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Abstract. Many maps of open water and wetlands have been developed based on three main methods: (i) com-
piling national and regional wetland surveys, (ii) identifying inundated areas via satellite imagery and (iii) de-
lineating wetlands as shallow water table areas based on groundwater modeling. However, the resulting global
wetland extents vary from 3 % to 21 % of the land surface area because of inconsistencies in wetland defini-
tions and limitations in observation or modeling systems. To reconcile these differences, we propose composite
wetland (CW) maps, combining two classes of wetlands: (1) regularly flooded wetlands (RFWs) obtained by
overlapping selected open-water and inundation datasets; and (2) groundwater-driven wetlands (GDWs) derived
from groundwater modeling (either direct or simplified using several variants of the topographic index). Wet-
lands are statically defined as areas with persistent near-saturated soil surfaces because of regular flooding or
shallow groundwater, disregarding most human alterations (potential wetlands). Seven CW maps were gener-
ated at 15 arcsec resolution (ca. 500 m at the Equator) using geographic information system (GIS) tools and by
combining one RFW and different GDW maps. To validate this approach, these CW maps were compared with
existing wetland datasets at the global and regional scales. The spatial patterns were decently captured, but the
wetland extents were difficult to assess compared to the dispersion of the validation datasets. Compared with
the only regional dataset encompassing both GDWs and RFWs, over France, the CW maps performed well and
better than all other considered global wetland datasets. Two CW maps, showing the best overall match with the
available evaluation datasets, were eventually selected. These maps provided global wetland extents of 27.5 and
29 million km2, i.e., 21.1 % and 21.6 % of the global land area, which are among the highest values in the litera-
ture and are in line with recent estimates also recognizing the contribution of GDWs. This wetland class covers
15 % of the global land area compared with 9.7 % for RFW (with an overlap of ca. 3.4 %), including wetlands
under canopy and/or cloud cover, leading to high wetland densities in the tropics and small scattered wetlands
that cover less than 5 % of land but are highly important for hydrological and ecological functioning in temperate
to arid areas. By distinguishing the RFWs and GDWs based globally on uniform principles, the proposed dataset
might be useful for large-scale land surface modeling (hydrological, ecological and biogeochemical modeling)
and environmental planning. The dataset consisting of the two selected CW maps and the contributing GDW and
RFW maps is available from PANGAEA at https://doi.org/10.1594/PANGAEA.892657 (Tootchi et al., 2018).
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1 Introduction

Wetlands are valuable ecosystems with a key role in carbon,
water and energy cycles (Matthews and Fung, 1987; Richey
et al., 2002; Repo et al., 2007; Ringeval et al., 2012). Wa-
ter retention in wetlands leads to lower and delayed runoff
peaks, higher base flows and evapotranspiration, which di-
rectly influence climate (Bierkens and van den Hurk, 2007;
Lin et al., 2016). Wetlands also serve to purify pollution
from natural and human sources, thus maintaining clean
and sustainable water for ecosystems (Billen and Garnier,
1999; Dhote and Dixit, 2009; Curie et al., 2011; Passy et
al., 2012). Despite their widely recognized importance, no
consensus exists on wetland definitions and their respective
areal extents among the reviewed literature (Table 1). Based
on several definitions, the extents range from regions with
relatively shallow water tables (National Research Council,
1995; Kutcher, 2008; Ramsar, 2009) to areas with permanent
inundation such as lakes (lacustrine wetlands) with depths of
several meters. The reasons for this ambiguity are a diversity
of scientific points of views as well as the complexity of clas-
sification in transitional land features and temporally varying
land features under human influences (Mialon et al., 2005;
Papa et al., 2010; Ringeval et al., 2011; Sterling et al., 2013;
Hu et al., 2017; Mizuochi et al., 2017).

The first global wetland maps were developed based on
a compilation of regional archives and estimates. Matthews
and Fung (1987) developed a 1◦ resolution wetland map
based on vegetation, soil properties and inundation fractions
that covered ca. 4 % of the land. Finlayson et al. (1999)
based their estimates on surveys and the Ramsar global in-
ventory in which wetlands cover 9.7 % of the land area. Later,
the Global Lakes and Wetlands Database (GLWD) was de-
veloped at 30 arcsec resolution (∼ 1 km at the Equator) by
compiling several national and regional wetland maps with
a global cover of 6.9 % of the land area, excluding Antarc-
tica and glaciated lands (Lehner and Döll, 2004). Because
satellite imagery permits homogeneous observation of land
characteristics, this method has been favored for mapping of
water-related features in recent decades. Satellite imagery at
visible wavelengths reports that 1.6 % to 2.3 % of Earth’s
land is permanently under water (Verpoorter et al., 2014;
Feng et al., 2015; Yamazaki et al., 2015; Pekel et al., 2016),
but with large disagreements (Nakaegawa, 2012), and inun-
dations under densely vegetated and clouded areas are often
missed (Lang and McCarty, 2009). Longer wavelengths in
the microwave band (e.g., L and C bands) penetrate better
through the cloud and vegetation layer and supply dynamic
observations of inundated zones, usually with a trade-off be-
tween high resolution with a low revisit rate or domain extent
(Li and Chen, 2005; Hess et al., 2015) and coarse resolution
with a high revisit rate up to global coverage (Prigent et al.,
2007; Papa et al., 2010; Schroeder et al., 2015; Parrens et al.,
2017). Recent progress has been achieved by downscaling or
correcting the latter products using higher-resolution infor-

mation. Fluet-Chouinard et al. (2015) developed the global
inundation product GIEMS-D15 by downscaling the 0.25◦

multi-satellite wetland fractions of Prigent et al. (2007) us-
ing 15 arcsec topography, with a global long-term maximum
inundation fraction of 13 %. Poulter et al. (2017) corrected
the wetland fractions of the surface water microwave product
series (SWAMPS; Schroeder et al., 2015) by merging them
with those obtained at 30 arcsec from GLWD.

However, regardless of the wavelengths, wetlands derived
from satellite imagery almost always represent inundated ar-
eas and overlook other types of wetlands where soil mois-
ture is high but the surface is not inundated (Maxwell and
Kollet, 2008; Lo and Famiglietti, 2011; Wang et al., 2018).
The method most frequently used to delineate these wet-
lands is water table depth (WTD) modeling. Direct ground-
water (GW) modeling (e.g., Miguez-Macho and Fan, 2012)
requires in-depth knowledge of the physics of water move-
ment, topography at a sufficiently high resolution, climate
variables, subsurface characteristics and observational con-
straints (Fan et al., 2013; de Graaf et al., 2015). Simplified
GW models based on the topographic index (TI) of TOP-
MODEL (Beven and Kirkby, 1979) require less extensive
input, and they have also been used to map wetlands (e.g.,
Gedney and Cox, 2003). Using the topography, the TI can be
calculated as follows:

TI= ln
(

a

tan(β)

)
, (1)

where a(m) is the drainage area per unit contour length and
tan(β) is the local slope at the desired pixel. The TI is often
presented as a wetness index (Wolock and McCabe, 1995;
Sørensen et al., 2006) because high values are found over flat
regions, with large drainage areas corresponding to a high
propensity for saturation. Other environmental characteris-
tics such as climate and soil or underground properties can
also be used in the TI formulation to detect wetlands in ar-
eas where topography is not the primary driver of the water
budget, such as wetlands in uplands and over clayey soils or
thin active layers in the permafrost region (e.g., Saulnier et
al., 1997; Mérot et al., 2003; Hu et al., 2017).

A major challenge in the identification of wetlands through
GW modeling is the definition of thresholds on TI or WTD
for separation of wetland from non-wetland areas. The
thresholds are often calibrated to reproduce the extent of doc-
umented wetlands in a certain region and are subsequently
extrapolated for larger domains. This strategy was proven
successful at the basin scale (e.g., Curie et al., 2007), but it
has been shown to be ineffective at larger scales because it is
not possible to uniquely link TI values to soil saturation lev-
els across different landforms and climates (Marthews et al.,
2015). Hu et al. (2017) produced a global wetland map by
calibrating TI thresholds for every large basin of the world
based on land cover maps, as pioneered over France due to
independent TI threshold calibration in 22 hydro-ecoregions
using soil type datasets (Berthier et al., 2014). Uniform WTD
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Table 1. Summary of water body, wetland and related proxy maps and datasets from the literature. The wet fractions indicated in % in the
last column are those indicated in the reference paper or data description for each study.

Name and reference Resolution Type of acquisition
Wetland extent

(million km2) % of the landa

Maltby and Turner (1983) – Based on Russian geographical studies 8.6 6.6 %

Matthews and Fung (1987) 1◦ Development from soil, vegetation and
inundation maps

5.3b 4.0 %

Mitsch and Gosselink
(2000)

Polygons Gross estimates, combination of estimates
and maps

∼ 20b
∼ 15.3 %

GLWD-3 (Lehner and
Döll, 2004)

30 arcsec, ∼ 1 km Compilation of national/international maps 8.3–10.2c 6.2 %–7.6 %

GLC2000 (Bartholomé and
Belward, 2005)

1 km at Equator SPOT vegetation mission satellite observa-
tions

4.9 3.4 %

GIEMS (Prigent et al.,
2007)

0.25◦, ∼ 25 km Multi-sensor: AVHRR, SSM/I, Scatterome-
ter ERS

2.1–5.9 1.4 %–4 %

Fan et al. (2013) 30 arcsec, ∼ 1 km Groundwater modeling ∼ 19.3b
∼ 17 %

GLOWABO (Verpoorter et
al., 2014)

Shapefiles of lakes larger
than 0.002 km2

Satellite imagery: Landsat and SRTM
topography

5 3.7 %

SWAMPS (Schroeder et al.,
2015)

25 km Modeling using multi-sensor info: SSM/I,
SSM/S, QuikSCAT, ASCAT

7.7–12.5d 5.2 %–8.5 %

ESA-CCI land cover
(Herold et al., 2015)

10 arcsec, ∼ 300 m Multi-sensor: SPOT vegetation, MERIS
products

6.1 4.7 %

GIEMS-D15
(Fluet-Chouinard et al.,
2015)

15 arcsec, ∼ 460 m Multi-sensor: SSM/I, ERS-1, AVHRR,
downscaled from a 0.25◦ wetland map

6.5–17.3 5.0 %–13.2 %

G3WBM (Yamazaki et al.,
2015)

3 arcsec, ∼ 90 m Satellite imagery: Landsat 3.2 2.5 %

Satellite imagery: Landsat,
including maximum water
extent and interannual
occurrence

2.8–4.4 2.1 %–3.4 %

HydroLAKES (Messager et
al., 2016)

Shapefiles of lakes larger
than 0.1 km2

Multiple inventory compilation including
Canadian hydrographic dataset and SWBD

2.7 1.8 %

Hu et al. (2017) 1 km Development based on topographic wetness
index and land cover

29.8e 22.5 %

Poulter et al. (2017) 0.5◦, ∼ 50 km Merging SWAMPS and GLWD-3 10.5 7.1 %
a Percentages are those from the corresponding journal article or book. If no mention of percentage coverage exists, the value is calculated by dividing the wetland area by the land
surface area excluding Antarctica, glaciated Greenland and lakes. b Excluding Caspian Sea and large lakes. c Excluding Antarctica, glaciated Greenland, lakes and Caspian Sea.
Additionally the range in GLWD is different based on interpretation of fractional wetlands. d Excluding large water bodies. e Including the Caspian Sea.

thresholds (0 cm for inundated areas and 25 cm for wetlands)
are applied in the only example (to the best of our knowl-
edge) of direct global GW modeling for wetland delineation
(Fan and Miguez-Macho, 2011; Fan et al., 2013). All these
datasets based on GW modeling estimate the wetland frac-
tion as being much higher than those based on inventories
and satellite imagery (Hu et al., 2017: 22.6 %, Fan et al.,
2013: 15 % of the land surface area). It must be emphasized
that adjustment of wetland thresholds, both for directly mod-

eled WTD and TI, always implies subjective choices and can
result in over- or underestimation of wetland extents or unre-
alistic wetland distribution patterns.

