017). XCO2 measurements from selected 10 km wide
OCO-2 tracks downwind of large power plants were used to
quantify their emissions by fitting observed XCO2 plumes
with Gaussian dispersion models (Nassar et al., 2017). Ac-

cording to Nassar et al. (2017), the uncertainties in the emis-
sions from three selected US power plants were constrained
within 1 %–17 % of reported daily emission values. The pri-
mary scientific goal of the OCO-2 mission was to estimate
natural land and ocean carbon fluxes, and tracks overpassing
power plants are very sporadic, given the narrow swath width
and frequent clouds. In order to improve the sampling of the
atmosphere, XCO2 imagers (e.g., passive spectral imagers in
the short-wave infrared spectrum) are under study. The list
includes the Geostationary Carbon Observatory (GeoCARB)
mission (Polonsky et al., 2014), the OCO-3 instrument on
board the International Space Station capable of pointing to
chosen emitting areas (https://www.nasa.gov/mission_pages/
station/research/experiments/2047.html, last access: 7 Au-
gust 2018) and a constellation of low earth-orbiting (LEO)
imagers with a swath of a few hundred kilometers planned as
future operational missions within the European Copernicus
Program (Ciais et al., 2015).

The ability of imaging instruments to reduce uncertainty
on CO2 emissions was investigated by atmospheric inver-
sions with pseudo data, that is, observing system simulation
experiments (OSSEs), but only for case studies of limited
duration. OSSEs were performed for large cities (Broquet et
al., 2018; Pillai et al., 2016), single power plants (Bovens-
mann et al., 2010) or for a region encompassing several cities
(O’Brien et al., 2016). An OSSE study with one LEO imager
over Paris (Broquet et al., 2018) solved for emissions during
the 6 h before a given satellite overpass. Their results showed
that the uncertainty (∼ 25 %) in the 6 h mean emissions in
the prior estimates could be reduced to less than 10 % during
a few days when the wind speed is low and there is not much
cloud. The results of such case studies are informative about
the potential of satellite observations in quantifying fossil
fuel CO2 emissions but do not systematically give informa-
tion on how many hotspots and which fraction of emissions
worldwide could be constrained with XCO2 imagers.

A prerequisite for assessing the capability of satellite im-
agers is to have a high-resolution global map of fossil fuel
CO2 emissions (Gurney et al., 2019). In this study we use the
ODIAC map at 30× 30 arcsec (∼ 1 km× 1 km) (Sect. 2.1).
Not all the emitting 1× 1 km land grid cells of such a map
will have emissions that are sufficiently intense to produce
a XCO2 plume detected with a satellite (Nassar et al., 2017;
Hakkarainen et al., 2016). On the other hand, a cluster of
contiguous emitting grid cells will create a stronger plume
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than a single emitting grid cell, so that the uncertainty on the
sum of emissions from a cluster could be reduced with space-
borne measurements. This poses the research question of
how to define those clusters of emitting pixels (called emis-
sion clumps hereafter) that will generate individual XCO2
plumes that are detectable from space. The emission clumps
should include intense area sources and large isolated point
sources (e.g., power plants, large factories). Using political
and administrative areas of cities to define clumps does not
work for this purpose because the same administrative area
may contain separate large point sources or multiple hotspots
forming separable plumes, as well as areas with no or lit-
tle emission. The definitions of emitting areas differ among
inversion studies. Broquet et al. (2018) estimated emissions
from the Île de France region, while Pillai et al. (2016) de-
fined their emitting region as an area of 100 km× 100 km
around Berlin. The arbitrary choice of emitting areas across
studies makes the comparison of their results difficult and is
not applicable worldwide. This justifies the need for a sys-
tematic and objective definition of emission clumps that con-
stitutes observing targets for satellites.

The algorithm for calculating emission clumps developed
in this study is inspired by research on mapping urban ar-
eas and socio-demographic activities (Li and Zhou, 2017;
Elvidge et al., 1997; Zhou et al., 2015; Su et al., 2015;
Doll and Pachauri, 2010; Letu et al., 2010). The corre-
sponding algorithms can be classed as classification-based or
threshold-based. Classification-based algorithms use datasets
such as the normalized difference vegetation index (NDVI)
and the normalized difference water index (NDWI) to train a
machine-learning model to classify urban and nonurban ar-
eas (Cao et al., 2009; Huang et al., 2016). Threshold-based
algorithms classify urban grid cells where some continuous
variables (e.g., nighttime lights) are above a given thresh-
old (Elvidge et al., 1997; Liu and Leung, 2015; Li et al.,
2015; Liu et al., 2015). In threshold-based methods, given the
high spatial heterogeneity of urbanization and urban forms,
efforts have been devoted to finding local optimal thresh-
olds, such as the “light-picking” approach which finds a lo-
cal nighttime background light surrounding a target grid cell
(Elvidge et al., 1997), or determining local thresholds by
matching local/site-based surveys and land-use/land-cover
(LULC) datasets (Zhou et al., 2014).

The problem of characterizing CO2 emission clumps
posed here consists of delineating all areas that have the
potential to generate detectable atmospheric XCO2 plumes.
“Detectable” here means that the concentration within a
plume formed by a clump should be large enough compared
to the surrounding background in XCO2 images of a typical
spatial resolution of ≈ 1 km. The magnitude of a minimum
detectable XCO2 enhancement in a plume (relative to the
surrounding background) depends on the individual XCO2
sounding precision. Such a sounding precision should be of
a similar order of magnitude worldwide, although the solar
zenith angle, aerosol loads, surface albedo etc. will affect it

(Buchwitz, et al., 2013). In this context, contrary to the algo-
rithms used for mapping urban areas, common global mini-
mum emission thresholds for land grid cells forming a clump
are relevant.

