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Abstract. Obtaining climate grids describing distinct variables is important for developing better climate stud-
ies. These grids are also useful products for other researchers and end users. The atmospheric evaporative demand
(AED) may be measured in terms of the reference evapotranspiration (ETo), a key variable for understanding
water and energy terrestrial balances and an important variable in climatology, hydrology and agronomy. Despite
its importance, the calculation of ETo is not commonly undertaken, mainly because datasets consisting of a high
number of climate variables are required and some of the required variables are not commonly available.

To address this problem, a strategy based on the spatial interpolation of climate variables prior to the calcula-
tion of ETo using FAO-56 Penman–Monteith equation was followed to obtain an ETo database for continental
Spain and the Balearic Islands, covering the 1961–2014 period at a spatial resolution of 1.1 km and at a weekly
temporal resolution. In this database, values for the radiative and aerodynamic components as well as the esti-
mated uncertainty related to ETo were also provided.

This database is available for download in the Network Common Data Form (netCDF) at
https://doi.org/10.20350/digitalCSIC/8615 (Tomas-Burguera et al., 2019). A map visualization tool (http://speto.
csic.es, last access: 10 December 2019) is available to help users download the data corresponding to one specific
point in comma-separated values (csv) format.

A relevant number of research areas could take advantage of this database. For example, (i) studies of the
Budyko curve, which relates rainfall data to the evapotranspiration and AED at the watershed scale, (ii) cal-
culations of drought indices using AED data, such as the Standardized Precipitation–Evapotranspiration Index
(SPEI) or Palmer Drought Severity Index (PDSI), (iii) agroclimatic studies related to irrigation requirements,
(iv) validation of climate models’ water and energy balance, and (v) studies of the impacts of climate change in
terms of the AED.

1 Introduction

Reference evapotranspiration (ETo) is a theoretical variable
describing the evapotranspiration that would occur from a
well-watered reference surface under specific meteorological
conditions (Allen et al., 1998). Because well-watered condi-
tions and a reference crop are assumed, both spatial and tem-
poral ETo variability depends solely on the variability of the

meteorological conditions. Hence, ETo is an accepted proxy
for the atmospheric evaporative demand (AED), which is a
key variable for understanding both water and energy terres-
trial balances and, therefore, relevant to a variety of disci-
plines, including climatology, hydrology and agronomy (Es-
padafor et al., 2011). To compute ETo, the Food and Agri-
culture Organization of the United Nations (FAO) recom-
mends using a modified version of a Penman–Monteith equa-
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tion (Allen et al., 1998). The main advantage of this method
is that it is physically based. It has also been tested against
lysimeter data, obtaining reliable results (Jensen et al., 1990;
Itenfisu et al., 2000; Berengena and Gavilán, 2005; Tra-
jkovic, 2007). On the other hand, its main problem is its high
data requirement, as data corresponding to the maximum and
minimum air temperature, air humidity, wind speed, and so-
lar radiation are needed. Although the maximum and mini-
mum air temperature are commonly collected at weather ob-
servatories, observations of the other variables are scarce,
especially if long time series are required for climate stud-
ies (Vanderlinden et al., 2004; McVicar et al., 2007; Irmak
et al., 2012; Vicente-Serrano et al., 2014) or to generate ETo
grids. The other significant problem facing the generation of
ETo climate grids is the changing number of observations,
which can introduce non-climatic changes in variance (Be-
guería et al., 2016).

In the event that some of the variables are not available,
two types of approaches have been used to allow ETo calcu-
lations to be classified: (i) using of methods for calculating
ETo requiring fewer climatic variables, commonly known as
“less demanding methods”, and (ii) estimation of missing
data prior to ETo calculation.

i. Less demanding methods. The use of methods for cal-
culating ETo requiring only temperature data, such as
the Thornthwaite (Thornthwaite, 1948) or Hargreaves
(Hargreaves and Samani, 1985) approaches, are still
common, especially because temperature is commonly
available, and temperature and solar radiation accounts
for 80 % of the ETo variability (Mendicino and Sena-
tore, 2013; Samani, 2000). One of the major drawbacks
of these methods is that variability and trends in the
estimated ETo values depend only on temperature, re-
gardless of the importance of the other variables (Irmak
et al., 2012; McVicar et al., 2012; Sheffield et al., 2012;
Tomas-Burguera et al., 2017).

ii. Estimation of missing data. Estimations of missing data
prior to ETo calculation can also be divided into two
possibilities: (i) use of the recommendations described
in the FAO-56 document, which is the FAO docu-
ment describing the guidelines for computing ETo, and
(ii) use of nearby weather station data. Whenever data
corresponding to the non-observed variables have been
collected at nearby locations, the use of FAO-56 rec-
ommendations should be avoided for two reasons. First,
they use stationary relationships between variables that
were empirically derived, which can be problematic in
the context of climate change since these relationships
may also change. This is in fact the same problem that
affects the less demanding methods, which also rely
on empirically derived relationships (Tomas-Burguera
et al., 2017). Second, temperature data are always re-
quired, limiting the number of locations from which
ETo can be obtained.