The scientific objective of the current work is to develop
a comprehensive global wetland dataset based on a unique
and applicable wetland definition for use in hydrological and
land surface modeling. Based on the above analysis, our ra-
tionale is that inundated and groundwater-driven wetlands
must both be considered to realistically capture the wet-
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land patterns and extents. This approach leads to a definition
of wetlands as areas that are persistently saturated or near-
saturated because they are regularly subject to inundation or
shallow water tables. This definition is focused on hydro-
logical functioning, and is not restricted to areas with typ-
ical wetland vegetation. In this context, although inundated
areas and zones with shallow groundwater partially overlap
and share similar environmental properties, they cannot be
detected using a single method. Thus, we rely on data fu-
sion methods, which have proven advantageous in develop-
ing high-quality products by merging properties from vari-
ous datasets (Fritz and See, 2005; Jung et al., 2006; Schep-
aschenko et al., 2011; Pérez-Hoyos et al., 2012; Tuanmu and
Jetz, 2014), including wetland mapping (Ozesmi and Bauer,
2002; Friedl et al., 2010; Poulter et al., 2017). In this frame-
work, we tested several composite wetland (CW) maps, all
constructed at 15 arcsec resolution, by merging two comple-
mentary classes of wetlands: (1) regularly flooded wetlands
(RFWs), where surface water can be detected at least once
a year through satellite imagery, and (2) groundwater-driven
wetlands (GDWs) based on groundwater modeling.

The main assumptions underlying the composite wetland
maps are detailed in Sect. 2, together with the datasets in-
volved. Subsequently, Sect. 3 sequentially presents the con-
struction of the RFW, GDW and CW maps, with prelimi-
nary analyses of their features and uncertainties. In Sect. 4,
we compare the CW maps with several validation wetland
datasets, globally and in several areas with contrasting cli-
mates and wetland fractions, to show that the combination of
RFWs and GDWs provides a consistent wetland description
throughout the globe. This comparison allows us to select
two CW maps with better overall performances, used to dis-
cuss the role of GDWs in Sect. 5. Finally, the availability and
potential applications of the composite maps are presented in
Sect. 6, while Sect. 7 summarizes the advantages and limita-
tions of the approach and gives perspectives on future devel-
opments.

2 Datasets

2.1 Mapping strategy and requirements

Based on the inclusive assumptions for wetland mapping in
this study, we use GIS tools to construct several composite
wetland maps as the overlap (union) of the following:

– one RFW map developed by overlapping three sur-
face water and inundation datasets derived from satel-
lite imagery in an attempt to fill the observation gaps
(Sect. 3.1);

– one GDW map out of seven, all derived from GW mod-
eling (either direct or simplified based on several TI ver-
sions) and meant to sample the uncertainty of the GDW
contribution (Sect. 3.2).

In this process, many layers were developed and are sum-
marized in Table 2 and detailed in Sect. 3. The map and
methods to exclude lakes from all layers are explained in
Sect. 2.2. Input datasets to RFWs and GDWs are presented
in Sect. 2.3 and 2.4, respectively, and several independent
validation datasets, global and regional, are presented in
Sect. 2.5. It should be noted that in the remainder of this pa-
per, the wetland percentages of the land surface area always
exclude lakes (Sect. 2.2), the Caspian Sea, the Greenland ice
sheet and Antarctica (unless otherwise mentioned). For this
reason, these percentages and areas might be different from
those shown in Table 1, which are indicated for each original
paper or data description.

2.2 Lakes

To distinguish large permanent lakes and reservoirs from
wetlands, we used the HydroLAKES database (Messager
et al., 2016), which was developed by compiling national,
regional and global datasets (Fig. 1a). This database con-
sists of more than 1.4 million individual polygons for lakes
with a surface area of at least 10 ha, covering 1.8 % of the
land surface area. It also classifies artificial dam reservoirs
which amount to 300×103 km2 (Messager et al., 2016). The
lakes’ extent in HydroLAKES is smaller than in other re-
cent databases that account for smaller water bodies: 2.5 %
in G3WBM (Yamazaki et al., 2015) for water bodies above
0.8 ha and 3.5 % in GLOWABO (Verpoorter et al., 2014)
for those above 0.2 ha. These two datasets do not differ-
entiate lakes from other surface water elements, and using
them as a mask would lead to the exclusion of shallow in-
undated portions of wetlands (e.g., Indonesian mangroves or
Ganges floodplains). It must also be noted that the small wa-
ter bodies tend to be overlooked after dominant resampling
to 15 arcsec resolution (Sect. 2.6), unless they are sufficiently
numerous in a pixel. Therefore, the lake mask covers 1.7 %
of the land area compared with 1.8 % in the original Hydro-
LAKES database. This map also shows that most of the lakes
are located in the northern boreal zones (more than 60 % of
lakes area are located north of 50◦ N), in agreement with the
other lake databases.

2.3 Input to RFW map: inundation datasets

2.3.1 ESA-CCI land cover

This dataset succeeds the GlobCover dataset based on the
data from the MERIS sensor (onboard ENVISAT) collected
at high resolution for surface water detection, together with
the SPOT-VEGETATION time series (Herold et al., 2015) to
aid in distinguishing wetlands from other vegetation covers.
Global land cover maps at approximately 300 m (10 arcsec)
resolution deliver data for three 5-year periods (1998–2002,
2003–2007 and 2008–2012). The extents of water bodies
slightly changed between the first 5-year period and the third
one (such as shrinking of the Aral Sea area by more than
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Table 2. Layers of wetlands constructed in the paper, their definitions and the subsections in which they are explained. The total land area
for wetland percentages excludes lakes, Antarctica and the Greenland ice sheet.

Layer Definition
Wetland Explained

percentage in

RFWs (regularly flooded wetlands) Union of three inundation datasets (ESA-CCI, GIEMS-
D15, JRC surface water)

9.7 % Sect. 3.1

WTD Pixels with water table depth less than 20 cm (Fan et al.,
2013)

15 % Sect. 3.2.1

TI 6 Pixels with highest TIs, covering 15 % of total land
when combined with RFWs

6 %

GDWs 15 Pixels with highest TIs values covering 15 % of land 15 %

(groundwater-driven
wetlands)

TCI 6.6 Pixels with highest TCIs, covering 15 % of total land
when combined with RFWs

6.6 % Sect. 3.2.2

15 Pixels with highest TCI values covering 15 % of land 15 %

TCTrI 6 Pixels with highest TCTrI, covering 15 % of total land
when combined with RFWs

6 %

15 Pixels with highest TCTrI values covering 15 % of land 15 %

WTD Union of RFW and GDW-WTD 21.1 %

TI 6 Union of RFW and GDW-TI6 15 %
CW 15 Union of RFW and GDW-TI15 22.2 %

(composite wetland) TCI 6.6 Union of RFW and GDW-TCI6.6 15 % Sect. 3.3
15 Union of RFW and GDW-TCI15 21.6 %

TCTrI 6 Union of RFW and GDW-TCTrI6 15 %
15 Union of RFW and GDW-TCTrI15 22.3 %

55 %), but the extent of wetland classes (permanent wetlands
and flooded vegetation classes) did not change significantly
(the variation in wetland classes throughout these periods is
less than 3 % of the total wetlands area). We acquired the last
epoch data to represent the current state of wetlands (Fig. 1b).
In ESA-CCI, wetlands are mixed classes of flooded areas
with tree covers, shrubs or herbaceous covers plus inland wa-
ter bodies, covering 3 % of the Earth land surface overall.

2.3.2 GIEMS-D15 (Fluet-Chouinard et al., 2015)

Prigent et al. (2007) used multi-sensor satellite data, includ-
ing passive and active microwave measurements, together
with visible and near-infrared reflectance to map the monthly
mean inundated fractions at 0.25◦ resolution for a 12-year pe-
riod (1993–2004). This dataset (GIEMS) gives the minimum
and maximum extent of the inundated area (including wet-
lands, rivers, small lakes and irrigated rice). Fluet-Chouinard
et al. (2015) used the GLC2000 land cover map (Bartholomé
and Belward, 2005) to train a downscaling model for GIEMS
at 15 arcsec resolution based on the HydroSHEDS digital
elevation model (Lehner et al., 2008) and developed three
static datasets for mean annual minimum, mean annual max-
imum and long-term maximum extent of the inundated areas
(covering 3.9 %, 7.7 % and 10.3 % of the land surface area,

respectively). In this study, we assumed that the mean an-
nual maximum extent was the best representative measure
for wetlands. In the following, GIEMS-D15 always indicates
the mean annual maximum of GIEMS-D15 (Fig. 1c). Higher-
resolution (3 arcsec) downscaling of GIEMS has been re-
cently developed (Aires et al., 2017), but we overlooked this
source because we focused our study on 15 arcsec resolution.

2.3.3 JRC surface water (Pekel et al., 2016)

The JRC surface water products are a set of high-resolution
maps (1 arcsec, ∼ 30 m) for permanent water and also for
seasonal and ephemeral water bodies. These products are
based on analysis of Landsat satellite images (Wulder et al.,
2016) over a period of 32 years (1984–2015). Each pixel was
classified as open water, land or a nonvalid observation. Open
water is defined as any pixel with standing water, including
fresh and saltwater. The study also quantifies the conversions,
mostly referring to changes in state (lost or gained water ex-
tents, conversions from seasonal to permanent, etc.) during
the observation period. In this study, we used the maximum
surface water extent, which consists of all pixels that were
under water at least once during the entire period, covering
almost 1.5 % of the Earth land surface area (Fig. 1d).
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Figure 1. Density of lakes, regularly flooded wetlands and components of the latter (percent area in 3 arcmin grid cells). For zonal wetland
area distributions (right-hand charts), the area covered by wetlands in each 1◦ latitude band is displayed.
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2.4 Input to GDW maps

2.4.1 Water table depth estimates (Fan et al., 2013)

Fan et al. (2013) performed global GW modeling to esti-
mate the water table depth at 1 km resolution. This model
assumes a steady flow, and lateral water fluxes are calculated
using Darcy’s law and the Dupuit–Forchheimer approxima-
tion for 2-D flow. Elevation is described at 30 arcsec reso-
lution (by HydroSHEDS south of 60◦ N and otherwise by
ASTER/NASA-JPL), and the recharge rates were modeled at
0.5◦ resolution using the WaterGAP model (Döll and Fiedler,
2008) based on contemporary meteorological forcing (1979–
2007). To estimate subsurface transmissivity, the soil hy-
draulic conductivities were derived from the global Food and
Agriculture Organization (FAO) digital soil maps (5 arcmin
resolution) and US Department of Agriculture (USDA) soil
maps over the United States (30 arcsec resolution) and sub-
sequently assumed to decay exponentially with depth from
the thin soil layer (2 m) down as a function of the local to-
pographic slope. The decay factor is also adjusted for the
permafrost region using an additional thermic factor (smaller
transmissivity in permafrost areas). The modeled WTD was
compared to observations available to the authors (more than
1 million observations, with 80 % of them located in North
America). The resulting dataset suggests vast areas with a
shallow water table over the tropics, along the coastal zones
and in boreal areas of North America and Asia (almost 15 %
of the land area for WTD ≤ 20 cm).