Because CO2 produced by emissions is quickly dispersed
by transport, XCO2 plumes sampled at a given time by a
satellite image usually relate to emissions that occurred few
hours before its acquisition (Broquet et al., 2018). In this
study, we focus on planned LEO imagers on Sentinel mis-
sions, assuming an equator crossing time around 11:30 lo-
cal time (Buchwitz et al., 2013; Broquet et al., 2018), so
that XCO2 plumes sampled by these imagers are from morn-
ing emissions. Different overpass times are also possible
for other satellites. For example, Equator crossing times of
OCO-2 and GOSAT are 13:00–13:30 LT. Geostationary im-
agers may provide a better temporal coverage of the emis-
sions; e.g., GeoCARB images are considered to sample a city
multiple times within a day (O’Brien et al., 2016).

This study aims to provide a global dataset of fossil fuel
CO2 emission clumps for high-resolution atmospheric inver-
sions that will use XCO2 imager data. Such a dataset can
be used for OSSE studies to compare different imagery ob-
servation concepts for constraining fossil fuel CO2 emis-
sions at the clump scale over the whole globe. We propose
an approach that combines a threshold-based and an image-
processing algorithm. Section 2 describes the high-spatial-
resolution global emission map on which clumps are calcu-
lated and the algorithm used to delineate the clumps world-
wide. The spatial distribution and extent of the resulting
clumps throughout the globe are described in Sect. 3 and are
compared with clumps diagnosed by applying the same algo-
rithm to other emission maps. Section 4 discusses the sensi-
tivity of the resulting clumps to the precision of XCO2 mea-
surements and future applications of this global dataset. Sec-
tion 5 describes the data availability. Conclusions are drawn
in Sect. 6.

2 Methodology

2.1 Development of a high-resolution emission map of
morning emissions

We use the high-spatial-resolution (30′′× 30′′ ≈
1 km× 1 km) global annual fossil fuel CO2 emission
map for the year 2016 from the Open Source Data Inventory
of Anthropogenic CO2 (ODIAC, version 2017) (Oda and
Maksyutov, 2011; Oda et al., 2018) for calculating clumps.
To our knowledge, it is the only emission map with global
coverage and a spatial resolution high enough to match the
pixel size of ≈ 1 km of atmospheric XCO2 imagers. We
chose the year 2016, assuming that the emission spatial
distributions do not change significantly from year to year.
In regions with rapid urbanization rates, the emission
spatial distributions may change rapidly. The analysis of
such changes is out of the scope of this paper, but the

www.earth-syst-sci-data.net/11/687/2019/ Earth Syst. Sci. Data, 11, 687–703, 2019



690 Y. Wang et al.: Global map of clumps of fossil fuel CO2 emissions

clump definition can be updated consistently with the
latest high-resolution emission maps for each year, using
the approach presented in Sect. 2.2. The ODIAC dataset
provides emissions from power plants based on the CARMA
database (Carbon Monitoring and Action, http://carma.org,
last access: 5 March 2018). Emissions from these point
sources were spatially allocated to the exact locations from
CARMA. Emissions from other sources (industrial, resi-
dential, commercial sectors, and daily land transportation)
were estimated by subtracting the sum of emissions from
power plants in each country from the national totals given
by the Carbon Dioxide Information and Analysis Center
(CDIAC) (Boden et al., 2016). Annual emissions in each
country excluding power plants were spatially distributed
at 30′′ spatial resolution using nighttime light fields from
the Defense Meteorological Satellite Program (DMSP)
satellites. ODIAC has been used in atmospheric inversions
to monitor CO2 emissions from cities (Oda et al., 2018;
Lauvaux et al., 2016).

To estimate morning emissions, we combined the ODIAC
emission maps with the hourly profiles from the Temporal
Improvements for Modeling Emissions by Scaling (TIMES)
product (Nassar et al., 2013). In TIMES, the hourly pro-
files were provided as 24 scaling factors for each hour of
the day that can be multiplied by daily average emissions to
derive hourly emissions. Hourly scaling factors of TIMES
were derived for residential, commercial, industrial, electric-
ity production, and mobile on-road sectors from the bottom-
up model of fossil fuel CO2 emissions Vulcan v2.0 over
the US (Gurney et al., 2009) with mobile nonroad, cement
manufacture, and aircraft assumed temporally constant. The
TIMES dataset also gives hourly scaling factors for 19 other
high-emitting countries. These profiles were weighted by the
emissions fraction in each sector from EDGAR to deter-
mine hourly profiles of total CO2 emissions. The US and
19 other high-emitting countries are called “proxy” coun-
tries. Other countries in the world were assigned one of the
proxy country profiles, accounting for standard international
time zones and local socio-demographic patterns (e.g., time
of day when people start to work, weekend defined accord-
ing to different religions). The TIMES hourly profiles were
derived on the national scale (assuming identical hourly pro-
files within a country) and then shifted by hourly offsets ac-
cording to local solar time to approximate the variability re-
lated to geophysical cycles. The original TIMES hourly pro-
files at 0.25◦× 0.25◦ resolution were downscaled to the spa-
tial resolution of ODIAC, assuming the same profiles within
each 0.25◦× 0.25◦ grid cell. For calculating clumps based
on morning emissions, we multiplied the annual mean emis-
sion rate (in g C m−2 h−1) in each grid cell of ODIAC by
the average scaling factors of emissions between 06:00 and
12:00 LT. The day-to-day and month-to-month variations in
the spatial distribution of fossil fuel CO2 emissions may lead
to temporal variations in the spatial extent of the clumps.
In this study, we define the clumps based on two thresholds

Figure 1. Cumulative distribution of mean emission rates during
morning hours in ODIAC for power plants (red) and area sources
(blue). The y axis represents the cumulative share of global total
annual emissions at each level of emission rate for a single land
grid cell (x axis). The vertical dashed lines are the two thresholds
used in the clump algorithm (see text).