The use of nearby weather station data to estimate miss-
ing data takes advantage of spatial interpolation meth-
ods, and it is the only approach among the above-
mentioned methods that estimates missing data us-
ing information about the same variable. This strategy,
usually known as interpolate-then-calculate (IC), has
two main steps. First, the missing variables are esti-
mated using a spatial interpolation method, and, second,
the Penman–Monteith value (PM) is calculated. This
method was tested in various regions, such as Greece,
China and Great Britain (Mardikis et al., 2005; McVicar
et al., 2007; Robinson et al., 2017). Tomas-Burguera
et al. (2017) compared the performance of this method
with the performances of some of the aforementioned
solutions in the Iberian Peninsula, concluding that the
IC strategy yielded better results.

The changing number of observations available over time
is another relevant problem affecting the generation of ETo
climate grids. To avoid negative effects, usually only the
longest climate time series are used to generate climate grids
using geostatistical methods, such as universal kriging (UK).
Obviously, this strategy diminishes the number of usable cli-
matic observations.

The problems mentioned above usually restrict the avail-
ability of high-spatial-resolution climate datasets of ETo, es-
pecially if they are developed using the Penman–Monteith
equation. During the last several years, a ETo climate grid
at a 1 km spatial resolution over Great Britain was presented
Robinson et al. (2017). Haslinger and Bartsch (2016) pre-
sented a climate grid at a 1 km spatial resolution over Austria,
but their grid was based on the Hargreaves equation.

A method focused on overcoming the above-mentioned
problems related to data availability was designed to generate
a climate grid of ETo over continental Spain and the Balearic
Islands with a spatial resolution of 1.1 km covering the 1961–
2014 period with a weekly temporal resolution. This method
took advantage of two estimation processes prior to ETo cal-
culation: (i) gap filling, used to obtain a subset of the com-
plete time series over the period of interest for each of the
climatic variables, and (ii) spatial interpolation, used to gen-
erate climate grids of each of the required climate variables.
After spatial interpolation, ETo was calculated using climate
grids as its source of data. This means that a PM-IC scheme
was used. In addition to the estimation processes, quality
control and homogenization steps were necessary. Although
not commonly used, an uncertainty propagation scheme was
designed, considering the two estimation processes (gap fill-
ing and interpolation) as the unique sources of uncertainty.
The method and validation of the gap-filling, homogeniza-
tion and interpolation steps are presented in detail in this pa-
per.
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Table 1. Number of weather stations per variable.

Available

Variable Whole period 2010–2014 Selected

Maximum temperature 4306 1186 1246
Minimum temperature 4303 1195 1217
Relative humidity 899 648 164
Wind speed 797 583 67
Sunshine duration 271 80 92

2 Data sources

The original dataset contained data corresponding to the
daily maximum temperature (Tmax), minimum temperature
(Tmin), wind speed (W ), relative humidity (RH) and sunshine
duration (SD) and was provided by Spanish Meteorological
Agency (AEMET) across the whole region of Spain. Sun-
shine duration was used to estimate the radiation data, as the
number of weather stations collecting radiation data was very
low, and Sanchez-Lorenzo et al. (2013) assessed this method
to obtain satisfactory results.

The number of observations available (Table 1) depended
on the variable. More than 4000 weather stations collected
the maximum and minimum temperature. Fewer than 1000
weather stations collected the other variables, and fewer than
300 collected the sunshine duration. The number of selected
weather stations was always much lower than the available
ones, as only the longest time series were selected.

These weather stations did not collect data throughout
the entire period. Figure 1 provides the number of weather
observations available for each variable and each year for
the 1961–2014 period. Temperature data showed the highest
number of observations, always higher than 500, reaching
2000 observations available in the mid-90s, followed by a
subsequent decrease. The relative humidity and wind speed
showed a low number of observations during the study pe-
riod. Nevertheless, in the mid-2000s, the installation of a
large number of automatic weather stations (AWSs) sharply
increased the availability of these two climatic variables. The
sunshine duration measurements remained constant through-
out the entire period.

Some geographic variables were used in the interpolation
process. The digital elevation model (DEM) was obtained
from the IGN (Instituto Geográfico Nacional), and other vari-
ables, such as distance to the sea, were derived from the
DEM.

3 Methodology

The general scheme used to generate the ETo database in-
volved two main steps: (i) generation of climatic grids and
(ii) estimation of ETo (Fig. 2). The generation of the cli-
matic grids could be divided into (a) daily quality control,

Figure 1. Temporal evolution of the data availability.

(b) daily-to-weekly data conversion, (c) gap filling, (d) data
selection, (e) homogenization and (f) interpolation, and all of
these steps were implemented individually for each climatic
variable. The estimation of ETo consisted of the calculation
of ETo using the FAO-56 Penman–Monteith equation over
the climatic grid data sources.