2.4.2 Three maps of topographic wetness indices

Flat downstream areas display a marked propensity to be sat-
urated, which explains the wide use of topographic indices to
delineate wetlands. Here, we use the global map of TI pro-
duced by Marthews et al. (2015) at 15 arcsec resolution. It re-
lies on the original formulation of Beven and Kirkby (1979),
as in Eq. (1), and on two global high-resolution digital el-
evation models (DEMs), viz. HydroSHEDS (Lehner et al.,
2008) and Hydro1k (US Geological Survey, 2000) at 15 and
30 arcsec resolution, respectively. Hydro1k is used to fill the
lack of information in HydroSHEDS north of 60◦ N, which
is outside of the SRTM (Shuttle Radar Topography Mis-
sion) coverage. Because index values depend on pixel size,
which varies with latitude, those researchers also applied
the dimensionless topographic wetness index correction of
Ducharne (2009) to transform the index values to equivalents
for a 1 m resolution.

Topography, however, is often not sufficient for wetland
identification because climate and subsurface characteristics
also control water availability and vertical drainage. Using
the original TI formulation in Eq. (1), high index zones might
coincide with flat arid areas, or inversely, low index values
might occur at wetland zones with small upstream drainage
areas over a shallow impervious layer. Several studies have
focused on improving the topographic wetness index for wet-

land delineation by including other environmental factors or
modifying the formulation of the wetness index (Rodhe and
Seibert, 1999; Mérot et al., 2003; Manfreda et al., 2011).
Therefore, we used the global TI dataset of Marthews et
al. (2015) to supply the original TI, and also as a base map to
derive two other variants of the index.

The first variant index is the TCI (topography–climate
wetness index, inspired by Mérot et al., 2003):

TCI= ln
(
a ·Pe

tan(β)

)
= TI+ ln(Pe), (2)

where Pe is the mean annual effective precipitation (in
meters). The effective precipitation is first defined at the
monthly time step as the monthly precipitation Pm,y (in me-
ters) for month m and year y that is not evaporated or tran-
spired using the monthly potential evapotranspiration EPm,y
(in meters) as a proxy for total evapotranspiration:

P e
m,y =max(0,Pm,y −EPm,y). (3)

Pe is subsequently calculated as the sum of the 12 pluri-
annual means of monthly effective precipitation. The re-
quired climatic variables are taken from the CRU monthly
meteorological datasets (Sect. 2.2.3) for 1980–2016 to repre-
sent the contemporary period.

The second variant index (known as TCTrI, topography–
climate–transmissivity index) is constructed by combining
the effect of heterogeneous transmissivity (Rodhe and Seib-
ert, 1999) with the above TCI:

TCTrI= ln
(

a ·Pe

Tr · tan(β)

)
= TI+ ln(Pe)− ln(Tr), (4)

where Tr (m2 s−1) is the transmissivity calculated by verti-
cally integrating a constant Ks (saturated hydraulic conduc-
tivity in m s−1) from GLHYMPS over the first 100 m below
the Earth’s surface (Sect. 2.4.4).

2.4.3 CRU climate variables

To assess the impact of climate on wetlands, we used
the Climatic Research Unit (CRU) monthly meteorological
datasets. These datasets cover all land area from the be-
ginning of the twentieth century (Harris et al., 2014). CRU
climate time series are gridded to 0.5◦ resolution based on
more than 4000 individual weather station records. To in-
clude a climate factor in the TI formulations, the time series
of selected climate variables (i.e., precipitation and potential
evapotranspiration based on the Penman–Monteith equation)
are extracted for the contemporary period (1980–2016).

2.4.4 GLHYMPS (Gleeson et al., 2014)

GLHYMPS is a global permeability and porosity map
based on high-resolution lithology (Hartmann and Moos-
dorf, 2012). The permeability dataset and its derived hy-
draulic conductivity (Ks) estimates are given in vector for-
mat, with an average polygon size of approximately 100 km2.
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As noted by the developers of GLHYMPS (Gleeson et al.,
2011, 2014), “lithology maps represent the shallow subsur-
face (on the order of 100 m)”, and thus hydraulic conduc-
tivity estimates are valid for the first 100 m of the subsur-
face layer. Thus, we estimated transmissivity as the integral
of this constant Ks over these 100 m and used it to check
whether use of the available transmissivity datasets in TI
formulations can improve global wetland identification. It
should be noted that the hydraulic conductivity dataset has
two versions: with and without the permafrost effect. To con-
sider the permafrost effect, Gleeson et al. (2014) used maps
of the permafrost zonation index (PZI) from Gruber (2012)
and homogenously assigned a rather low hydraulic conduc-
tivity (Ks = 10−13 m s−1) for areas with PZI> 0.99, i.e.,
in Siberian taiga forests and tundra, the Canadian Arctic
Archipelago and Greenland. This choice leads to a very large
contrast of Ks and transmissivity between permafrost and
non-permafrost zones, which largely overrules the effects of
lithology, so the high TI values (potential wetlands) become
concentrated in permafrost areas. To preserve the influence
of lithology, we rasterized the vector polygons ofKs without
the permafrost effect to 15 arcsec resolution.

2.5 Validation datasets

Two global and two regional wetland datasets were used to
assess the validity of the CW maps, and none of them were
used as inputs to the composite wetland maps to ensure an
independent evaluation of the strengths and weaknesses of
the CW maps.

2.5.1 GLWD-3 (Lehner and Döll, 2004)

The GLWD, the Global Lakes And Wetlands Dataset, is
based on the aggregation of regional and global land cover
and wetland maps. This dataset contains three levels of in-
formation, and the most inclusive one is GLWD-3, which is
in raster format. This dataset has an original 30 arcsec resolu-
tion and contains 12 classes for lakes and wetlands (maps and
details are given in the Supplement, Sect. S1 and Fig. S1).
For large zones prone to water accumulation but without
solid information on existing wetlands, fractional wetland
classes are defined (together they cover 4 % of the land sur-
face area). This is particularly the case within the Prairie Pot-
hole Region in North America and the Tibetan Plateau in
Asia. Depending on the interpretation of fractional wetlands
(by taking either the minimum, mean or maximum fraction
of the ranges), wetlands cover between 5.8 % and 7.2 % of
the land surface area. In this paper, we take the mean fraction
in these areas, leading to a total wetland extent of 6.3 % of
the land surface area.

2.5.2 Global wetland potential distribution (Hu et al.,
2017)

Hu et al. (2017) proposed a potential wetland distribution us-
ing a precipitation topographic wetness index based on a new
TI formulation in which the drainage area is multiplied by
the mean annual precipitation. This formulation is based on
the concept of the topography–climate wetness index (Mérot
et al., 2003) in which the effective precipitation was intro-
duced as the climate factor. The new index is calculated at
1 km resolution using GTOPO30 elevation data developed by
the USGS. Wetlands are categorized into “water” and “non-
water” wetlands based on regionally calibrated thresholds for
each large basin of the world (level-1 drainage area of Hy-
dro1k) using a sample trained adjustment model. The water
classes of several land cover datasets are used to train the
model for the water threshold, and the model for the non-
water wetland threshold is trained on the regularly flooded
tree cover and herbaceous cover categories (additional details
are available in the Supplement, Sect. S1 and Fig. S2). The
global coverage of the water and non-water wetland classes
in Hu et al. (2017) is 22.6 % of the Earth land surface area
(excluding lakes, Antarctica and the Greenland ice sheet),
considering no loss due to human influence. This dataset
gives the largest wetland extent within the accessible liter-
ature, with notably large water wetlands in South America
and large non-water wetlands in central Asia and the North
American continent. In this paper, we used the union of the
water and non-water wetland classes of this dataset for fur-
ther evaluations.

2.5.3 Amazon basin wetland map (Hess et al., 2015)

Hess et al. (2015) used the L-band synthetic aperture radar
(SAR) data from the Japanese Earth resources satellite
(JRES-1) imagery scenes at a 100 m resolution to map wet-
lands during the period 1995–1996 for high and low water
seasons. The studied domain excludes zones with altitudes
higher than 500 m and corresponds to a large fraction of
the Amazon basin (87 %). Wetlands are defined as the sum
of lakes and rivers (both covering 1 % of the basin area)
and other flooded areas plus zones not flooded but adjacent
to flooded areas and sharing wetland geomorphology. The
flooded fraction of wetlands varies considerably (from 38 %
to 75 %) between the low and high water season. The total
maximum mapped wetland area extends over 0.8 million km2

and is used in the evaluation of CW maps in this study.

2.5.4 Modeled potentially wet zones of France

The map of potentially wet zones in France (les Milieux
Potentiellement Humides de France Modélisée, MPHFM;
Berthier et al., 2014) constructed at a 50 m resolution is based
on the topo-climatic wetness index (Mérot et al., 2003) and
the elevation difference to streams using the national high-
resolution DEMs. Meteorological data for the calculation of
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the topo-climatic index (precipitation and potential evapora-
tion rates; see further details in Sect. 3.2.2) are taken from the
SAFRAN atmospheric reanalysis (Vidal et al., 2010) at 8 km
resolution. Index thresholding for wetland delineation is per-
formed independently in 22 hydro-ecoregion units and de-
limited based on lithology, drainage density, elevation, slope,
precipitation rate and temperature. The wet fraction defin-
ing the threshold in each hydro-ecoregion is the fraction
of hydromorphic soils (extrapolated from local soil maps
to almost 18 % of the area of metropolitan France) taken
from national soil maps at 1 : 250 000 (InfoSol, 2013). Ad-
ditionally, the elevation difference between land pixels and
natural streams was used to separate large streambeds and
plain zones, which are difficult to model with indices based
on topography. Based on MPHFM, potential wetlands ex-
tend over almost 130 000 km2 of France (23 % of the area
of metropolitan France). The dataset was validated against
available pedological point data (based on profiles or sur-
veys) available over France. These point data are classified
into wetlands and non-wetlands for the validation procedure.
This procedure used statistical criteria such as spatial coinci-
dence (SC; number of correctly diagnosed points over total
number of points) and the kappa coefficient (modeling error
compared with a random classification error).

3 Construction of composite wetland maps

3.1 Definitions and layer preparation

3.1.1 Wetland definition

The wetland definition behind the composite maps is focused
on hydrological functioning, and we aim to include both sea-
sonal and permanent wetlands as well as shallow surface wa-
ter bodies (including rivers, both permanent and intermit-
tent). Surface water bodies and wetlands are often hydro-
logically connected, and the transition between them is not
sharp and varies seasonally. Moreover, these features are dif-
ficult to separate based on observations (either in situ or re-
mote), and no dedicated exhaustive dataset is currently avail-
able (Raymond et al., 2013; Schneider et al., 2017). Inclu-
sion of the shallow surface water bodies (in the RFW map)
is compatible with the Ramsar classification, but we depart
from this approach with respect to large permanent lakes,
which are excluded from all input datasets to RFW and GDW
maps (Sect. 2.2) because of their distinct hydrology and
ecology compared with wetlands. In contrast, groundwater-
driven wetlands can remain wet without inundation due to
the presence of shallow water tables. As further discussed in
Sect. 3.2, these areas are defined in this study as areas where
the mean annual WTD is less than 20 cm, following similar
assumptions in the literature (US Army Corps of Engineers,
1987; Constance et al., 2007; Tamea et al., 2010; Fan and
Miguez-Macho, 2011).