(see Sect. 2.2) to ensure that the effective clumps are always
within the boundaries of the clumps and that the satellite
observations should provide emission estimates consistently
within a year. We thus ignore the month-to-month and day-
to-day variations in the emissions.

2.2 Calculation of emission clumps

The emission clumps from point sources and intense area
sources in ODIAC are separated in this study. In ODIAC,
the point sources only refer to power plants in the CARMA
database. So in this study, we refer to sources other than
power plants as area sources. Before clumps are calculated,
Fig. 1 illustrates the ranked distribution of emission rates
during morning hours from point sources (red) and other
grid cells (blue). Excluding emissions from point sources,
the maximum emission rate of emitting grid cells from area
sources is 20.7 g C m−2 h−1 and most grid cells including
point sources have much larger emission rates than this value.
In total, 35 % of the global total emissions are from 12 433
30′′× 30′′ grid cells encompassing at least one point source.

Figure 2 shows the flow chart of the clump algorithm. Fig-
ure 3 illustrates how it operates for a small domain as an
example. Two categories of emission clumps are defined:

a. Only grid cells encompassing point sources with an
emission rate larger than threshold-1 are considered.
This threshold is chosen as 0.36 g C m−2 h−1, based on
the argument that, even without any atmospheric hor-
izontal transport, emissions lower than this threshold
over 6 h would generate a local XCO2 excess of less
than 0.5 ppm, the practical limit of individual sounding
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Figure 2. The flow chart for calculating emission clumps. The col-
ors qualitatively illustrate grid cell emission rates from low (light
green) to high (red).

precision from current satellites (see Appendix for the
detailed computation). This is illustrated in Fig. 3b by
the red grid cell labeled 1 and 2. There are 6226 grid
cells in ODIAC2017 that encompass at least one power
plant and with emission rates above threshold-1, which
account for> 99.99 % of total emissions of all CARMA
power plants globally.

b. Emissions clumps from area sources are calculated. We
combine two data streams to calculate area clumps:
(1) the administrative division of major urban areas and
(2) two thresholds (threshold-1 and threshold-2 detailed
below) applied to the grid cells of ODIAC. We assume
that a group of emitting pixels encompassing some ad-
jacent high-emitting pixels (forming a core of the emis-
sion clump) and their surroundings will generate an in-
dividual plume in XCO2. The urban area and the high
threshold (threshold-1) define the cores of each emis-
sion clump, while threshold-2 defines the lower limit of
surrounding emitting pixels to be potentially included
in the clumps. The four steps to compute area sources
emission clumps are detailed below.

1. The value of threshold-2, above which emissions
of a single emitting grid cell are selected to
be potentially included in a clump, is chosen
as 0.036 g C m−2 h−1, a factor of 10 lower than
threshold-1. The sum of emissions from grid cells
above threshold-2 represents 82 % of global total
emissions (including point sources). Grid cells be-
low threshold-2 are never included in any emis-
sion clump. Grid cells with emission rates above

threshold-2 are illustrated in Fig. 3a by the yellow
and orange grid cells.

2. We then used the urban-area GIS (geographic
information system) file from the Environ-
mental Systems Research Institute (ESRI,
https://www.arcgis.com/home/item.html?id=
2853306e11b2467ba0458bf667e1c584, last ac-
cess: 19 August 2017) to locate the geographic
positions of major urban areas. ESRI contains 3615
separated urban areas, defined independently from
the ODIAC emission map. We found 2017 ESRI
urban areas containing at least one grid cell with
emission above threshold-1. The remaining 1598
ESRI urban areas are not considered hereafter. An
illustration of one of the 2017 selected ESRI urban
areas is shown in Fig. 3c by the grid cells labeled
3. Figure 4a–c (solid lines) shows three examples
of ESRI urban areas for major cities in Europe,
North America, and China. The grid cells within
the ESRI urban area with emission rates above
threshold-1 define the cores of the clumps.

3. Although the ESRI GIS file covers large cities of
the world, smaller populated areas, like small cities
on the southeastern coast of China that may also
generate detectable plumes, are missed by the ESRI
map. This calls for a complementary step to iden-
tify non-ESRI emitting clumps. For the calculation
of those non-ESRI clumps, we apply threshold-1 of
0.36 g C m−2 h−1 to all grid cells that are not se-
lected in the previous step as part of any ESRI core.
Contiguous non-ESRI grid cells above threshold-1
form a non-ESRI core of clumps. These non-ESRI
core grid cells must be spatially distinct from the
ESRI core grid cells. If they are adjacent to any
ESRI core, they are absorbed by the ESRI ones.
A total of 3071 non-ESRI cores are calculated, as
shown in Fig. 3d by the grid cells labeled 4.

4. After ESRI and non-ESRI clump cores are defined,
we aggregate all the emitting grid cells with emis-
sion rates larger than threshold-2 in their vicinity to
form a clump. An ensemble of grid cells with emis-
sions higher than threshold-2 in a domain with N
cores are attributed to N distinct emission clumps.
The attribution of a grid cell to a given core is cal-
culated based on the spatial gradients of emissions
and the distance between the emitting grid cells
by using a random walker (RW) algorithm (Grady,
2006). RW is a type of algorithm used in the field
of image segmentation, i.e., recognizing different
segments or objects in a picture or photograph. The
clumps with an ESRI core (step 2) are called “ESRI
clumps”, while the clumps with a non-ESRI core
(step 3) are called “non-ESRI clumps” hereafter.
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Figure 3. The processes of defining emission clumps. The colors qualitatively illustrate the emission rates from low (light green) to high
(red). (a) The emission field. (b) Two power plants (red grid cells) are defined as two individual clumps, labeled 1 and 2. (c) The ESRI urban
area is outlined by bold solid and dashed lines, but the ESRI core is labeled 3 only for grid cells with emission rates above threshold-1.
(d) The orange area represents grid cells with emissions above threshold-1 forming a non-ESRI core, labeled 4. (e) Each light-yellow grid
cell is assigned to one of the clump cores using the RW algorithm (see the main text). Note that one power plant (labeled 2) is located within
the ESRI urban area but is identified as a different emission clump from the ESRI clump (labeled 3 in Fig. 3e).