On the other hand, the uncertainty in ETo was estimated
using a two-step process: (i) uncertainty estimation of the cli-
matic grids and (ii) uncertainty propagation from the climatic
grids to ETo. The uncertainty estimation of the climatic grids
estimated the uncertainty of each climatic grid after the inter-
polation process and considered the uncertainty related to the
gap-filling process and the interpolation process. Uncertainty
propagation refers to the technique used to estimate the un-
certainty in ETo values by combining the uncertainty in each
climatic variable with the Jacobian of the Penman–Monteith
equation.

The quality of the data were assessed by implementing an
automated daily quality control in R. Daily data were tested
against two types of controls: codification errors and out-of-
range values. The presence of duplicate data or n consecu-
tive days having the exact same values in different observato-
ries were the two most relevant codification errors detected.
Out-of-range values mainly detected out-of-physical-range-
values and out-of-climate-range values. More details can be
found in Tomas-Burguera et al. (2016). The temporal aggre-
gation of daily data into weekly data was then executed. For
all variables, weekly time series were obtained by calculat-
ing the mean value of the daily data. Weeks presenting more
than 1 d without data were considered to have no data. This
is an adaptation of the World Meteorological Organization
(WMO) rules for monthly data (WMO, 1989).
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Figure 2. Main steps involved in generating the ETo database. First, we interpolated each climatic variable then calculated ETo.

Some comparison problems between distinct years
emerged if a timescale of 7 d was used, mainly because the
number of days in a year is not divisible by 7. In an attempt
to combine weekly timescales to preserve comparability be-
tween years, each month was divided into 4 periods (days 1–
8, 9–15, 16–22, 23–28/29/30/31). For the remainder of this
discussion, the use of the word week(s) refers to this defini-
tion of a sub-monthly period.

After this step, the relative humidity data were transformed
into dew point temperature (Td) using the temperature data.
Gap-filling and interpolation tests revealed that Td was eas-
ier to work with than RH. The Td data adjusted better to a
Gaussian distribution than RH data; therefore, working with
Td data was preferable for most of the implemented steps.

3.1 Gap filling

In an effort to obtain a complete time series of distinct cli-
mate variables, a gap-filling procedure based on the estima-
tion of missing data using nearby weather station data, de-
signed by Beguería et al. (2019), was implemented. The stan-
dard error of the estimated data was obtained and used as a
measure of the uncertainty of the process.

The selection of nearby weather stations was relevant to
the process, and a selection based on three steps was imple-
mented: (i) overlapping periods longer than 7 years, (ii) lo-
cations closer than 100 km and (iii) values of R2 higher than
0.6.

The procedure used standardized values prior to gap filling
in order to avoid problems related to differences in the mean
values and/or variances between weather stations.

All weather stations available were used in the gap-filling
process. The last step of the process involved data selec-
tion and depended on the amount of original data available.
For temperature, only time series accounting for more than
25 years of the original data were used. For the rest of vari-
ables, this period was reduced to 15 years due to the low
availability of long records (Fig. 3). Up to three gap-filling

Figure 3. Number of available observations grouped by variable
and by years of data available.

loops were implemented for less frequent variables (sunshine
duration, dew point temperature and wind speed). Various
steps in the gap-filling procedure took advantage of nonover-
lapping data. This configuration was used previously to gen-
erate other databases over Spain (Gonzalez-Hidalgo et al.,
2015).

3.2 Homogenization

The homogeneity of the obtained time series after the gap-
filling process was tested using the Standard Normal Homo-
geneity Test (SNHT) (Alexandersson, 1986). This method
used as a basis the comparison of the time series to be ho-
mogenized, the candidate series and a reference time series.
Reference time series were obtained using the same process
used to obtain the gap-filling reference time series.

Earth Syst. Sci. Data, 11, 1917–1930, 2019 www.earth-syst-sci-data.net/11/1917/2019/



M. Tomas-Burguera et al.: Reference crop evapotranspiration database in Spain (1961–2014) 1921

The test was implemented at the monthly timescale after
the conversion of time series to timescales, mainly because
homogeneity tests, in general, are more robust when they are
used with monthly data than with sub-monthly data. Weekly
homogeneous time series were obtained by transforming the
monthly parameters to weekly parameters.

The climate series homogeneity was tested after gap filling
to (i) detect inhomogeneities introduced by the gap-filling
process and (ii) determine if the process was more reliable
if the time series had no gaps.

Present observations were assumed to be standard, mean-
ing that any inhomogeneities were corrected to adjust the val-
ues of the past to the present values.

3.3 Interpolation

Kriging is a geostatistical method widely used in climatology
to generate interpolated surfaces for many variables (Aalto
et al., 2013; Hofstra et al., 2008). Kriging is, in fact, a set
of different methods, for example, ordinary kriging (OK) or
universal kriging (UK). The main difference between OK
and UK is that the former assumes the presence of a spa-
tial constant mean, whereas the latter assumes that the spa-
tial mean is a function that can depend on geographical fac-
tors (Cressie, 1993). The latter assumption is preferable in
climatology because climate variables commonly depend on
geographical factors, such as latitude, longitude, or elevation
(Aalto et al., 2013). In this paper, climate grids for each vari-
able were generated individually using UK to predict a value
at each grid point for each time step.