Based on this definition, another feature of the proposed
wetland maps is that they are static. As stated in Prigent
et al. (2007), the maps represent the “climatological max-
imum extent of active wetlands and inundation” (for CWs
and RFWs, respectively), i.e., the areas that happen to be
saturated or near-saturated sufficiently frequently to develop
specific features of wetlands (high soil moisture over a sig-
nificant period of the year, potentially leading to reducing
conditions in selected horizons and specific flora and fauna).

3.1.2 Data processing

To project, resample, intersect/overlap and convert different
datasets used in wetland mapping in this study, we relied
on ArcMap software (Esri, ArcGIS Desktop: Release 10.3.1
Redlands, CA) and its different tools. All datasets were pro-
jected to a WGS84 equi-rectangular coordination system and
subsequently resampled to a single resolution for facilitated
fusion and comparison. The resulting raster datasets were
processed with ArcMap tools available in almost any GIS
software such as QGIS (Table 3).

The final resolution of the maps is targeted to 15 arcsec
(∼ 500 m at the Equator) for consistency with the avail-
able water datasets. Therefore, all datasets were resampled
to 15 arcsec resolution, which is within the resolution range
of state-of-the-art wetland-related datasets. For datasets at
coarser resolutions, each coarse pixel is disaggregated to
15 arcsec while retaining the same value. We used an “all-or-
nothing” approach; i.e., the pixels are either fully recognized
as wetland (or lake) or not at all, based on the dominant type
if the input data are finer than 15 arcsec (ESA-CCI land cover
and JRC surface water).

Eventually, each 15 arcsec global raster contains more than
80 000 pixels along a circle of 360◦ of longitude, and wet-
lands can exhibit notably small-scale patterns (e.g., patchy
or river-like). To facilitate visual inspection, we calculated
the mean wetland densities in 3 arcmin grids for most of the
maps presented in this work. The same 3 arcmin resolution
(∼ 6 km at the Equator) was used in calculating the spatial
correlations. For zonal wetland area distributions, the area
covered by wetlands in each 1◦ latitude band is displayed.

3.2 Regularly flooded wetland (RFW) maps

3.2.1 Mapping by data fusion

To identify the RFWs, we overlapped carefully selected
datasets of surface water, land cover and wetlands, namely,
the ESA-CCI land cover, GIEMS-D15 inundation surface
and the maximum water extent in JRC surface water. These
datasets were selected to include different types of data ac-
quisition. The idea behind the fusion approach chosen in
this work is that wetlands identified by the different datasets
are all valid despite their uncertainties, although none of
them are exhaustive. As a result, use of multiple inundation
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Table 3. ArcMap tools used in this study for data processing and their equivalent open-source software.

ArcMap Open-source software Application

Polygon to raster (Conversion toolbox) Rasterize (vector to raster) To convert vector data into raster pixels
Project raster (Data Management toolbox) QGIS: Warp (reproject) Projecting different layers coordinate

system to WGS84
Resample & Aggregate (Data Management toolbox) QGIS: Raster Calculator To change the resolution of the rasters
Raster Calculator (Spatial Analyst toolbox) QGIS: Raster Calculator To intersect/overlap raster datasets
Reclassify (Spatial Analyst toolbox) QGIS/GRASS: r.reclass To merge raster datasets or mask them

datasets fills the observational gap. Several other surface wa-
ter datasets exist that were not used in this work, either be-
cause they mostly consist of lakes or because they rely on
similar methodologies (Verpoorter et al., 2014; Yamazaki et
al., 2015).

3.2.2 Geographic analysis

Overall, the RFW map covers 9.7 % of the land surface area
(12.9 million km2) including river channels, deltas, coastal
wetlands and flooded lake margins (Fig. 1e). Areal coverage
of the RFWs is by definition larger than the area of wetlands
in all three input datasets (Fig. 1b–d), which were selected to
be representative of different types of data acquisition (sen-
sors and wavelengths). Therefore, they correspond to differ-
ent definitions of inundated areas, and their contribution to
the RFW map is fairly different. In particular, the shared frac-
tion of the three input maps is minuscule (5 % of the total
RFW land surface area coverage), and is mostly composed
of the large river corridors and ponds which are detectable by
satellite visible range imaging techniques in the JRC dataset.
The latter misses most understory inundations, which are bet-
ter identified by the ESA-CCI dataset owing to specific veg-
etation classification. Finally, owing to the use of microwave
sensors, GIEMS-D15 extends over larger areas since it cap-
tures both flooded areas and wet soils below most vegeta-
tion canopies except the densest ones (Prigent et al., 2007).
In addition, the distribution of wetlands in GIEMS-D15 in-
volves downscaling as a function of topography, and can be
very different from the other datasets. Hence, 58 % of RFWs
are solely sourced from GIEMS-D15, mostly in the South-
east Asian floodplains, Northeast Indian wet plains and rice
paddies, and the Prairie Pothole Region (in the northern US
and Canada). The ESA-CCI contribution is mainly found in
the Ob River basin where wetland vegetation exists but wet
soils are not easily detected by visible (JRC) or microwave
(GIEMS-D15) observation. Due to its high resolution, JRC
surface water adds small-scale wetlands such as patchy wet-
lands, small ponds and oases (0.4 % of the land surface area).

In terms of zonal distribution, 31 % of the RFWs are con-
centrated north of 50◦ N, with most of the wetlands formed
in the Prairie Pothole Region and Siberian lowlands. Cold
and humid climates and the poorly drained soils of the bo-
real forest regions in northern Canada on the Precambrian

shield are the main hotspots of peat in the American con-
tinent. The same situation exists in the West Siberian Plain
as well. The second zonal peak in RFWs lies between 20
and 33◦ N, where the major contributors are the vast flood-
plains surrounding the Mississippi, Brahmaputra, Ganges,
Yangtze and Yellow rivers and Mesopotamian Marshes. A
total of 30 % of the world’s RFWs are found in tropical re-
gions (20◦ N to 20◦ S), concentrated mainly in the Amazon,
Orinoco and Congo river floodplains and in inundated por-
tions of wetlands such as the Sudd swamp in South Sudan.

3.3 Groundwater-driven wetland (GDW) maps

3.3.1 Mapping based on WTD

Due to a lack of integrated, standardized and globally dis-
tributed WTD observations, a sound approach to the loca-
tion of groundwater-driven wetlands is the use of available
global direct GW modeling results. In this study, we used the
global WTD estimations of Fan et al. (2013), and the result-
ing wetland map is denoted as GDW-WTD. As explained in
Sect. 3.1.1 we assumed the mean annual WTD in wetlands
to be less than 20 cm, which results in a wetland area extend-
ing over 15 % of the land surface, with large wetlands in the
northern areas and the Amazon basin (Fig. 2a). We also per-
formed a sensitivity analysis on the areal fraction of wetlands
with different WTD thresholds (Sect. S2, Figs. S3 and S4),
revealing that the variation in total wetland fraction is quite
weak (between 13.7 % and 16.7 %) for thresholds ranging
from 0 to 40 cm. Therefore, a 20 cm threshold appears to be a
credible representative value. However, the wetland fraction
rapidly increases for deeper thresholds, showing that a clear
distinction exists between shallow WTD areas (wetlands ac-
cording to our definition) and the remainder of the land.

3.3.2 Mapping based on various TIs

In line with many studies (Rodhe and Seibert, 1999; Curie
et al., 2007; Hu et al., 2017), we define TI-based wetlands
as the pixels with a TI above a certain threshold, defined to
match a certain fraction of total land. In doing so, we pre-
scribe the global GDW fraction as a chosen value, and the
various TI formulations (Sect. 2.4.2) only change the geo-
graphic distribution of the corresponding wetlands. To ap-
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Figure 2. Density of scattered groundwater wetlands based on different approaches (percent area in 3 arcmin grid cells). For zonal wetland
area distributions (right-hand charts), the area covered by wetlands in each 1◦ latitude band is displayed.

prehend the uncertainty related to the choice of the global
GDW fraction, we tested two choices within the bounds de-
rived from the global WTDs of Fan et al. (2013). In the first
approach, we set the TI threshold such that the wet pixels
(with high index values) cover 15 % of the land surface area,
such as the fraction of WTD≤ 20 cm according to Fan et
al. (2013). The corresponding maps are noted as GDW-TI15,
GDW-TCI15 and GDW-TCTrI15 in Table 2 and show fairly
different patterns (Fig. 2b–d). The second approach assumes
that the total wetland extent (this time including both GDWs
and RFWs) covers 15 %. The TI thresholds are subsequently
set such that the union of RFWs and GDW-TI (TCI/TCTrI),
i.e., the composite wetlands, has the same extent as GDW-
WTD. The resulting GDWs cover between 6 % and 6.6 % of
the land area depending on the TI formulation and level of
overlap with RFWs (Table 4) and are noted as GDW-TI6,
GDW-TCI6.6 and GDW-TCTrI6. The patterns of these three
maps are highly similar to those of GDW-TI15, GDW-TCI15

and GDW-TCTrI15, with diminished extents and densities
(Fig. 2e–g).

3.3.3 Comparison of the proposed GDW maps

As shown in Table 2, seven GDW maps are developed,
consisting of GDW-WTD (Sect. 3.2.1) and six GDW-TIs
(Sect. 3.2.2). The GDW-WTD map contains high wetland
extents over the northern latitudes (Fig. 2a), in contrast to
the other six GDW maps. The diagnosed wetlands of GDW-
TI maps (Fig. 2b, e) are equally distributed over well-known
arid areas such as the Sahara and the Kalahari Desert, the
Australian Shield and the Arabian Peninsula as in wet re-
gions such as the West Siberian Plain and northern Canada
(Fig. 2b, e). As a result, for a given threshold (15 % in
Fig. 3a), the distribution of wetlands derived from the simple
TI is nearly uniform over different latitudes. Lower thresh-
olds on TI variants (Figs. 2e–g and 3b) obviously result in
a smaller wetland extent, with no major change in the zonal
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Figure 3. Latitudinal distribution of different wetland maps: (a, b) GDWs, (c) components of CW-TCI15 and their intersection and
(d, e) CWs. The wetland areas along the y axis are surface areas in each 1◦ latitudinal band.
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Table 4. Percent of overlap between GDWs and RFWs (percent of
total land pixels).

Groundwater-driven Intersecting Non-intersecting
wetland layer with RFWs with RFWs

GDW-TI6 0.7 % 5.3 %
GDW-TCI6.6 1.3 % 5.3 %
GDW-TCTrI6 0.7 % 5.3 %
GDW-TI15 2.5 % 12.5 %
GDW-TCI15 3.6 % 11.4 %
GDW-TCTrI15 2.4 % 12.6 %
GDW-WTD15 3.8 % 11.2 %

pattern when the wet fraction threshold changes from 15 %
to 6 % (Figs. 2b–d and 3a, b).

