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Abstract. Historical ecological surveys serve as a baseline and provide context for contemporary research, yet
many of these records are not preserved in a way that ensures their long-term usability. The National Eutrophica-
tion Survey (NES) database is currently only available as scans of the original reports (PDF files) with no embed-
ded character information. This limits its searchability, machine readability, and the ability of current and future
scientists to systematically evaluate its contents. The NES data were collected by the US Environmental Pro-
tection Agency between 1972 and 1975 as part of an effort to investigate eutrophication in freshwater lakes and
reservoirs. Although several studies have manually transcribed small portions of the database in support of spe-
cific studies, there have been no systematic attempts to transcribe and preserve the database in its entirety. Here
we use a combination of automated optical character recognition and manual quality assurance procedures to
make these data available for analysis. The performance of the optical character recognition protocol was found
to be linked to variation in the quality (clarity) of the original documents. For each of the four archival scanned
reports, our quality assurance protocol found an error rate between 5.9 and 17 %. The goal of our approach was to
strike a balance between efficiency and data quality by combining entry of data by hand with digital transcription
technologies. The finished database contains information on the physical characteristics, hydrology, and water
quality of about 800 lakes in the contiguous US (Stachelek et al., 2017, https://doi.org/10.5063/F1639MVD).
Ultimately, this database could be combined with more recent studies to generate meta-analyses of water quality
trends and spatial variation across the continental US.

1 Introduction

Effective management of inland freshwater lakes requires an
understanding of the factors that affect water quality and
how these factors change over time. One of these factors,
termed eutrophication, occurs when excess nutrient inputs
from human activities fuels increases in algal growth, which
can cause hypoxia and decreases in water clarity. Eutrophi-
cation of surface waters from increased phosphorus and ni-

trogen loading has been observed in connection with altered
land use, especially in areas of rapid urbanization and inten-
sive agriculture (Smith et al., 1999, 2014). As human popu-
lations and their impacts continue to grow, eutrophication is
expected to become more widespread (Bennett et al., 2001;
Taranu and Gregory-Eaves, 2008). Historical datasets are
needed in order to track, understand, and manage eutroph-
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Figure 1. Survey locations colored by sampling year (1972 north-
eastern: light blue; 1973 southeastern: blue; 1974 central: light
green; 1975 western: green).

ication in lakes and reservoirs because they serve as an im-
portant baseline for modern studies.

The US Environmental Protection Agency (EPA) designed
and implemented the National Eutrophication Survey (NES)
in order to investigate the extent of eutrophication in freshwa-
ter lakes and reservoirs across the contiguous US. Sampling
took place in over 800 lakes and reservoirs from 1972 to 1975
and included a variety of physical, chemical, and biological
metrics including data on nutrients and nutrient loading, hy-
drologic retention time, morphometry, and plankton commu-
nity diversity. Each lake was sampled on a monthly basis for
a period of 1 year. Except for the phytoplankton distribution
subset, which we did not transcribe (see Stomp et al., 2011),
the NES data are provided as annual averages. Unlike current
EPA National Lakes Assessments (NLAs) that select a ran-
dom sample of lakes across the US, the NES targeted only
lakes impacted directly or indirectly by municipal sewage
treatment plant discharge (USEPA, 2009, 1975). Until re-
cently, these data were only available in their entirety as four
separate scanned reports representing the northeastern and
north-central (northeastern), eastern and southeastern (south-
eastern), central, and western regions of the US (Fig. 1). In
the remainder of the present paper we refer to the former two
regions as simply the northeastern and southeastern regions.

To our knowledge, there have been no attempts to tran-
scribe the data into a usable, searchable digital database de-
spite its use in previous studies. For example, large portions
of the dataset were used to examine large-scale relation-
ships between residence time and phytoplankton abundance
(Soballe and Kimmel, 1987). Also, it was used to predict eu-
trophication incidence in a Bayesian framework (Lamon and
Stow 2004). Smaller portions of the data were used to ex-
plore drivers of nutrient loading (Stomp et al., 2011; Brett
and Benjamin, 2008). However, to our knowledge, the only
study to use the NES dataset and provide a publicly avail-
able data supplement is that of Stomp et al. (2011), but their
data supplement was limited to a small subset of the available
variables relating to phytoplankton community diversity.

The present study is the first to leverage digital transcrip-
tion technologies to unlock the full NES dataset. In this pa-

per, we describe the digital transcription of the full NES
dataset with the goal of making the dataset openly accessible
to the research community. Specifically, our objective was to
exactly reproduce the contents of the original dataset rather
than to evaluate its scientific integrity. We introduce and pub-
lish the data in an open format that requires no proprietary
software. It can be easily downloaded, used for analysis, and
amended. The provided summary statistics and figures also
allow users to quickly assess the utility of the data. Finally,
the code and raw data files are provided to facilitate the ex-
traction of fields not represented in our completed dataset
(mostly phytoplankton diversity data).