As a first step in the interpolation process, a semi-
variogram model was generated. This model was unique for
each time step and each climatic variable. This process was
implemented using the gstat package in R (Pebesma, 2004;
Gräler et al., 2016).

Using UK data, a variance of the prediction was also ob-
tained, and this value was used to estimate the uncertainty.
One of the advantages of using the gstat package is that an
uncertainty associated with observed data can be provided.
We decided to use the quantification of the uncertainty ob-
tained from the gap-filling process, which is the previous es-
timation process.

3.4 ETo calculation

Predicted values of distinct climate variables were used to
calculate ETo using the FAO-PM equation (Allen et al.,
1998).

ETo =
0.4081 (Rn−G)+ γ ( 900

T+273 )U2 (es− ea)

1+ γ (1+ 0.34U2)
, (1)

where Rn is the net radiation at the crop surface
(MJ m−2 d−1), G is the soil heat flux density (MJ m−2 d−1),
T is the mean air temperature at 2 m (◦C), U2 is the wind
speed at 2 m (m s−1), es is the saturation vapor pressure

(kPa), ea is the actual vapor pressure (kPa), es− ea is the
saturation vapor pressure deficit (kPa), 1 is the slope of
the vapor pressure curve (kPa ◦C−1) and γ is the psychro-
metric constant (kPa ◦C−1). The value 0.408 was used to
convert from MJ m−2 d−1 units to kg m−2 d−1 (alternatively
mm d−1). Following the recommendations of Allen et al.
(1998), we fixed G to 0, as we estimated ETo over a time
period of fewer than 10 d.

The main advantages of this equation are that it is physi-
cally based and accounts for both the radiative and aerody-
namic components of evapotranspiration. The former is re-
lated to the energy available for evaporation and the latter is
related to the capacity of the air to store the vapor from evap-
otranspiration (Azorin-Molina et al., 2015). Although the ra-
diative component was strongly related to the solar radia-
tion and presented a high seasonality in the study region due
to its latitude, the aerodynamic component was more vari-
able throughout the year, as it was influenced by the vapor
pressure deficit as well as the wind speed. Splitting Eq. (1)
into the sum of its two parts yielded the radiative component
(EToRa) and the aerodynamic component (EToAe).

EToRa =
0.4081 (Rn−G)
1+ γ (1+ 0.34U2)

EToAe =
γ ( 900

T+273 )U2 (es− ea)

1+ γ (1+ 0.34U2)
(2)

This dataset contained data describing each of the two
components, EToRa and EToAe, as well as their summation,
which is ETo. A variability and trend analysis could benefit
from the availability of the two components. For example,
wind stilling and solar brightening have opposite effects in
ETo, but studying the two components separately facilitates
the study of the impacts of each one on ETo.

3.5 ETo uncertainty estimation

Due to the complexity of the process involved in estimating
the uncertainty in ETo, the uncertainty in this first version of
the dataset was estimated only for the final value of ETo and
not for its two components (EToRa and EToAe).

3.5.1 Uncertainty estimation in the climatic grids

Climate grid generation involves many sources of data un-
certainty, including uncertainty related to the observation,
the interpolation process and other sources (Haylock et al.,
2008). In this paper, we assumed that uncertainty was only
related to the estimation processes, i.e., gap filling and in-
terpolation. Moreover, we considered the uncertainty of each
climatic grid at each time step to be equal to the uncertainty
after the interpolation process.

Uncertainty estimation over the gap-filling process was
based on the number of weather observations used to esti-
mate the missing data and the covariance between these data
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points. Less covariance between data was associated with
more uncertainty.

The interpolation process assumed that any uncertainty
was equal to the variance of the prediction, i.e., the variance
of the kriging. The uncertainty estimated over the gap-filling
process was propagated to the interpolation process using the
gstat package in R, as the uncertainties related to the obser-
vational data used in the interpolation process were available.

3.5.2 Uncertainty propagation

The uncertainty propagation allowed us to obtain the uncer-
tainty associated with the predicted values of ETo (R), using
the posterior variance of the climate grids and the Jacobian
of the FAO-PM.

R = JEToQ(JETo )T , (3)

where JETo is the Jacobian of ETo and Q is the covariance
matrix of the variables. For simplicity, the variables were
considered to be independent, yielding a diagonal matrix
with variance positions distinct from 0.

The Jacobian assumed the following form and was analyt-
ically derived.

JETo =

[
dETo
dTmax

dETo
dTmin

dETo
dTd

dETo
dW

dETo
dSD .