This step is illustrated in Fig. 3e by the grid cells
in light yellow.

The RW algorithm defines the probability of each grid cell
to belong to some known labeled “seeds” (i.e., the cores de-
fined in steps 2 and 3 in this study). This algorithm imagines
that a random walker starts from each grid cell and is labeled
(in this study, the grid cells with emissions that are above
threshold-2 but not included in the cores). The probabilities
that the walker will arrive at each known seed, following the
easiest path, are computed. The undefined grid cells are as-
signed to the seed that has the highest probability of being
reached by the walker. Specifically, in this study, we define
the probability that the walker moves between two neighbor-
ing grid cells using an exponential decaying function of the
`2 norm of the log-transformed local gradients in emissions
(Grady, 2006):

wij = e
−β(gi−gj )2

, (1)

where wij is the probability of motion between neighbor-
ing grid cells i and j , gi and gj are image intensity (defined
as the log-transformed emission rate in this study), and β
is a free penalization parameter for the motion of random
walker (the greater the β, the more difficult the motion). In
this study, only β impacts how the undefined grid cells are
assigned to the cores. It balances the effect of local gradients
and the distance of the path from the undefined grid cells
to the seeds: the larger the gradient along a path between the
undefined grid cells and the seeds, the smaller the probability
that the walker will move; and the longer the path, the smaller
the probability that the walker would arrive at corresponding
seeds. A larger β will lead to a larger impact of emission gra-
dients than that of distance. In this study, β = 13σ−1

g , where
σg is the standard deviation of the emission rates at all the
grid cells in ODIAC. In general, the algorithm can effec-
tively separate different clusters of grid cells with different
spatial distributions. For instance, a clump with a flat dis-

tribution of emissions and a clump (of a similar size to the
former one) with more skewed emissions are separated near
the steepest gradients. This assumes that large emission gra-
dients will generate large gradients in XCO2 (given similar
meteorological condition for neighboring clumps) and that
different XCO2 plumes are separable where the XCO2 gra-
dients are the largest.

After the RW algorithm, grid cells above threshold-2 that
are not contiguous to any core are discarded. This removes
10 % of the total from the 82 % of global emissions defined in
step 1. As a result, 72 % of the global emissions are included
in the emission clumps (see more detailed discussion below).

All the computation are made under the Python ver-
sion 2.7 environment (Python Software Foundation, http:
//www.python.org, last access: 5 March 2018) and the RW
algorithm is from package “scikit-image” version 0.14dev
(http://scikit-image.org/, last access: 5 March 2018).

3 Results

3.1 Emission clumps defined on ODIAC emission map

Figure 4 shows three regional clumps near Paris (France),
New York (USA), and Beijing (China). The clumps near
Paris are isolated from each other. There are more emis-
sion clumps in the New York region. Because some clumps
are close to each other in this region (e.g., New York and
Clifton), their plumes will only be distinct when the wind di-
rection is roughly perpendicular to the direction of the line
connecting clumps (i.e., from southwest to northeast or the
opposite for New York and Clifton). Near Beijing, there are
a larger number of clumps than in the other two regions and
their distribution is also more complex.

Table 1 summarizes the clumps calculated for the globe,
Europe (European Russia included), China, North Amer-
ica, South America, Africa, Australia, and Asia (China ex-
cluded). In total, our algorithm calculates 11 314 clumps, in-
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Figure 4. Emission clumps near Paris (a, d), Beijing (b, e) and New York (c, f). In panels (a)–(c), solid lines depict the urban areas from
ESRI product. Colored patches depict the clump area resulting from the algorithm defined in this study. In panels (d)–(f), solid lines depict
the boundaries of final clumps (boundary of colored patches in panels a–c). Colored fields in panels (d)–(f) show the emissions from the
ODIAC product. Light dashed lines indicate 1◦× 1◦ grids.

cluding 6226 point sources, 2017 ESRI clumps, and 3071
non-ESRI clumps. The clump with the largest annual emis-
sion budget is Shanghai, which emits 47 Mt C yr−1. A large
fraction of the non-ESRI clumps is found within China
mainly located near the southeastern coast, which may be
explained by the recent rapid urbanization (Shan et al., 2018;
Wang et al., 2016) in this region. This is not documented
by the ESRI map. The large number of non-ESRI clumps in
China highlights the necessity of considering emitters out-
side the major cities (at least) in this country. In addition, the
mean area of an emission clump is larger in China than over
other continents and regions. This is because the southeast-
ern coast of China is densely populated, even within rural
areas (yellow-green outside the urban area of the ESRI urban
map in Fig. 4e), and because the emission rates per capita is
also high in China compared to the world average (Janssens-
Maenhout et al., 2017). As a result, our algorithm finds more
non-ESRI clumps and larger areas for each clump in China
than other regions.

Figure 5 shows the locations and annual emissions of the
clumps. The densities of emission clumps are high in Europe,
the eastern coast of the US, the eastern coast of China and In-
dia. Figure 6 shows the fractions of total emissions allocated
to different clump categories. Globally, 27 % of the clumps
are calculated as non-ESRI, but the total emission from these

clumps is less than 13 % of the total emissions. Point sources
form 55 % of the total number of clumps and 44 % of the
total emissions. In China, however, point sources contribute
only 21 % of the total number of clumps and 39 % of the total
emissions, which may be explained by the fact that the power
plants in China considered in CARMA dataset (and thus in
ODIAC) are limited to the few larger power plants. Figure 7
shows the cumulative distribution of the number of clumps
and their emissions for a few regions. Among ESRI clumps,
66 % of them have an annual emission below 1 Tg C yr−1,
but the cumulative emission from these low emitting clumps
only accounts for 22 % of the total emission from all ESRI
clumps. The inflexion point in Fig. 7 (when the cumulative
distribution curve turns from nearly 0 % to a fast increase)
indicates the importance of clumps with annual emissions
above this value. For non-ESRI clumps and point sources,
the inflexion points are near 0.1 Tg C yr−1.