Introducing a climate factor in the form of effective pre-
cipitation in GDW-TCI6.6 and GDW-TCI15 increases the
value of the wetness index in wet areas and decreases it in
dry climates (Figs. 2c, f and 3a, b). Therefore, previously di-
agnosed wetlands with a TI in dry climates disappear and
transfer to regions with wet climates (such as the Amazon
basin and South Asia). However, because transmissivity val-
ues sharply change by several orders of magnitude over re-
gions with small permeability, the patterns of GDW-TCTrI
maps are nearly replicas of the low hydraulic conductivity
distribution in GLHYMPS (e.g., large diagnosed wetlands
in North America and central Asia; Fig. 2d, g). Although at
times GDW-TCTrI coincides with famous wetlands such as
the Pampas in South America (Fig. 2d, g and near 25◦ S in
Fig. 3a), diagnosed wetlands extend far beyond the actual
wet regions into neighboring arid or semi-arid zones; e.g.,
vast diagnosed wetlands in the western Siberian lowlands
extend southward towards the Kazakh upland arid zones. In
the absence of precise and consistent information on subsur-
face characteristics (particularly for cold areas), GDW-TCTrI
shows low wetland densities in zones with the known effect
of transmissivity, such as the Hudson Bay Lowlands and the
Prairie Pothole Region.

3.4 Composite wetland (CW) maps

Each GDW map was overlapped with the RFW map to gen-
erate seven CW maps. Equi-resolution raster pixels of RFWs
and GDWs were aligned to coincide exactly with each other.
The resulting composite wetland maps are named with re-
spect to their contributing GDW component (Table 2); e.g.,
the composite map containing RFW and GDW-TI6 is known
as CW-TI6. These composite wetlands cover between 15 %
and 22 % of the land surface area. Each CW map contains
RFWs and GDWs and thus wetlands shared by both wetland
classes (the intersection). The intersection between GDW
and RFW maps is larger for TCI-based maps and GDW-
WTD (almost one-third of RFWs intersect with these GDW
maps) compared with TI- and TCTrI-derived GDW maps

(Table 4). These intersection zones are further discussed in
Sect. 4. The wetland extent in CWs is by definition larger
than both RFWs and GDWs, and their spatial patterns de-
pend on the contribution percentage of each component. As
an example, in CW-TCI15, over most latitudes, the spatial
pattern is similar to that of RFWs, except over the tropical
zones where GDWs are far more extensive than RFWs, thus
shaping the general latitudinal pattern (Fig. 3c). Changing the
percentage of GDWs (between 6 % and 15 %) based on dif-
ferent TI formulations increases the wetland fraction of the
CW maps to between 5.3 % and 12.5 % of the land area, but it
does not considerably change their overall latitudinal pattern
(Fig. 3d, e). In RFWs, large wetlands are present between 25
and 35◦ N (Fig. 3c), whereas in all GDW maps, the wetland
extents over these latitudes are smaller than in other wetland
regions (Fig. 3a, b).

4 Validation

4.1 Spatial similarity assessment

A difficulty inherent in the validation of any wetland map
is the vast disagreements among available datasets and esti-
mates. In this paper, we used independent validation datasets
(explained in Sect. 2.5) that are not used in any step as input
to our final products, but we made an exception for the GDW-
WTD (derived from Fan et al., 2013), although it is a direct
input to CW-WTD, and we used the total wetland fraction of
GDW-WTD (corresponding to WTD ≤ 20 cm) to define the
TI thresholds behind the TI-based CW maps. This exception
is considered for two reasons. Firstly, we focus here on spa-
tial patterns, which are completely independent between TI-
based CW maps and GDW-WTD because of very different
GW modeling assumptions and input data. Secondly, we also
focus on wetlands rather than inundated areas, and on their
detection under dense vegetation; GDW-WTD is one of the
very few global datasets with these properties, but it results
from a different method than Hu et al. (2017) and GLWD-3,
so it can help to enrich the uncertainty discussion. All seven
developed CW maps and the RFW map were evaluated us-
ing spatial coincidence, the Jaccard index (JI) and the spa-
tial Pearson correlation (SPC) coefficient with respect to the
validation datasets over the globe and in several regions, the
latter of which are discussed in detail below.

The first evaluation criterion of spatial coincidence (SC) is
defined as the fraction of pixels identified as wet in a valida-
tion dataset that are also detected in the composite wetland
dataset:

SC= (5)
area of intersected wetland pixels in validation and CW maps

area of wetland pixels in CW map
.

SC is calculated at 15 arcsec resolution by intersecting CWs
and validation datasets, and it ranges from 0 to 1, with higher
values showing greater similarity between two datasets. For
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Table 5. Correlation between the developed and reference datasets (wetland fractions in 3 arcmin grid cells). The highest three values in each
column are shown in bold format, and values used in Fig. 4 are highlighted in italic font.

Dataset name ESA-CCI GIEMS-D15 JRC surface water RFW GLWD-3 GDW-WTD Hu et al. (2017)

GDW-TI15 −0.07 0.11 0.03 0.04 0.23 0.18 0.31
GDW-TCTrI15 −0.04 −0.01 −0.10 0.01 0.17 0.26 0.26
GDW-TCI15 0.12 0.24 0.03 0.23 0.23 0.53 0.33
GDW-WTD 0.27 0.29 0.07 0.30 0.36 1.00 0.45
CW-TI6 0.56 0.59 0.44 0.91 0.21 0.34 0.33
CW-TCTrI6 0.49 0.59 0.43 0.78 0.24 0.43 0.40
CW-TCI6.6 0.58 0.64 0.40 0.80 0.26 0.52 0.31
CW-TI15 0.63 0.60 0.28 0.57 0.31 0.40 0.32
CW-TCTrI15 0.55 0.45 0.36 0.51 0.32 0.38 0.28
CW-TCI15 0.70 0.71 0.47 0.69 0.28 0.58 0.35
CW-WTD 0.63 0.69 0.37 0.65 0.34 0.65 0.43
ESA-CCI 1.00 0.33 0.66 0.53 0.28 0.27 0.27
GIEMS-D15 0.33 1.00 0.36 0.67 0.26 0.29 0.20
JRC surface water 0.66 0.36 1.00 0.40 0.07 0.07 0.07
RFW 0.53 0.67 0.40 1.00 0.38 0.30 0.22
GLWD-3 0.28 0.26 0.07 0.26 1.00 0.36 0.33
Hu et al. (2017) 0.27 0.20 0.07 0.22 0.33 0.45 1.00

pair-wise comparisons of datasets with different wet frac-
tions, the Jaccard index (JI) is better suited. This index is the
fraction of shared wetlands in CW and the validation dataset
over the size of their union:

JI= (6)
area of intersected wetland pixels in validation and CW maps
area of wetland pixels in union of CW and validation maps

.

JI ranges from 0 to 1 as well, and a zero index represents the
case in which the two datasets are disjoint, and a value of 1
occurs if two datasets are exactly the same. The last criterion
is the SPC. SPC is independent from the wet fractions in the
CWs and evaluation datasets but is sensitive to the spatial dis-
tribution pattern in pair-wise comparisons. SPC values range
from 0 to 1, with higher values showing greater similarity.
Although the first two criteria were applied for comparison
at the original 15 arcsec resolution, SPC was calculated based
on aggregated wetland densities at 0.5◦ resolution.

Spatial similarity evaluations are displayed as radar charts
in Fig. 4 for RFWs and the different CW maps for the globe
and the selected regions. Because the values of the criteria
are sometimes quite similar, three CW maps were selected
for display in color for clarity, while the others are shown in
grey (CW-TCI6.6, CW-TCI15 and CW-WTD).

4.1.1 Global analysis

With the exception of CW-WTD, which is always more sim-
ilar to GDW-WTD because the latter is a component of the
former, the validation criteria for the CW maps are rather
small overall (between 0.2 and 0.6). However, the criteria
are larger than the same values between the surface wa-
ter and wetland datasets (less than 0.3 in Table 5 for the

SPC of the globe and Table S1), showing their advantages.
CW maps (especially CW-TCI maps) are more similar to
GDW-WTD and Hu’s map with respect to GLWD-3 because
all but GLWD-3 share the GW modeling methodology. In
contrast, the RFW map extends over a 60 % larger surface
area than GLWD-3 and displays the highest similarity to
GLWD-3, suggesting that wetlands in GLWD-3 are the reg-
ularly flooded ones. The inclusion of GDWs in the CW maps
makes them depart from GLWD-3, but it markedly increases
their similarity to the other two validation datasets for JI and
SPC (e.g., SPC [RFW, GDW-WTD]= 0.3 versus SPC [CW-
TCI15, GDW-WTD]= 0.6). As demonstrated in Fig. 4a (and
also Table S1), increasing the GDW contribution from CW-
TCI6.6 to CW-TCI15, as an example, also improves the simi-
larity criteria (except the SC for GLWD-3 and GDW-WTD),
justifying the need to account for the GDWs to provide a
comprehensive description of wetlands. This is clearer for
the global spatial correlation values which all increase when
the contribution of GDW is increased from 6.6 % to 15 %
(Table S1, first row block).

The following section breaks down the comparative wet-
land representation between our maps and that of the val-
idation datasets at the regional scale. The selected regions
encompass different climates, vegetation covers and ecosys-
tems, both within and outside important wetland areas of the
world, to assure the applicability of CW maps. These six re-
gions are France in the temperate climate, the Amazon basin
and Southeast Asia over the tropical zone, the cold boreal ar-
eas of the Hudson Bay Lowlands and the Ob River basin and
the Sudd swamp in South Sudan with a semi-arid savannah
climate.
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Figure 4. Evaluation criteria between composite wetland maps and evaluation datasets for (a) the global scale, (b) France, (c) the Amazon,
(d) Southeast (SE) Asia, (e) Hudson Bay Lowlands (HBL), (f) the Ob basin, (g) the Sudd swamp.
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Figure 5. Maps of wetlands in France according to different water and wetland datasets: (a–c) components of RFW, (d–g) validation datasets
and (h–j) datasets generated in this study. The panels also give the mean areal wetland fraction of each dataset in the study area (using the
mean fraction of each fractional wetland class of GLWD-3; cf. Sect. 2.5.1). The bounds of the study are the boundaries of metropolitan
France.
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4.1.2 France

Over France, wetland fractions from the validation datasets
are highly inconsistent (Fig. 5). Visible range satellite im-
agery (JRC surface water) shows the smallest wet frac-
tion (1 %). The GLWD-3 and ESA-CCI maps also produce
low wetland coverage, whereas GIEMS-D15, which essen-
tially forms the RFW map, gives 12 % coverage concentrated
along the coastline and over the floodplains of the northern
rivers. Wetlands from GW modeling-based datasets cover
even larger areas (14 % and 18 % in GDW-WTD and Hu
et al., 2017) and are scattered countrywide, except for the
French Pyrenees and the Alps, with moderately denser wet-
lands along large rivers (such as the Rhine floodplain at the
eastern border) and the Landes (southwestern shore). The
MPHFM map (Berthier et al., 2014) can be considered as
the most comprehensive validation dataset for the country
because it relies on hydromorphic soil properties and was
extensively validated. This map shows much larger wetland
extents (23 % of France) than the above estimates because of
its inclusion of both floodplains (along the Loire, Saône and
Rhône rivers) and groundwater-driven wetlands, including
those over the weakly permeable granites of Brittany (shown
in green in Fig. 5g). These notorious wetlands are not con-
sidered in the global validation datasets but are captured to a
good extent in CW maps (Fig. 5i, j).