]
The covariance matrix could be expressed as follows:

Q =


σ 2
Tmax

0 0 0 0
0 σ 2

Tmin
0 0 0

0 0 σ 2
Td

0 0
0 0 0 σ 2

W 0
0 0 0 0 σ 2

SD

 ,

where σ 2 is the variance of the kriging of each of the climatic
variables. In fact, as Q is a diagonal matrix, the R calculation
could be rewritten as follows:

R =

(
∂ETo

∂Tmax

)2

· σ 2
Tmax
+

(
∂ETo

∂Tmin

)2

· σ 2
Tmin

+

(
∂ETo

∂Td

)2

· σ 2
Td
+

(
∂ETo

∂W

)2

· σ 2
W

+

(
∂ETo

∂SD

)2

· σ 2
SD . (4)

3.6 Using 2010–2014 data to validate the air humidity
and wind speed grids

During the last part of the period (2010–2014), a high num-
ber of AWSs were installed. A sharp increase in the available
RH and W data was observed during this period, compared
with the data available from weather stations used to generate
the original database (Table 1). The values of these observa-
tions and the values of the climate grids were compared di-
rectly to obtain the relative humidity and wind speed over the

2010–2014 period using the new stations as an independent
dataset.

4 Validation

4.1 Gap filling

The performance of the gap-filling step was verified by com-
paring the original data and estimated data. Obviously, this
comparison was only possible for periods having original
data.

Table 2 lists certain statistics associated with the verifi-
cation process. In general, satisfactory values of R2 were
achieved, with values higher than 0.9 for all variables ex-
cept for the wind speed, which showed an R2 of only 0.53.
Evaluation of mean error (ME) and percent bias (PBIAS)
showed no bias for the maximum and minimum temperature,
a small negative bias for the dew point temperature (ME of
−0.01 and PBIAS of −0.15) and the sunshine duration (ME
of −0.01 and PBIAS of −0.23), and a positive bias for the
wind speed (ME of 0.08 and PBIAS of 0.64). The ratio of the
mean values and the ratio of the standard deviation showed
values close to 1 for all variables. The wind speed displayed
a standard deviation ratio of 1.05, meaning that the temporal
variability of the gap-filling data was slightly higher than the
temporal variability of the original data.

Figure 4 evaluates the possible existence of temporal dif-
ferences in the performance of the gap-filling process us-
ing decadal values of R2. In general, all analyzed periods
showed similar performances. For wind speed, the most re-
cent decade showed slightly higher R2 values than the other
decades of the period.

As the amount of original data changed over time, the
amount of filled data also showed a temporal evolution. Fig-
ure 5 indicates this temporal evolution, with a higher amount
of filled data during the first years of the period and a large
decline over time. The amount of filled data corresponding
to the maximum and minimum temperature increased again
during the last several years because of a slow decline in the
number of observations and the disappearance of some of the
weather stations with longer records.

The wind speed provided the lowest amount of filled data.
It was difficult to obtain highly correlated time series to fill
in the gaps, which had two major effects on the process:
(i) the probability of obtaining a reference time series from
the neighbors was decreased and (ii) the reconstruction was
poor when the reference time series could be obtained. The
low correlation of the wind speed time series was a conse-
quence of (i) the high spatial and temporal variability of this
variable and (ii) the low number of observations available.

4.2 Homogenization

The percentage of data affected by the homogenization pro-
cess exceeded 10 % for all variables except for the wind
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Table 2. Gap-filling statistics. Values for the following validation statistics are provided: (i) mean absolute error (MAE), (ii) coefficient of
determination R2, (iii) mean error (ME), (iv) percent bias (PBIAS), (v) ratio of mean values (rM) and (vi) ratio of standard deviation (rSD).

Variable MAE R2 ME PBIAS rM rSD

Maximum temperature (◦C) 0.92 0.97 0.00 0.00 0.99 1.00
Minimum temperature (◦C) 0.83 0.95 0.00 0.00 0.99 1.00
Dew point temperature (◦C) 1.04 0.91 −0.01 −0.15 0.99 1.00
Sunshine duration (h) 0.63 0.91 −0.01 −0.23 0.99 1.00
Wind speed (kmh−1) 2.32 0.53 0.08 0.64 1.00 1.05

Figure 4. Kernel density of the gap filling R2, grouped by decadal periods.

Table 3. Percentage of data affected by inhomogeneities.

Weekly Original Filled
data data data

Maximum temperature (◦C) 14.8 13.7 17.0
Minimum temperature (◦C) 16.7 14.8 20.3
Dew point temperature (◦C) 14.1 11.2 18.2
Wind speed (ms−1) 3.1 1.8 8.9
Sunshine duration (h) 10.1 7.2 16.8

speed (Table 3). For all variables, the percentage of homoge-
nized data was higher for the filled data than for the original
data, indicating the importance of implementing a homoge-
nization process after gap filling. Two factors could explain
this effect: (i) because the original data were not homoge-
nized prior to the gap filling, the presence of inhomogeneities
in the original data propagated to the homogenized data and
(ii) inhomogeneities may have been introduced by the gap-
filling procedure.