3.2 Emission clumps based on other emission maps

The clump results obviously depend on the input emission
field. The ODIAC map is chosen as a reference because it
is the only global map with a spatial resolution of ∼ 1 km
that we are aware of. But there are other emission prod-
ucts with coarser resolution or only regional coverage. To
test the dependency of calculated clumps on the choice of
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Table 1. Characteristics of clumps defined in this study for the globe, European continent (European Russia included), China, North America
(NA), South America (SA), Africa, Australia, and Asia with China excluded (AS).

Globe Europe China NA

Total number of clumps 11 314 2470 2091 2616
Number of ESRI clumps 2017 300 404 292
Number of non-ESRI clumps 3071 243 1243 302
Number of point-source clumps 6226 1927 444 2022
Mean area of one area clump (km2) 196 125 337 137
Maximum area of one area clump (km2) 10 356 6874 5762 5568
Mean emission budget of one clump (Tg yr−1) 0.57 0.31 1.02 0.45
Maximum emission budget of one clump (Tg yr−1) 47 17 47 15
Minimum emission budget of one clump (Tg yr−1) 9.9× 10−4 9.9× 10−3 21× 10−4 19× 10−4

Clump that has the largest annual emission Shanghai Moscow Shanghai Los Angeles
Fraction of emissions from defined clumps to total emission 72 % 60 % 84 % 70 %
Share of urban CO2 emissions to regional total in IEA report 67 % 69 % 75 % 80 %
Share of urban energy use to regional total in GEA report 76 % 77 %a 65 %b 86 %

SA Africa Australia AS

Total number of clumps 477 470 110 2784
Number of ESRI-urban clumps 172 108 12 705
Number of non-ESRI clumps 69 144 5 1007
Number of point-source clumps 235 218 93 1072
Mean area of one area clump (km2) 186 183 133 229
Maximum area of one area clump (km2) 4303 3438 3113 10356
Mean emission budget of one clump (Tg yr−1) 0.35 0.43 0.69 0.63
Maximum emission budget of one clump (Tg yr−1) 12 11 6.8 22
Minimum emission budget of one clump (Tg yr−1) 20× 10−4 26× 10−4 21× 10−4 17× 10−4

Clump that has the largest annual emission Buenos Aires Johannesburg Melbourne Riyadh
Fraction of emissions from defined clumps to total emission 52 % 62 % 76 % 69 %
Share of urban CO2 emissions to regional total in IEA report – – 78 % –
Share of urban energy use to regional total in GEA report 85 % 69 %c 78 % 63 %d

a Arithmetic mean of values for western Europe and eastern Europe. b In GEA report, this value corresponds to China and central Asia Pacific. c Arithmetic mean of
values for Sub-Saharan Africa, northern Africa, and the Middle East. d Arithmetic mean of values for Pacific Asia and southern Asia.

Figure 5. The spatial distribution of emission-weighted centers of
the emission clumps all over the globe. The inserted plots zoom into
four regions that contain most of the clumps.

the emission map, we apply the algorithm to three alterna-
tive global emission maps and two regional emission maps

(Table 2). The three global emission maps are PKU-CO2 v2
(Wang et al., 2013), FFDAS v2.0 (Rayner et al., 2010;
Asefi-Najafabady et al., 2014), and EDGAR 4.3.2 (Janssens-
Maenhout et al., 2017). The two regional emission maps
are the Multi-resolution Emission Inventory (MEIC) v1.2
for China (http://meicmodel.org/, last access: 14 July 2018;
Zheng et al., 2018) and the VULCAN inventory (Gurney et
al., 2009) v2.2 for the contiguous US The resolutions of these
emission maps are 0.1◦ or 10 km (Table 2), that is, about
12 times coarser than ODIAC. Note that some small (in terms
of area) groups of grid cells with high emission rates at a finer
resolution than 0.1◦ are averaged to the coarser grid cells
in these coarser-resolution maps. The clumps derived from
these alternative emission maps thus have a tendency to miss
small clumps, compared to ODIAC. However, the compari-
son of the results for the largest clumps is still indicative of
the robustness of the clump definition. The years of the addi-
tional emission maps are different from the year of ODIAC
(Table 2) because some institutions have not released emis-
sion maps for 2016. We scale the different emission maps to
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Figure 6. The fraction of the number (bars) and the fraction of
emissions (hatched bars) found in the three types of clumps for
the European continent (European Russia included), China, North
America (NA), South America (SA), Africa, Australia, Asia with
China excluded (AS), and over the globe. The three colors repre-
sent ESRI clumps (yellow), non-ESRI clumps (green), and point-
source clumps (red). The white-hatched bars indicate the fraction
of ODIAC emissions that are not allocated to any clump by the al-
gorithm.

the same national totals as ODIAC and we assume that the
spatial distribution of clumps do not change significantly on
the continental and global scales so that the differences in
the year for different emission maps is not expected to have
strong impacts on the clump results. We compare the frac-
tions of emissions in alternative maps (X) covered by the
clumps calculated from these map (X clumps) with the frac-
tion covered by ODIAC clumps to see whether the ODIAC-
clump results miss significant emissions fromX. Because the
resolution of ODIAC and alternative emission maps are dif-
ferent, when computing the X emissions covered by ODIAC
clumps, we downscale map X to 30′′, assuming that emis-
sions are distributed uniformly within each 0.1◦ or 10 km
grid cell. Since the actual distribution of emissions within
each 0.1◦ or 10 km grid cell is probably not uniform, this
computation tends to overestimate the differences between
ODIAC clumps and X clumps.