By combining RFWs (which overlap with 20 % of
MPHFM) and GDWs, our CW maps capture many fea-
tures of the MPHFM map, including the total wetland ex-
tent (23 % for MPHFM versus 22 % and 25 % for CW-
WTD and CW-TCI15) and correctly capturing most of the
coastal and riparian wetlands (Fig. 5). The larger wetland
fraction in MPHFM and CW maps is consistent with the
work of Pison et al. (2018), who found that (wetland-driven)
methane emissions over France deduced from atmospheric
inversion were almost a third higher than direct estimates,
from anthropogenic inventories and biogeochemical mod-
els driven by global wetland datasets (e.g., the overlap of
GLWD and SWAMPS in Saunois et al., 2016). The added
value of CW maps is demonstrated by the higher simi-
larity criteria between CW maps such as CW-TCI15 and
MPHFM (SPC= 0.52) than between surface water maps
such as GIEMS-D15 and MPHFM (SPC= 0.43). However, it
is difficult to identify the best CW map over France based on
the similarity criteria against MPHFM because four of our
CW maps (all shown in grey in Fig. 4b) display nearly the
same values (Table S2).

4.1.3 Amazon basin

The Amazon River basin is considered one of the rich-
est tropical wetland ecosystems in the world (Mitsch and
Gosselink, 2000). For ease of comparison, we limited our
study to the domain of Hess et al. (2015), which covers
5 million km2 (Fig. 6). RFWs (mostly consisting of GIEMS-

D15) show a pattern rather similar to that of GLWD-3 and
Hess et al. (2015) (Figs. 4c and 6d, g, h), covering only the
main drainage network of the Amazon and certain seasonally
flooded wetlands and floodplains. However, certain spatial
disagreements exist among these three datasets in seasonally
flooded wetlands such as Llanos de Moxos (12◦30′–17◦30′ S,
63–68◦W), the Roraima savannah and the Negro River basin
(2◦ N–2◦ S, 60–65◦W), which are larger in RFWs and Hess
et al. (2015) than in GLWD-3.

The CW maps capture the wetland pattern of GDW-
WTD and Hu et al. (2017) considerably better than RFWs
(Fig. 6), highlighting the significance of groundwater wet-
lands over the Amazon. Wetland densities in CW maps, Hu
et al. (2017) and GDW-WTD are more realistically high over
the leached and swampy soils of the northern Amazon basin
(e.g., Japurá–Solimões–Negro moist forests) and over the
Purus–Madeira ecoregion, in line with recent estimates of
wetlands and peatlands (Hess et al., 2015). This result sug-
gests that the extended shallow peatlands of South America
are the main causal contributor to the global tropical wet-
land extent (Gumbricht et al., 2017). The higher wetland
densities of CW maps with respect to all satellite observa-
tions over these particular areas can be attributed to the co-
incidence of GDWs and dense rainforests (covering almost
two-thirds of this domain), with large non-flooded wetlands
over the Amazon. River channels and surrounding flood-
plains are better represented in CW maps, as compared with
Hess et al. (2015), due to the inclusion of the RFW com-
ponent. Similarly, CW compares well to other datasets be-
cause almost none of the river floodplains are delineated in
Hu et al. (2017), and GDW-WTD misses the Tapajós River
floodplain and portions of the downstream Amazon corridor.
However, CW maps represent the wetland extent in lower
density over grassland/savannahs and the Andes dry regions
compared with the validation datasets.

4.1.4 Southeast Asian deltas

The selected window over South and Southeast Asia
stretches over notably wet regions, similar to the Amazon,
but with severe human interference and deforestation (Mi-
ettinen et al., 2011; Stibig et al., 2013). In Southeast Asia,
RFWs (mostly composed of GIEMS-D15) are larger than
all validation datasets (Fig. 7d–g) because GIEMS-D15 also
detects inundated areas associated with cultivation activities
such as rice paddies (Fluet-Chouinard et al., 2015), which are
not considered in inventories and GW modeling-based esti-
mates. Over the window, RFWs and CWs coincide with the
majority of wetlands in the validation sets, particularly over
the Ganges–Brahmaputra floodplain, northern Indochina and
Yunnan Plateau subtropical forests (Fig. 4d; SC between 0.59
and 0.91), showing the good agreement of our developed
maps with respect to spatial patterns. As a general rule in
Southeast Asia, floodplains and deltas (Ganges, Brahmapu-
tra, Irrawaddy, Mekong and Red rivers) extend over larger
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Figure 6. Maps of the Amazon River basin wetlands according to different water and wetland datasets: (a–c) components of RFW, (d–
g) evaluation datasets and (h–j) datasets generated in this study. The panels also give the mean areal wetland fraction of each dataset in the
study area (using the mean fraction of each fractional wetland class of GLWD-3; cf. Sect. 2.5.1). The bounds of the basin are taken from
Hess et al. (2015).
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Figure 7. Maps of the Southeast Asian wetlands according to different water and wetland datasets: (a–c) components of RFW, (d–f) eval-
uation datasets and (g–i) datasets generated in this study. The panels also give the mean areal wetland fraction of each dataset in the study
area (using the mean fraction of each fractional wetland class of GLWD-3; cf. Sect. 2.5.1). The bounds of the study window are 5–28◦ N,
82◦30′–108◦ E.

areas in CW maps than in validation maps (Fig. 7), giving
a more realistic extent than those in Fan et al. (2013) and
Hu et al. (2017), considering the vast flood irrigated cultiva-
tion lands along floodplains. However, only a few small wet-
lands in the validation datasets are missed in RFWs (and CW
maps), such as the upstream Mekong River corridor (near
20◦ N–102◦ E) and Irrawaddy River (near 25◦ N–97◦ E) in
GLWD-3.

The CW-WTD and CW-TCI15 maps present patterns that
are highly similar to each other (Fig. 7h, i) and to the vali-
dation datasets. However, high similarity criteria (especially
SC) can be the result of the large extension of RFWs, it-
self overlapping almost all of the wetlands in the validation
datasets. In addition, the similarity of CW-WTD and CW-
TCI15, also derived from similarities between their GDW

components, notes that groundwater wetland formation is al-
most completely explained by topography and climate (of
the TCI formulation) in these areas and the negligible role
of subsurface characteristics included in GDW-WTD.

4.1.5 Hudson Bay Lowlands

The Hudson Bay Lowlands (HBL) are a vast flat wetland
area in the low subarctic regions of North America domi-
nated by extensive peatlands, swamps and marshes (Mitsch
and Gosselink, 2000; Packalen et al., 2014), where below-
freezing temperatures for most of the year reduce drainage
in the soil layer (Hamilton et al., 1994). A systematic con-
trast is noted between inundation maps (Fig. 8a–c; maxi-
mum wet fraction: 21 %) and validation datasets (Fig. 8d–
f; minimum wet fraction: 49 %), underlining the inability
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Figure 8. Maps of the Hudson Bay Lowlands wetlands according to different water and wetland datasets: (a–c) components of RFW, (d–
f) evaluation datasets and (g–i) datasets generated in this study. The panels also give the mean areal wetland fraction of each dataset in the
study area (using the mean fraction of each fractional wetland class of GLWD-3; cf. Sect. 2.5.1). The bounds of the study area are 48–56◦ N,
76–86◦W.

of satellite imagery to capture wetlands in this area (e.g.,
Landsat images used in JRC surface water; Fig. 8c). Surpris-
ingly, GLWD-3 has a pattern notably similar to that of the
other two validation maps due to the comprehensive wetland
maps in Canada available to its developers. Moreover, HBL
is one of the few regions where similarity indices sharply
increase with increased GDW contribution (Table S1). The
Jaccard index rises from 0.46 to 0.53 when increasing the
total GDW extent from 6.6 % to 15 % between CW-TCI6.6
and CW-TCI15. CW maps perform fairly well, particularly
CW-WTD, which predominantly obtains the highest valida-
tion criteria (Fig. 4e). Due to an explicit parameterization of
the permafrost (adjusted to reproduce the “observed wetland
areas” in North America; Fan and Miguez-Macho, 2011),
dense wetlands are extended south of 50◦N in the GW model
by Fan et al. (2013), which are less dense in CW-TCI15 in the

absence of a soil-freezing mechanism. Comparing wetlands
detected through satellite imagery and validation datasets,
GW modeling appears to be the best wetland delineation
method over boreal zones due to nonpermanent surface in-
undation, shallow WTD or snow/ice cover.

4.1.6 Ob River basin

The Ob River basin in western Siberia extends over ∼ 3×
106 km2. The annual variability of the inundated area is large
(e.g., Mialon et al., 2005), making this basin one of the
largest wetland complexes in the world, which contributes
to buffer peak discharge during the flooding period (Grippa
et al., 2005). Wetland fractions in different datasets compare
similarly to HBL, except for GLWD-3, which appears to un-
derestimate the total wetland extent although the climatic and
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Figure 9. Maps of the Ob River basin wetlands according to different water and wetland datasets: (a–c) components of RFW, (d–f) evaluation
datasets and (g–i) datasets generated in this study. The panels also give the mean areal wetland fraction of each dataset in the study area (using
the mean fraction of each fractional wetland class of GLWD-3; cf. Sect. 2.5.1). The bounds of the basin are taken from the HydroBASINS
layer of HydroSHEDS.

geomorphologic properties are nearly alike. Datasets recog-
nizing the contribution of GW to wetland formation (Fig. 9e,
f, h, i) indicate consistently higher wet fractions than oth-
ers. However, CW-TCI15 appears to miss wetlands south
of 60◦ N that are extended to the upstream Ob River basin
near 50◦ N in both GDW-WTD and Hu et al. (2017), most
likely due to the permafrost effect on wetland formation.
With respect to the evaluation criteria, CW-WTD often dis-
plays better performances, although CW-TCI15 shows the
highest SPC. We also find that CW-TCI15 outperforms CW-
TCI6.6 for all criteria and validation dataset combinations
(Table S1). TCTrI-based CW maps fail to surpass others in
the validation process, considering that we used the trans-
missivity map without the permafrost adjustment due to its
imprecise representation of hydraulic conductivity in these
zones (Sect. 2.4.4). CW-WTD tends to better capture the wet-
land extent and spatial pattern, with more concentrated wet-
lands in the downstream lowlands and northwestern regions

(65◦ N–65◦ E) of the basin due to RFWs. Overall, consider-
ing the wetland fraction solely attributed to GDWs in CW-
TCI15 and CW-WTD (13 % and 29 % of the basin area) and
the difference found between the inundation and validation
dataset (Fig. 9, first and second row), it becomes clear that
the uncertainty of the wetland extent and spatial pattern is
rather high over boreal zones.

4.1.7 Sudd swamp

This large wetland is located in eastern South Sudan, nearly
300 m above mean sea level, and is the largest freshwater
wetland in the Nile basin (Sutcliffe et al., 2016). The Sudd
swamp extent estimations are highly uncertain in the liter-
ature, ranging from 7.2 to 48× 103 km2 (Mohamed et al.,
2004, and references therein). Over the selected window, the
wetlands and surface water distribution is also highly dis-
parate and varies from 1 % to 27 % for different datasets
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Figure 10. Maps of the Sudd swamp wetlands according to different water and wetland datasets: (a–c) components of RFW, (d–f) evaluation
datasets and (g–i) datasets generated in this study. The panels also give the mean areal wetland fraction of each dataset in the study area (using
the mean fraction of each fractional wetland class of GLWD-3; cf. Sect. 2.5.1). The bounds of the study area are 4◦30′–14◦ N, 24◦30′–34◦ E.