The temporal evolution of the quantity of data detected as
inhomogeneous was analyzed (Fig. 5), revealing a temporal

trend with maximum values at the start of the study period
and minimum values at the end. The most likely explanation
for this observation is the use of more recent conditions as
the standard conditions.

Another effect of this assumption is the propagation of
the current conditions to the past, which was evaluated by
comparing the spatial mean values of the homogenized and
prior-to-homogenization time series. Figure 6 highlights this
effect in the implemented homogenization process. The max-
imum and minimum temperature, which displayed a positive
trend in Spain over the study period (del Río et al., 2012;
Gonzalez-Hidalgo et al., 2016), suggested that higher val-
ues occurred in the present than in the past. A positive bias
was observed in the homogenized data over the first decades
(1961–1970, 1971–1980 and 1981–1990). Unlike the maxi-
mum and minimum temperature, the wind speed, which dis-
played a negative trend (Azorin-Molina et al., 2014), was af-
fected by a negative bias during the first decades (1961–1970,
1971–1980 and 1981–1990) of the study period.

The effect of the homogenization process on ETo was eval-
uated using a similar procedure, which involved calculating
the mean regional values of ETo before and after homoge-
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Figure 5. Temporal evolution of the number of filled data for the
different climatic variables. The temporal evolution of the homoge-
nized data is also shown.

Figure 6. Temporal evolution of the differences between the mean
regional values before and after homogenization.

nization of the climatic variables. These regional values were
obtained by calculating first a mean regional value of the cli-
matic variables, followed by calculating the ETo using the
Penman–Monteith equation.

No important differences were detected in a comparison
of the two time series of ETo (Fig. 7). This result is relevant,
as it shows that the undesirable detrending introduced by the

Figure 7. Temporal evolution of the mean regional values of ETo
before (filled) and after (homogenized) homogenization.

homogenization process did not affect the spatial mean val-
ues of ETo.

4.3 Interpolation validation

The interpolation process was validated by executing a leave-
one-out cross-validation (LOO-CV) process, and validation
statistics were calculated to evaluate the performance of the
interpolation in predicting both the temporal variability and
the spatial variability. The LOO-CV process consisted of re-
peating the interpolation process n times (n being the number
of observations available) using each time n−1 observations
and using the predicted value at the unused observatory as a
way to evaluate the quality of the interpolation.

The temporal variability was evaluated by calculating the
temporal statistics individually for each observatory and then
computing the mean of all observatories. The spatial variabil-
ity was evaluated by calculating the statistics at each time
step using information comprising all observatories and then
computing the mean of all time steps. The problem with the
LOO-CV method is that validation could only be estimated
at a given point if observations used during the interpolation
process existed.

Another option for validating the interpolation process
consisted of comparing the unused observational data over
the 2010–2014 period (when a high number of wind speed
and relative humidity observations existed) against the inter-
polated values.

4.3.1 Spatial and temporal validation using LOO-CV

The ability of the interpolation process to predict the spa-
tial and the temporal variability of the climatic grids is sum-
marized in Table 4. In general, temporal validation showed
better statistics than spatial validation. All variables, except
for the wind speed, showed R2 values greater than 0.9 for the
temporal validation and close to 0.8 for the spatial validation.
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Table 4. Spatial and temporal validation of the interpolation process. Values for the following validation statistics are provided: (i) mean
absolute error (MAE), (ii) coefficient of determination R2, (iii) mean error (ME), (iv) percent bias (PBIAS), (v) ratio of mean values (rM)
and (vi) ratio of standard deviation (rSD).

Variable Validation MAE R2 ME PBIAS rM rSD

Maximum temperature (◦C) Temporal 1.02 0.98 −0.02 0.00 0.99 0.99
Spatial 1.02 0.82 −0.02 0.00 0.99 0.92

Minimum temperature (◦C) Temporal 1.11 0.97 0.03 0.01 1.00 0.98
Spatial 1.11 0.78 0.04 0.00 1.00 0.89

Dew point temperature (◦C) Temporal 1.01 0.95 0.05 0.02 1.00 0.98
Spatial 1.02 0.82 0.06 0.00 0.99 0.89

Sunshine duration (h) Temporal 0.65 0.93 0.00 0.48 1.00 0.97
Spatial 0.64 0.70 0.00 0.12 1.00 0.85

Wind speed (ms−1) Temporal 0.75 0.54 0.05 12.31 1.12 0.87
Spatial 0.75 0.06 0.06 2.44 1.02 0.46

According to ME and PBIAS, the only variable that indi-
cated the presence of bias in both validations was the wind
speed, which yielded a PBIAS of 12.31 for the temporal val-
idation.

A temporal analysis of the R2 values obtained from the
spatial validation of the maximum and minimum tempera-
ture (Fig. 8) showed slightly better statistics (i e., closer to
one) in recent decades (2001–2010 and 2011-2014). Never-
theless, the most relevant detected effect was the presence of
seasonality in the R2 of the dew point temperature, which
indicated lower values during summer than during winter.
A higher spatial variability in the air humidity in summer
months due to the contrast between the high air humidity in
the coastal areas and the low air humidity in the continental
areas may be the source of the lower values during summer.