Each 30′′ grid cell is classified into a confusion ma-
trix (CM) with four categories: (1) grid cell belongs to the
ODIAC clump and X clump (true positive, TP), (2) grid cell
belongs to the ODIAC clump but not to the X clump (false
positive, FP), (3) grid cell belongs to the X clump but not to
the ODIAC clump (false negative, FN), and (4) grid cell be-
longs neither in the ODIAC clump nor in the X clump (true
negative, TN). The fractions of emissions in each CM cat-
egory are computed for different regions. This comparison
mainly allows us to verify whether the clumps delineated
by the two thresholds are consistent using ODIAC and other
maps.

We also checked the consistency of ESRI clumps between
ODIAC clumps and X clumps with a similar CM. Each
grid cell is classified into four categories: (1) grid cell be-

longs to the same ESRI clump in ODIAC and X (ESRI-TP),
(2) grid cell belongs to ESRI clumps in both ODIAC and X
but does not belong to the same ESRI clump (ESRI-DIFF),
(3) grid cell only belongs to an ESRI clump either in ODIAC
or X (ESRI-FALSE), and (4) grid cell does not belong to
any ESRI clump in ODIAC or in X (ESRI-TN). Consis-
tency for non-ESRI clumps is not really expected because
X clumps tend to miss small clumps because of the under-
lying coarser-resolution maps. Consistency is not calculated
for point-source clumps because not all emission products
explicitly provide names for each power plant, making it dif-
ficult to determine whether the power plants from different
maps within the same grid cell have the same infrastructure.

VULCAN is arguably the best emission map for the US,
given its use of a large amount of relatively accurate data
from local to national scales. PKU-CO2-v2 and MEIC v1.2,
derived by Chinese institutions, used the exact locations of
power plants and factories in China and detailed information
of fuel consumption of each power plants and factories to es-
timate the point sources. They also used provincial data to
distribute the nonpoint source emissions, resulting in more
accurate estimates in the distribution of Chinese emissions
than other global maps (Wang et al., 2013). EDGAR v4.3.2,
developed by the Joint Research Center under the European
Commission’s service, has more accurate emission estimates
in Europe. Therefore, we focus the clump consistency analy-
sis between ODIAC and EDGAR v4.3.2 for Europe, between
ODIAC, PKU-CO2 v2 and MEIC v1.2 for China, and be-
tween ODIAC and VULCAN v2.2 for the US.

Figure 8 shows the results of the CM analysis. In general,
there is a considerable fraction of national and regional emis-
sions covered by both ODIAC clump andX clump (red bars).
The sum of the fractions of TP (red bars) and TN (pink bars)
are larger than 70 % for all countries and regions, indicating
that the algorithm applied to different maps consistently al-
locates the same groups of emitting grid cells into clumps.
In Europe, the fraction of EDGAR emissions allocated to
EDGAR clumps (red plus blue bars in Fig. 8) is close to the
fraction of ODIAC emissions allocated to ODIAC clumps
(black line). In China, the fraction from MEIC is also close
to that derived from ODIAC. But this fraction in PKU-CO2-
v2 (54 %) is lower than that derived from ODIAC in China
(84 %). The differences between these fractions derived from
ODIAC, MEIC, and PKU-CO2-v2 indicate large uncertain-
ties in the distribution of emissions in China. This fraction
in VULCAN (46 %) is lower than that derived from ODIAC
in the US (73 %). In addition, in all regions, the fractions
of emissions allocated to X clumps (red plus blue bars) in X
emission maps are all lower than those derived from ODIAC,
indicating the emissions in ODIAC are more centralized to-
ward populated areas than in other maps. This is attributed
to the lack of line sources in ODIAC (Oda et al., 2018). The
blue bars in Fig. 7, representing emissions from X maps that
are not covered by ODIAC clumps, are less than 10 % of the
total emissions in most cases, indicating that ODIAC clumps
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Figure 7. Cumulative distributions of the number (dashed lines) of emission clumps and of the emissions (solid lines) of the clumps for three
categories of clumps (see text).

Table 2. The alternative emission maps used to compare the results of ODIAC.

Emission product Coverage Resolution Year Reference

EDGAR 4.3.2 Global 0.1◦× 0.1◦ 2010 Janssens-Maenhout et al. (2017)
PKU-CO2 v2 Global 0.1◦× 0.1◦ 2010 Wang et al. (2013)
FFDAS v2.0 Global 0.1◦× 0.1◦ 2009 Rayner et al. (2010), Asefi-Najafabady et al. (2014)
MEIC v1.2 Global 0.1◦× 0.1◦ 2010 http://meicmodel.org; Zheng et al. (2018)
VULCAN v2.2 74 % 10 km× 10 km 2002 Gurney et al. (2009)

miss only a small fractions of emission hotspots compared to
other plausible fossil fuel CO2 emission fields, even with-
out any adjustment. However, ODIAC clumps would cap-
ture some low-emitting grid cells in other emission maps, as
shown by the green bars in Fig. 8. Further investigation into
the three types of clumps: ESRI clumps, non-ESRI clumps
and point-sources clumps shows that the largest differences
between ODIAC and X lie in the latter two types (Figs. S1–
S3 in the Supplement). The non-ESRI clumps account for a
small fraction of the total emissions (less than 20 % in gen-
eral, Figs. 6 and S2), and the coherence in terms of fractions
of emissions covered by non-ESRI clumps between different
emission maps is less than 5 % (red bars in Fig. S2). There
are also large disagreements in the emissions from point-
source clumps between different emission maps, as displayed
by Fig. S3.