(Fig. 10). Additionally, wetlands in Hu et al. (2017) are rather
patchy and show sharp density changes with what seems to
be periods of 0.5◦. Because GLWD-3 appears to represent
only flooded wetlands (with the same wetland fraction of
RFWs and overlapping with one-third of them), and the study
of Hu et al. (2017) contains technical issues, GDW-WTD can
be considered as the only comprehensive validation dataset
over the Sudd swamp.

The CW datasets in Fig. 10 show high wetland densi-
ties in the central floodplain, in rather good agreement with
GLWD-3, GDW-WTD and regional estimates of saturated
soil (compared with visuals in Mohamed et al., 2004, and
Mohamed and Savenije, 2014). CW-WTD compares more

similarly to validation datasets, closely followed by CW-
TCI15 (Fig. 4g), but the main difference between these two
CW maps is that the groundwater wetlands in CW-TCI15 are
extended southwest into the southern national park (over lo-
cal flat valley bottoms) but are more concentrated over the
main floodplain in the SE–NW direction for CW-WTD. The
total wetland fraction is nearly equal in CW-TCI15 and CW-
WTD (25 % and 27 % of the selected window area), un-
derlining a primary role of topography and climate in wet-
land formation. Considering the wetland fraction in the RFW
map (mostly consisting of ESA-CCI wetlands) and GDW-
WTD, groundwater wetlands appear to be the dominant fea-
ture in the Sudd swamp, as is the case for CW-WTD and
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Figure 11. Total wet fractions for RFWs, different CW and valida-
tion datasets, at the global scale and in the studied regions (values
in percent of the corresponding land surface area). Only three CW
maps are shown in color, and others are displayed in the grey range.

CW-TCI15. The added value of CW maps with respect to
GDW-WTD is not substantial, but they additionally contain
the seasonally flooded plains downstream of the White Nile
(top right of the selected window in Fig. 10g, 12–14◦ N,
32–34◦ E), which are not completely captured by validation
datasets due to the inclusion of RFWs.

4.2 Wetland extents

Figure 11 shows that the global wetland fractions of the dif-
ferent CW maps are in range of those in Fan et al. (2013) and
Hu et al. (2017), with twice the wetlands in GLWD-3, itself
60 % smaller than the RFW extent. Over France (Fig. 11b),
the wetland fraction of the CW maps is notably similar to
that of MPHFM, which is a calibrated and validated wet-
land dataset that includes the GDWs. The regional uncer-
tainty of CW maps is smaller over subtropical areas and
higher over boreal and tropical zones. For instance, although
the global wetland extents of CW-WTD and CW-TCI15 are
nearly equal, the former contains 52 % more wetlands over
the Hudson Bay Lowlands. However, in Southeast Asia,
where RFWs have a rather large contribution to total wet-
lands, CW maps are in relative agreement on wetland extents,
whereas the validation dataset appears to critically underesti-
mate the wetland extents. The underestimation of global vali-
dation datasets, especially GLWD-3, is quite clear in France,
the Amazon and the Ob River basin. Nevertheless, regional
differences in wetland fractions among CW maps reaching
up to 25 % in the HBL and the Amazon basin (due to the
effect of permafrost in northern latitudes and high effective
precipitation over the tropics) make our estimates uncertain
as well. Additionally, the uncertainty of the reference valida-
tion datasets is almost always higher than that of CW maps
(global: CW 7 %, validation 17 %; Ob basin: CW 25 %, vali-
dation 32 %).

5 Discussion

5.1 Uncertainties of the CW maps and underlying layers

It must be stressed that the uncertainty of the proposed CW
maps is high, owing to several factors impeding the accuracy
of the RFW and GDW maps. The uncertainty of the RFW
map comes from the three input layers (ESA land cover,
GIEMS-D15 and JRC surface water) and the lack of accuracy
of the remote sensing products they rely on (shown by their
large range of global flooded extents, from 1.5 % to 7.7 %
excluding lakes). Of particular relevance is the uncertainty
of GIEMS-D15, which contributes a lot to the high fraction
of RFWs, and exhibits a small overlap with the other two
datasets (less than 10 % of inundated areas in GIEMS-D15
are confirmed by either ESA land cover or JRC surface wa-
ter). Taking GLWD as a reference, Adam et al. (2010) con-
cluded that inundation extents are overestimated in GIEMS
(0.25◦ product of Papa et al., 2010) over parts of northern
Europe and India “because very wet soils may be wrongly
identified as inundated”, but this kind of error is not a major
issue to identify wetlands, instead of inundated areas, as tar-
geted by the CW maps. In India and Southeast Asia, GIEMS-
D15 also includes areas with flooded irrigation, including
large rice paddies, which correspond to artificial wetlands,
not recognized in GLWD. Eventually, it is plausible that the
RFW contribution from GIEMS-D15 is overestimated, but it
must also be underlined that GLWD is not an exhaustive ref-
erence as it likely lacks some wetlands, as reported by Adam
et al. (2010) and in Sect. 4.2.

Regarding the GDW maps, two major sources of uncer-
tainty can be identified, related to modeling and threshold-
ing. Whatever the GW modeling involved (simplified based
on wetness indices, or direct like in Fan et al., 2013), a ma-
jor challenge is to define thresholds on TI or WTD to sep-
arate the wet and non-wet pixels. Following the existing lit-
erature, we defined wetlands as areas where the mean WTD
is less than 20 cm, and this WTD threshold was translated
into the TI threshold defining the same global wetland ex-
tent (15 %). Any error on this extent because of modeling
errors will propagate to TI-based wetland mapping. In par-
ticular, the steady-state assumption and 1 km resolution used
by Fan et al. (2013), as well as their imperfect input data,
only lead to a “first-order estimate of global land area likely
affected by shallow groundwater”, according to the authors.
Nevertheless, the threshold choices remain subjective in the
absence of a consensual global wetland map and definition,
and the related uncertainty in wetland extent was shown to
amount to a few percent of the total land area based on sen-
sitivity analyses for reasonable values of the different thresh-
olds (Sect. S2, Figs. S3 and S4).

We also considered several classic variants of the TI to
conclude that the TCI (topography–climate wetness index),
also favored by Hu et al. (2017) with a modified formula,
offers the best correspondence with the validation datasets.
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The original TI did not capture the wetland density con-
trasts between arid and wet areas, and the inclusion of sub-
surface transmissivity in TCTrI induced overly sharp den-
sity contrasts that did not always match the recognized pat-
terns of large wetlands. This does not question the role of
transmissivity in forming wetlands, but calls for improved
global transmissivity datasets or new methods to supply a
more continuous description of transmissivity than those cur-
rently proposed based on discrete classes of lithology (Hart-
mann and Moosdorf, 2012; Gleeson et al., 2014) or soil tex-
ture (Fan et al., 2013). Particular attention also needs to be
given to the effect of permafrost on wetland formation, but
simple maps are probably not sufficient to describe the com-
plexity of hydrology–permafrost feedbacks, especially under
global warming (Walvoord and Kurylyk, 2016).

The resolution of the input datasets is also prone to errors
if coarser than the target wetlands. It is the case for trans-
missivity, as discussed above, and for climate input, at the
0.5◦ resolution for both GDW-TCI and GDW-WTD, which
may lead to anomalous discontinuities, although they are
not discernible in Fig. 2a, c, f. More relevant is the reso-
lution of topography, at 15 and 30 arcsec for the TI calcu-
lation (Marthews et al., 2015) and WTD modeling (Fan et
al., 2013), respectively. An important consequence is that
the pixels of our 15 arcsec wetland maps are either fully
wet or fully non-wet, which is obviously wrong in many
places with patchy wetlands in small depressions or along
headwater streams. A finer delineation can be expected
from higher-resolution DEMs, such as HydroSHEDS or the
MERIT (Multi-Error-Removed Improved-Terrain) DEM of
Yamazaki et al. (2017), both offering a worldwide 3 arcsec
resolution.

Finally, it must be underlined that the RFW, GDW and
CW maps largely overlook the loss of wetlands induced by
anthropogenic pressures, estimated to affect 30 % to 50 %
of undisturbed or potential wetlands (Finlayson et al., 1999;
Sterling and Ducharne, 2008; Hu et al., 2017), mostly due to
urbanization and agricultural drainage. This feature is espe-
cially true for GDWs because most human influences were
neglected in the input datasets (climate, topography, trans-
missivity and sea level) for global WTD modeling. In con-
trast, the RFW map was derived by overlapping satellite im-
agery for the contemporary period (past 5 to 34 years), thus
showing most human-induced changes on the surface wa-
ter, including artificial wetlands linked to flooded irrigation
(Adam et al., 2010) or the way in which damming shifts wet-
lands to lakes or drylands (Pekel et al., 2016). Nevertheless,
the overlap of several inundation datasets with different his-
torical depths was intended to minimize these disturbances,
as justified by the higher spatial correlation between the inun-
dation datasets and the CW maps than between themselves.
Therefore, by construction, the proposed CW largely corre-
sponds to potential wetland. Considering that the loss of nat-
ural wetlands exceeds the extent of artificial ones by far, they

have a larger extent than actual wetlands, making validation
all the more complicated.

5.2 Selection of two representative CW maps

If none of the resulting CW maps systematically over-
perform the others, two of them usually display the best
similarity scores, namely, CW-TCI15 and CW-WTD (Fig. 4,
Tables 5 and S1–S7). These two datasets (hereafter sim-
ply referred to as “CW maps”) have many similarities, and
by construction, they have almost the same wetland extent
(ca. 21 %), and the combination with RFWs reduces the dif-
ferences found between the corresponding GDWs in boreal
and tropical areas (Fig. 3). Both CW maps are among the
highest estimates of global wetland, considerably larger than
GLWD-3 and close to Hu et al. (2017). An interesting point
is that the SPC between these two CW maps and the exist-
ing wetland datasets is higher than the SPC among these ex-
isting datasets (Table 5), which is rather low (e.g., the SPC
between JRC surface water and GIEMS-D15 is 0.4). This ob-
servation underscores that the two outperforming CW maps
reconcile the differences between existing wetland maps,
whether they focus on RFWs (ESA-CCI, GIEMS-D15 and
JRC surface water) or also encompass non-inundated wet-
lands (GLWD-3, GDW-WTD and Hu et al., 2017).

5.3 Zonal patterns

Despite many similarities, the zonal distributions of the CW
maps, RFWs and validation datasets are sometimes differ-
ent. Generally, wetland datasets such as GLWD-3 and GDW-
WTD appear to underestimate global wetland extents with
respect to CW maps (Fig. 12 and the visuals for France and
Southeast Asia, Figs. 5 and 7). The latitudinal patterns are
also different among maps in Fig. 12, particularly over the
tropics and the boreal zones. Although the wetlands in all
validation datasets and CW-WTD are densely concentrated
between 50 and 60◦ N, in the RFW map, the northern sub-
tropical (25–35◦ N) and boreal (60–70◦ N) wetlands are of
a similar extent (1.9 and 2.0 million km2), and in CW-TCI
(15 %), tropical wetlands (10◦ N–10◦ S) globally outweigh
others (covering almost 9 million km2). In fact, tropical wet-
lands in both CW maps are much more extensive than the
maximum reported wetland extents for these latitudes in the
literature (almost 5.6 million km2 in Hu et al., 2017). This
result is in accordance with recent studies signalling an un-
derestimation of tropical wetlands and the subsequent under-
estimation of their effect on energy, water and carbon cycles
(Collins et al., 2011; Gumbricht et al., 2017; Wania et al.,
2013).