4.3.2 The 2010–2014 validation

Validating the interpolation performance over the 2010–2014
independent time series of the wind speed and relative hu-
midity revealed that the two most relevant detected prob-
lems were the overestimation of the wind speed during win-
ter months in the northeastern region of the Iberian Penin-
sula and the overestimation of the dew point temperature in
the inner region of the Iberian Peninsula during the sum-
mer months at the same time that an underestimation was
detected in the maritime region. These two effects are visual-
ized in Fig. 9, which shows the mean errors for January and
July for the two variables.

4.3.3 Uncertainty validation

Data from the 2010–2014 period could also be used to val-
idate the uncertainty estimation of the climatic grids. First,
the mean absolute error (MAE) was calculated by compar-
ing the independent weather station data against the climatic

Figure 8. Spatial validation of the interpolation in terms of R2,
grouped by decadal periods.

grid data. Then, the obtained values of the MAE were com-
pared against the uncertainty values of the climatic grids.

The mean spatial values of the MAE and the uncertainty
are represented in Fig. 10. In general, the uncertainty of the
climatic grids was well estimated, especially for the wind
speed and sunshine duration, as these variables showed sim-
ilar values of the MAE and uncertainty. The other variables,
(Tmax, Tmin and Td), showed slightly higher values of uncer-
tainty than the MAE values but always with similar temporal
oscillations.
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Figure 9. Spatial validation of the dew point and wind speed climatic grids using a subset of independent observations over the 2010–2014
period, in terms of the mean error.

Figure 10. Temporal evolution of the MAE and uncertainty of the
interpolation at a subset of independent observations over the 2010–
2014 period.

5 Data availability

The four files generated in this dataset (weekly values of
reference evapotranspiration, uncertainty estimation of the
weekly values of reference evapotranspiration, aerodynamic
component values of the weekly reference evapotranspiration
and the radiative component values of the weekly reference
evapotranspiration) can be accessed and downloaded via two
different sources.

From Digital CSIC, which is a long-term repository
managed by the Spanish Research Council (CSIC),
users can download the files in netCDF format through
https://doi.org/10.20350/digitalCSIC/8615 (Tomas-
Burguera et al., 2019).

The data can also be accessed at the following web page,
which is a map visualization tool: http://speto.csic.es (last ac-
cess: 10 December 2019). Users can visualize the data gen-
erated at different time steps, download the complete netcdf
files or download a complete time series for a chosen point as
a comma-separated value (csv) file. As the spatial resolution
of the data is 1.1 km over continental Spain and the Balearic
Islands, the total number of grid points is slightly higher than
400 000. The weekly temporal resolution yielded 2592 dif-
ferent weekly maps for each of the four available files.

6 Discussion and conclusions

We proposed a method for obtaining a 1961–2014 ETo cli-
mate grid across Spain based on the Penman–Monteith equa-
tion. Whereas previous studies of ETo and AED climatology
in Spain have been developed (Azorin-Molina et al., 2015;
Sanchez-Lorenzo et al., 2014; Vicente-Serrano et al., 2014),
this is the first suitable ETo database for use in climate stud-
ies covering the full study area with a high spatial resolution
and over a long time period.

As the number of weather stations collecting all vari-
ables required to calculate ETo was very low, the proposed
methodology took advantage of two estimation processes:
gap filling and spatial interpolation. The performances of the
processes were carefully studied to detect the possible nega-

Earth Syst. Sci. Data, 11, 1917–1930, 2019 www.earth-syst-sci-data.net/11/1917/2019/

https://doi.org/10.20350/digitalCSIC/8615
http://speto.csic.es


M. Tomas-Burguera et al.: Reference crop evapotranspiration database in Spain (1961–2014) 1927

Figure 11. Example of the data visualization tool available at the following web page: http://speto.csic.es (last access: 10 December 2019).

tive impacts on the generation of the ETo database. In gen-
eral, no relevant problems were detected for most of the cli-
matic variables. The wind speed displayed the worst perfor-
mance in each of the estimation processes due to its high
spatial and temporal variability.

The PM-IC strategy, which consisted of interpolating cli-
matic variables prior to calculating ETo, was previously used
to model other regions (Mardikis et al., 2005; McVicar et al.,
2007) and was determined to be the best method for esti-
mating ETo in the event of missing data in Spain (Tomas-
Burguera et al., 2017). Another strategy, known as PM-CI,
calculated ETo prior to interpolation and was also appropri-
ate for use. The main advantage of the PM-CI over PM-IC
strategy was that only one interpolation was required. The
main disadvantage was that much of the available data were
not used. In the case of Spain, the use of the PM-CI strat-
egy would have restricted the calculation of ETo to nearly
50 weather stations, which is the number of weather stations
used in previous studies (Vicente-Serrano et al., 2014). On
the other hand, the use of the PM-IC strategy allowed the use
of more data, especially of temperature data, from more than
1000 weather stations. As 80 % of the ETo variability was
related to the variability in temperature and radiation (Men-
dicino and Senatore, 2013; Samani, 2000), using as many
temperature observations as possible was important for en-
suring the quality of the obtained results.