Figure 9 examines the consistency of the fractions of emis-
sions covered by the same clumps between ODIAC and any
emission map X. The consistency indicated by the red and
pink bars is larger than 70 %. The green bars are less than
10 % in general, indicating that there are not many emission
grid cells connecting different large cities. The major differ-
ences between ESRI clumps derived from various emission
maps come from grid cells near the borders of ESRI clumps
so that they are classified as ESRI clumps or other clumps in
different emission maps (blue bars).

4 Discussion

4.1 Impacts of the sounding precision on the
identification of emission clumps

In this study, we use the map of the urban area from ESRI
and two thresholds to derive emission clumps. Threshold-1
determines the cores of the clumps, corresponding to a XCO2
enhancement larger than the precision (0.5 ppm) of individ-
ual soundings without atmospheric horizontal transport (see
Sect. 2.2 and Appendix). The precision largely depends on
the designs and configurations of different satellites. In this
section, we test the sensitivity of the clumps to different as-
sumptions on threshold-1 related to the precision of an indi-
vidual sounding. The results listed in Table 3 show that the
number of clumps are very sensitive to threshold-1 or indi-
vidual XCO2 sounding precision. However, the fractions of
emissions covered by the clumps do not change significantly
with threshold-1. The total number of clumps is reduced by
34 % when the precision of an individual XCO2 measure-
ment is degraded to 1.0 ppm, compared to that obtained as-
suming 0.5 ppm, but the fraction of emissions covered by all
clumps is only reduced from 72 % to 61 %, e.g., 15 % rela-
tive change. This indicates that a larger value of threshold-1
mainly removes clumps with small emissions. On the other
hand, the number and fraction of emissions covered by point-
source clumps are not sensitive to threshold-1 due to the fact
that their emissions are highly concentrated in limited area.
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Figure 8. The fractions of emissions from corresponding emission products covered (1) by both ODIAC clumps andX clumps (red), (2) only
by X clumps but not by ODIAC clumps (green), (3) by ODIAC clumps but not by X clumps (blue), and (4) by neither ODIAC clumps nor
X clumps (pink). The thick black lines indicate the fractions of emissions in ODIAC covered by ODIAC clumps.

Figure 9. The fractions of emissions from corresponding emission products covered (1) by the same ESRI clump from ODIAC and X (red),
(2) by ESRI clumps in both ODIAC and X but do not belong to the same ESRI urban area (green), (3) only by one of the ESRI clump in
either ODIAC or X (blue), and (4) by no ESRI clump in ODIAC or in X (pink).

On the contrary, the number and emissions associated with
non-ESRI clumps are the most sensitive to the precision.

Threshold-2 is used to define which grid cells shall be
aggregated with the cores to form a clump. In this study,
threshold-2 is chosen an order of magnitude smaller than
threshold-1. This choice is somewhat arbitrary to include
some marginal areas. Such marginal area accounts for the
fact that the outskirts of the cities could also contribute to the
city cores. In addition, the marginal area ensures that the ef-
fective clumps (e.g., the cores of the clumps) will always be

accounted for in the clump map within a short time span (typ-
ically within one year to among few years). With this default
choice of threshold-2, the fraction of emissions from clumps
to the total emissions is occasionally close to the estimate of
the share of CO2 emissions or energy use from cities to re-
gional total in EIA and GEA (Table 1). The last two columns
in Table 3 list the results for different values of threshold-2.
Threshold-2 mainly impacts the extent of surrounding grid
cells near the cores of each area clump. When threshold-2 is
chosen to be 0.071 g C m−2 h−1 (twice as large as the default
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Table 3. The sensitivity of the number of emission clumps (integers before parentheses) and the fractions of emissions covered by the
emission clumps (values in the parentheses) to the global total of the thresholds in the clump algorithm.

Experiments T1 T2 T3 T4 T5 T6

Precision of a single sounding (ppm) 0.3 ppm 0.5 ppm 0.7 ppm 1.0 ppm 0.5 ppm 0.5 ppm
Threshold-1 (g C m−2 h−1) 0.21 0.36 0.5 0.71 0.36 0.36
Threshold-2 (g C m−2 h−1) 0.021 0.036 0.05 0.071 0.05 0.071
ESRI clumps 2756 (36 %) 2017 (32 %) 1498 (29 %) 1009 (26 %) 2017 (30 %) 2017 (28 %)
Non-ESRI clumps 6332 (15 %) 3071 (10 %) 1837 (7.7 %) 1109 (6 %) 3071 (9.2 %) 3071 (8.4 %)
Point-source clumps 6928 (30 %) 6226 (30 %) 5774 (30 %) 5304 (30 %) 6226 (30 %) 6226 (30 %)
Total 16 016 (80 %) 11 314 (72 %) 9109 (67 %) 7422 (61 %) 11 314 (69 %) 11 314 (66 %)

one), keeping threshold-1 as 0.36 g C m−2 h−1, the fraction
of emissions covered by the clumps to the global total is re-
duced from 72 % (default result, T2) to 66 %. The compari-
son between the results of T2, T6, and T4 in Table 3 shows
that the identification of non-ESRI clumps is more sensitive
to threshold-1 (precision), while the identification of ESRI
clumps is more sensitive to threshold-2 (grid cells around
cores in ESRI urban areas).

4.2 Impact of using ODIAC on the identification of
emission clumps

ODIAC used a nighttime light as a proxy for the spatial dis-
tribution of emissions. The accuracy of the proxy in rep-
resenting the distribution of actual emissions largely im-
pacts the extent of the clumps. For example, compared with
other emission products, ODIAC does not capture line source
emissions such as on-road transportation (Oda et al., 2018;
Gurney et al., 2019). The satellite observations of CO indi-
cated significant CO enhancement over major roads (Bors-
dorff et al., 2019). Since our clump map is derived from the
ODIAC emission product, some of the roads that generate
significant XCO2 plumes may be missed by the clumps de-
fined in this study. As the ODIAC team is planning to include
transportation network data in their emission product (Oda et
al., 2018), our clump map could be updated with a new ver-
sion of ODIAC.