Focusing on the differences between CW maps, because
the two selected maps are constrained to share the same
GDW extent, a trade-off exists between northern and tropi-
cal wetlands. In CW-WTD, northern wetlands extend further
south into the Sakhalin taiga and Prairie Pothole Region, as
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Figure 12. Latitudinal distribution of the selected CWs and evaluation datasets. The wetland areas along the y axis are surface areas in each
1◦ latitudinal band.

shown by the green belt between 40 and 60◦ N in Fig. 13c.
This southward extension is actually stronger than the per-
mafrost zones (Gruber, 2012), suggesting that the descrip-
tion of the permafrost region in CW-WTD leads to wetland
densities that are too strong. However, in the absence of an
explicit mechanism for freezing and permafrost in the TCI
formulation, CW-TCI15 is prone to underestimating boreal
wetlands. Additionally, the difference between the CW maps
over the humid tropical zones is consistent with the fact that
TCI assumes that effective precipitation is entirely available
for wetland formation, while it also contributes to surface
runoff in the model used by Fan et al. (2013).

5.4 Relative role of RFWs and GDWs

Based on the intersection areas between RFWs and GDWs
(Table 3) and the global CW fractions, 55 % of the global
composite wetlands are solely groundwater-driven, with
varying contribution levels in different ecoregions and cli-
mate zones. GDWs are the main wetland classes in the trop-
ics and to a lesser extent in the boreal zones. RFWs dominate
over the North American lowlands (Fig. 8), Southeast Asia
(Fig. 7) and coastal areas and the tropical and subtropical
transitional latitudes (Figs. 3c and 12).

The role of RFWs and GDWs is further analyzed in six
wetland hotspots common to both CW maps (indicated by
rectangles in Fig. 13a, b). These areas cover 22 % of the
land surface area, yet account for 75 % of the wetland sur-
face area: (1) North American cold lowlands and permafrost
regions, (2) South American tropics and equatorial basins,
(3) Ob River basin and West Siberian Plain, (4) African
northern savannah belt, (5) wetlands and rice paddies in
Northeast Indian plains and Southeast Asian river deltas and
(6) coastal wetlands, within a 100 km distance to oceans and
with an elevation< 100 m above sea level. The total wet frac-

tions in the hotspot windows reach 40 % and always exceed
the mean global wetland extent (Fig. 14). To ensure that the
relative contributions of RFWs and GDWs are meaningful,
we tested their sensitivity to the size of the windows. This ad-
justment had little impact in most areas except for the coastal
wetlands, where the wet fraction in both CW maps increases
from 43 % to 64 % when the coastal band is narrowed from
100 to 20 km. Almost 40 % of the RFWs in these areas are
located within a 100 km distance to oceans and seas and can
be assumed to predominantly represent coastal water bodies
(tidal fresh or saline water marshes and river deltas). How-
ever, it must be acknowledged that a more rigorous differen-
tiation between coastal wetlands and inland open-water wet-
lands requires in situ observations or complementary soil and
vegetation information.

Outside of the hotspots described above, our CW maps
contain small GDWs, ephemeral streams and oases. Such
scattered wetlands cover less than 5 % of the land area (ca.
7 million km2 in both CW maps), but they are of great im-
portance for life in semi-arid and arid areas. Many oases and
small depressions of this type are represented in CW maps in
northern Africa, the Arabian Peninsula, the southern US and
central Asia and are not captured in any previous mapping ef-
forts, to the best of our knowledge. These bodies are strongly
driven by GW and are more difficult to detect by satellite im-
agery because their size and saturation level change rapidly,
sometimes faster than the revisit period of the satellites. As
such, we might represent water bodies that cannot be cap-
tured by existing satellite-based surveying techniques, but we
have not validated these small wetlands against local obser-
vational data in this study.
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Figure 13. Wetland density (as percent area in 3 arcmin grid cells) (a) in CW-WTD, (b) in CW-TCI15 and (c) the difference between them.
Numbers in (a) and (b) refer to the wetland hotspot windows explained in Sect. 5. For zonal wetland area distributions (right-hand charts),
the area covered by wetlands in each 1◦ latitude band is displayed.

6 Data availability and application

The dataset consisting of the two selected composite wet-
lands maps (CW-WTD and CW-TCI (15 %)) is supplied
in raster format at 15 arcsec resolution through PANGAEA
https://doi.org/10.1594/PANGAEA.892657 (Tootchi et al.,
2018). Pixels located in oceans and glaciated lands of Green-
land are assigned NoData, whereas the remainder of land is
split into four classes with distinct codes for non-wetlands,
the intersection of GDWs and RFWs and “pure” RFWs and
GDWs. All of the datasets used as input to the generation
of these dataset are available via open access for research
and educational applications and can be accessed through the
web links mentioned in their accompanying scientific papers.

These classified maps are believed to be useful for hydro-
logical or land surface modeling by assigning specific prop-

erties or processes to the places identified as wetlands or
floodplains. The RFW maps can be used in global hydraulic
models, for instance to constrain the buffering capacity of
floodplain reservoirs, recently identified as a critical param-
eter for peak discharge simulation (Zhao et al., 2017). More
originally, the CWs can be viewed as the spatial support of
a particular “hydrotope” (Gurtz et al., 1999; Hattermann et
al., 2004), i.e., the hydrological analog of plant functional
types (PFTs) for vegetation properties and processes (Lafont
et al., 2012). In these hydrotopes, the extent of which can be
deduced from the CW maps, specific models can be used to
quantify methane production or denitrification by wetlands,
for instance, especially if combined with dynamic modeling
of the saturation degree within the wetland fractions (Hesse
et al., 2008; Post et al., 2008). Depending on the particular
purpose, the user can choose to define a lumped hydrotope
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Figure 14. Contribution of non-wet areas, lakes, RFWs, GDWs and their intersection in the wetland hotspot window shown in Fig. 13 (a) in
CW-WTD and (b) in CW-TCI15. The dashed line shows the average global wetland fraction, equal to 21.1 % in (a) and 21.6 % in (b).

merging RFWs and GDWs, thus corresponding to the CWs,
or to separate RFWs from non-regularly flooded GDWs, the
latter being mapped by excluding RFWs from CWs. As an
example, the CW-WTD map was recently used to calibrate
a cost-efficient TOPMODEL approach aiming at simulating
the dynamics of peatland area and related carbon fluxes (Qiu
et al., 2018). Although the CWs do not necessarily match ar-
eas with specific wetland vegetation, they can also be used to
locate areas deserving specific PFTs, corresponding to plant
species adapted to low water stress or a shallow water ta-
ble (e.g., Fan et al., 2017). Another promising application is
to constrain GW modeling in land surface models, by locat-
ing the areas where GWs are sufficiently shallow to influ-
ence soil moisture by capillary rise, as done by Vergnes et
al. (2014) based on arbitrary topographical considerations.
Finally, provided the CWs maps offer a sufficiently accurate
description of potential wetlands, they can be combined with
maps of land cover change to better quantify wetland losses
and the related impact on global water or biogeochemical cy-
cles (e.g., Sterling et al., 2013).

7 Conclusions and perspectives

In an effort to develop a comprehensive global wetland de-
scription, we merged regularly flooded wetlands (RFWs) and
groundwater-driven wetlands (GDWs) to develop composite
wetland (CW) maps, under the assumption that both RFWs

and GDWs are relevant although not exhaustive. The cor-
responding maps were produced globally at high resolution
and two CW maps were selected based on comparisons with
global and regional evaluation datasets. Their validity is par-
ticularly supported by the good match with the MPHFM
dataset developed by Berthier et al. (2014) over France be-
cause it was tailored to comprehensively include flooded
and non-flooded wetlands with calibration against hydromor-
phic soils and validation against local surveys. With a to-
tal wetland fraction of around 21 % of the global land area,
these CW maps are in the high end of the literature, to-
gether with recent estimates also recognizing the contribu-
tion of groundwater-driven wetlands (Fan et al., 2013; Hu et
al., 2017). It must be stressed that these high-end estimates,
including ours, correspond to potential wetlands, as they ne-
glect most wetland losses due to human activities, which may
reach 30 %–50 % of undisturbed or potential wetlands (Fin-
layson et al., 1999; Sterling and Ducharne, 2008; Hu et al.,
2017). Overall, many uncertainties prevent us from conclu-
sively demonstrating that the CW maps are correct, in terms
of patterns and extent, but this is also the case for any wetland
mapping effort at the global scale that extends the definition
of wetlands beyond inundated zones.

In this framework, an important conclusion is the marked
similarity between the two proposed composite maps, de-
spite their different assumptions for GW modeling. In par-
ticular, both maps locate 75 % of the global wetlands within
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six wetland hotspot regions, in boreal and tropical areas and
along the shoreline (coastal wetlands). Higher wetland den-
sities in the tropics compared with other datasets originate
from the GDW contribution in regions with dense canopy
and/or cloud cover. These conditions are tightly linked in the
humid tropics, where wetlands have long been underrepre-
sented (Collins et al., 2011; Melton et al., 2013; Gumbricht
et al., 2017). The largest differences between the two pro-
posed CW datasets are found in the boreal zones (includ-
ing the two hotspots of the Prairie Pothole Region and East
Siberian taiga), although the RFWs are the dominant compo-
nents. This uncertainty corresponds to subsurface conditions
(transmissivity) and might be reduced having a better and
higher-resolution description of the permafrost extent, active
layer depth, hydraulic conductivity or organic matter content.

Another major feature of the two composite maps is the
importance of small and scattered wetlands, as shown by the
extent of wetlands outside the six hotspots (3.8 % to 5.2 % of
the land area according to CW-WTD and CW-TCI15, respec-
tively). This is yet another feature derived from the GDWs
because these small wetlands are often difficult to detect
using satellite imagery techniques, especially for the non-
inundated or ephemeral wetlands, with sizes that vary rapidly
compared with the revisit period of the satellites. The resolu-
tion used in this work (∼ 500 m at the Equator) is sufficiently
fine to detect many of these small wetlands, but a better de-
lineation calls for the use of higher-resolution DEMs.

By distinguishing the RFWs and GDWs, the proposed
datasets eventually offer a simple wetland classification fo-
cused on their hydrologic functioning. Compared to classic
wetland classifications, which are strongly based on floristic
inventories and habitat typologies (e.g., Zoltai and Vitt, 1995;
Finlayson et al., 1999; Lehner and Döll, 2004; Herold et al.,
2015), we separated areas where wet conditions at the surface
are primarily driven by flooding, or GW inputs or both where
the two classes intersect. Since the underlying principles and
input datasets are globally valid, this classification is believed
to be highly useful for land surface hydrological modeling.
In particular, we intend to use it in the ORCHIDEE land
surface model (Krinner et al., 2005; Ducharne et al., 2017)
to describe the areas where GW convergence from the up-
lands to the lowlands can lead to high soil moisture, with a
potential to enhance the local evapotranspiration and related
land–atmosphere feedback (e.g., Bierkens and van den Hurk,
2007; Maxwell et al., 2007; Vergnes et al., 2014; Wang et al.,
2018).
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