A comparison against an independent subset of climatic
data collected over the 2010–2014 period showed the pres-
ence of a positive bias in the wind speed during winter over
the northeastern region of the Iberian Peninsula. The overes-

timation of the wind speed in this region could be explained
by the fact that a low number of observations were used in
that region, and most of the observations used were located in
places affected by Tramontane winds. Fortunately, the higher
bias was detected in winter, when ETo values were lower and
the importance of this variable for some uses (e.g., irrigation
schedule) was also lower. Two factors appeared to be relevant
for wind speed estimation problems: (i) the high spatial vari-
ability of the wind speed (Luo et al., 2008) and (ii) the fact
that the wind speed was not normally distributed. Both the
gap-filling and interpolation processes tend to perform better
when applied to normally distributed data.

These comparisons also detected some problems related
to the dew point temperature values predicted during sum-
mer. An inverse bias was detected between the inland and
maritime regions. During the summer months, the humidity
contrast between the inland and maritime regions was high
in the Iberian Peninsula, as maritime regions experienced a
higher humidity due to the contributions of the sea breezes.
The detected overestimation of the dew point temperature
during the summer across the continental regions led to an
underestimation of the vapor pressure deficit and also to an
underestimation of ETo. This effect suggested that the ETo
values were underestimated to some degree across the con-
tinental regions of Spain, whereas the maritime regions may
have been affected by an overestimation.

The performance of the homogenization process was
tested, and changes in the spatial mean values of the first
decades were detected in some of the climatic variables. Al-
though the maximum and minimum temperatures were af-
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fected by an increase in their spatial mean, the wind speed
was affected by a decrease in the spatial mean. Due to coun-
teracting effects, the ETo mean spatial value was not affected
by this problem.

Considering that each estimation process was affected by
uncertainty, the uncertainty in ETo after applying the two es-
timation processes was obtained. For simplicity, the climatic
variables were considered to be independent in the final step
of the uncertainty estimation, which involved the propaga-
tion of the uncertainty of each climatic variable through the
Penman–Monteith equation.

Haylock et al. (2008) pointed out that the variance of the
kriging, which in this paper was used to estimate the uncer-
tainty of each climatic grid, is not a true estimation of the
uncertainty; however, an evaluation of the uncertainty esti-
mations of each variable showed a good agreement between
the MAE values and the estimated uncertainty values. Unfor-
tunately, the uncertainty of ETo could not be verified because
an independent subset of observatories that collected all vari-
ables was required to calculate ETo but was not available.

This dataset was first developed as an input to generate,
in combination with the precipitation data, grids of drought
indices over the study area (Vicente-Serrano et al., 2017).
Due to the relevance of ETo and the high number of possible
uses of these data, the ETo climate grid is now being made
available to other research groups. As with drought studies,
in some cases the interest was focused on the combined anal-
ysis of ETo and the precipitation data. This could be the case
for hydrological studies in which the AED data can explain
some of the most important processes taking place in a catch-
ment. The combined analysis may provide better estimations
of water balance and aridity indices. The present dataset cov-
ered a long period of time, thereby enabling studies of the
temporal evolution of these indices.

Irrigated agriculture is another sector interested in these
data, as the water balance is important both for irrigation
planning and for irrigation scheduling. The development of
modern irrigation systems has rendered irrigation a signifi-
cant economic activity in some regions of Spain, such as the
Ebro basin (Vidal-Macua et al., 2018), reinforcing the impor-
tance of the dataset in that region. More accurate models of
ETo is also useful for rainfed agriculture. Hence, the whole
agricultural sector could benefit from this dataset.

This dataset could be interpreted as the first available AED
climate grid across Spain, which is quite relevant to the de-
velopment of spatial and temporal climatology studies that
could confirm the previously detected positive trends of cer-
tain variables across the study area. This database could also
be used for regional (or global) climate model assessment in
the context of climate change studies.

Calculating ETo using PM assumed a well-watered ref-
erence surface, which can differ significantly from the ac-
tual conditions present in a semiarid region, as is the case
across most of our study area. A scarcity of soil moisture can
decrease the air humidity and increase the air temperature

compared with well-watered conditions due to the effects of
the land–atmosphere continuum. Both changes, which espe-
cially affect the aerodynamic component of ETo, may have
a noticeable effect on ETo, meaning that an overestimation
can occur under semiarid conditions (Bouchet, 1963; Allen
et al., 1998). Such an overestimation would be higher during
the warm season when these conditions prevail. The possible
overestimation due to the use of PM in a semiarid environ-
ment should be considered by potential users of this database.
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