Figure 8 shows that if the ODIAC clumps are applied to
other emission maps even without any adjustment, a major-
ity of emission hotspots (indicated by red plus green bars
in Fig. 8) are still included in the clump areas. However,
Fig. 9 shows that there are large differences in the way emit-
ting grid cells are grouped depending on the input emission
map. When multiplying the map of ODIAC clumps by an-
other X emission map, the difference between the emissions
from ODIAC and the emissions from the same area in the X
map, for a single clump, ranges between 0 % and 165 % (5th–
95th percentiles). The relative differences tend to be larger
for small clumps than large ones. For the monitoring of fos-
sil fuel CO2 emissions from space, these results highlight
the necessity of objectively associating the observed CO2
plumes with underlying emitting regions.

In this study, the clumps are only defined based on the
ODIAC emission map for the year 2016. However, in the
regions experiencing fast urbanization rates, the spatial dis-
tribution of emissions are also changing rapidly. In order to
build an operational observing system in the near future, it
is also necessary to consistently update the clump definition
based on the latest emission maps to track the trends in the
emissions and CO2 plumes for growing cities.

4.3 Implications for future inversion studies

The emission clump is a valuable concept relevant for the
monitoring of fossil fuel CO2 emissions from satellites. The
emission clumps defined in this study have at least one grid
cell that will generate an excess of XCO2 of at least 0.5 ppm
over a morning period of 6 h, assuming no atmospheric hor-
izontal transport. This assumption is optimistic in terms of
detectability of XCO2 plumes. In reality, when accounting
for wind advection or vegetation fluxes near a clump, XCO2
enhancement in plumes may be smaller than 0.5 ppm and
therefore harder to detect with imagers. In this sense, the
emissions covered in emission clumps derived from such an
assumption conservatively define the upper fraction of fossil
fuel CO2 emissions that could be constrained by XCO2 im-
agery. In addition, the sampling of plumes will be reduced in
presence of clouds and will suffer from XCO2 biases related
to aerosol loads (Broquet et al., 2018; Pillai et al., 2016).
The emission clumps defined in this study provide a test bed
for assessing the potential of satellite imagery for monitoring
fossil fuel CO2 emissions. In the future, global and regional
inversion systems and observing system simulation experi-
ment (OSSE) frameworks shall be developed using emission
fields classified into clumps. Such inversions and OSSE stud-
ies will play a critical role in the deployment of new obser-
vation strategies and assessing the potential of these observ-
ing systems for assessing the fossil fuel CO2 emissions (e.g.,
Broquet et al., 2018; Turner et al., 2016; Pillai et al., 2016).
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5 Data availability

The ODIAC2017 data product can be down-
loaded from the website http://db.cger.nies.go.jp/
dataset/ODIAC/ (last access: 1 November 2017; or
https://doi.org/10.17595/20170411.001; Oda and Maksyu-
tov, 2015). The TIMES data product can be down-
loaded from http://cdiac.ess-dive.lbl.gov/ftp/Nassar_
Emissions_Scale_Factors/ (last access: 1 Novem-
ber 2017). The clump map can be downloaded from
https://doi.org/10.6084/m9.figshare.7217726.v1 (Wang et
al., 2018).

6 Summary and conclusion

In this study, we have identified a set of emission clumps with
large emission rates (in g C m−2 h−1) from a high-resolution
emission inventory. These clumps will generate individual at-
mospheric XCO2 plumes that may be observed from space.
This method identifies the clump cores using an ESRI map
of major urban area and a high threshold related to the preci-
sion of XCO2 measurements from planned satellites. It uses
a low threshold and an RW algorithm to consider the area
in the vicinity of the cores and split the area between dif-
ferent clumps based on the spatial gradients in the emission
field. The emission clumps defined in this study depict the
emitting hotspots around the globe that are relevant for the
monitoring of fossil fuel CO2 emissions from the satellites
measurements. The clumps are derived with a transbound-
ary approach, bypassing any artificial border imposed by na-
tional emissions. In total, the emission clumps cover 72 % of
the total emissions in the original ODIAC. They defines the
scales and regions of monitoring the short-term temporal pro-
files and long-term trends in fossil fuel CO2 emissions, which
might be very useful for the global stocktaking exercise by
the UNFCCC. The clumps that have been identified here
span a large range of emission. Given actual atmospheric
transport condition, it is not clear whether those in the low
range of emission generate an atmospheric CO2 plume that
can be identified from space. The presence of cloud cover
may also challenge the detection of XCO2 plumes and thus
the estimate of emissions using space-borne measurements.
Which fraction of the identified clump can be observed from
space and what accuracy can be expected from the atmo-
spheric inversion requires an OSSE framework, which shall
be developed in a future paper.
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Appendix A

We make a calculation of the emission flux that would gener-
ate a 0.5 ppm excess of XCO2 during 6 h without wind. This
is a conservative case with the accumulation of all emissions
in the air column. The 0.5 ppm XCO2 is taken as the individ-
ual sounding precision of a satellite CO2 imager. Assuming a
constant emission rate F (g C m−2 h−1) during 6 h, the XCO2
excess (XCO2, ppm) is given by the following:

XCO2 = F × 6/MC/Xair× 106, (A1)

where MC (= 12× 10−3 kg mol−1) represented the molar
mass of C, Xair (mol m−2) represented the molar quantity of
air mass in the air column. The Xair could be approximated
by the following:

Xair = Psurf/g/Mair, (A2)

where Psurf (= 1.013× 105 Pa) represents the surface pres-
sure, g (= 9.8 m s−2) represents the acceleration of gravity,
Mair (= 29× 10−3 kg mol−1) represents the average molar
mass of air. Thus, the minimum emissions F ∗ that would
generate a 0.5 ppm excess of XCO2 is computed F ∗ =

0.36 g m−2 h−1.
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