2 Methods

Data were collected from multiple locations within the wa-
ter column and included in situ measurements as well as
laboratory analyses. Flow estimates and drainage area cal-
culations were provided by the US Geological Survey and
were determined from flow gauges when present. More de-
tailed information on sampling methods, units, equipment,
and accuracy can be found in the EPA survey methods pub-
lication (USEPA, 1975). Due to the historical nature of the
dataset, the NES sampling design differs from more mod-
ern efforts (USEPA, 2009). For example, the original NES
data were collected from four separate regions of the US
over the course of 4 years, whereas current assessments com-
plete nationwide sampling in a single summer. As such, NES
data values represent the mean of measurements taken in the
spring, summer, and fall in either 1972 (northeastern), 1973
(southeastern), 1974 (central), or 1975 (western) rather than
summer measurements taken in a single year.

We obtained the NES archival scanned reports from the
EPA National Service Center for Environmental Publications
(available at: https://www.epa.gov/nscep). The data for each
NES region are contained in four separate files. We extracted
the data from each file using automated techniques followed
by manual quality assurance and checking of each value.
To begin, we enhanced (de-noised) each file using the local
adaptive filtering algorithm as provided by the ImageMagick
program (v6.8.9-9; available at https://www.imagemagick.
org/). Next, we processed the enhanced files using the Tesser-
act optical character recognition (OCR) program (Ooms,
2017; Smith, 2007). The output of these initial extraction
steps was recorded in a set of “raw data” files in which
each file contains the raw unprocessed text of each document
page. The contents of specific fields in the raw data were
extracted to a database using the automated rules provided
by the nesR software package (Stachelek, 2017). Finally, all
values in the database were manually checked for accuracy
against the original scanned reports. Inaccurate OCR outputs
were corrected by hand in the final database. Because our
goal was to reproduce the data from the original reports and
not to verify the technical correctness of the original data, we
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Table 1. Number of measurements (n) for each variable in each
NES region.

Variable Western Central Northeastern Southeastern

Drainage area 122 138 171 232
Surface area 152 177 200 245
Mean depth 149 174 174 242
Total inflow 124 138 170 232
Retention time 124 140 158 230
Alkalinity 153 177 200 245
Conductivity 153 176 200 245
Secchi depth 153 177 200 245
Total P 153 177 200 245
Total inorg. P 153 177 200 245
Total inorg. N 153 177 200 245
Total N 152 176 1 245
P pt. source mun. 52 83 139 189
P pt. source ind. 7 1 10 24
P pt. source sep. 65 88 111 175
P nonpt. source 122 133 167 231
P total inputs 122 133 167 231
N pt. source mun. 52 84 139 189
N pt. source ind. 7 1 8 22
N pt. source sep. 77 90 111 184
N nonpt. source 122 129 167 231
N total inputs 122 129 167 231
P total exports 119 132 167 227
P retention 99 115 144 201
P load per area 122 133 167 231
N total exports 119 133 166 227
N retention 88 111 122 170
N load per area 122 135 167 231

only changed values if they did not match the original data
reports. For example, we did not change data from the five
NES lakes that had phosphate (PO4) values exceeding their
corresponding total phosphorus (TP) values despite the fact
that this is not physically possible (PO4 is a component of
TP).

We provide the final dataset in an open nonproprietary
format (comma-delimited, *.csv). In addition, we gener-
ated metadata descriptions from the contents of the origi-
nal scanned reports. All calculations, table construction, and
figure generation were performed in R and saved as repro-
ducible R scripts (R Core Team, 2017). Table and figure
generation was accomplished with the use of the reshape2,
plyr, and sp packages (Wickham, 2016; Pebesma and Bivand,
2017).

3 Results

The final NES dataset contains observations from 775 lakes
and the distribution of these lakes was spatially variable. Al-
though there were more lakes measured in the northeastern
and southeastern US, the number of locations was close to
evenly distributed among the remaining regions (Fig. 1, Ta-
ble 1). Specifically, the number of lakes sampled in each re-

Figure 2. Map of log-scaled alkalinity (mg L−1) interpolated using
inverse distance weighting.

Figure 3. Map of Secchi depth (m) interpolated using inverse dis-
tance weighting.

gion were as follows: northeastern – 200 lakes, southeastern
– 245 lakes, central – 177 lakes, and western – 153 lakes.

In addition to differences in the total number of lakes mea-
sured in each region, there were also differences in the pro-
portion of lakes classified as impoundments rather than as
natural lakes. For example, slightly more than half of all the
lakes studied (462 of 775) were classified as impoundments
yet the northeastern region had only 54 impoundments while
the southeastern region had 168 impoundments. Conversely,
the number of natural lakes sampled in the northeastern re-
gion (146 lakes) was more than double that of any other re-
gion (77, 48, and 42 for the southeastern, western, and central
US, respectively).

We observed substantial spatial variation in many of the
individual lake characteristics. For example, lakes in the east-
ern subregions were generally smaller and shallower than
lakes in the western subregion (Table 2). In addition, lakes
in the western subregion generally had higher alkalinity and
higher water clarity (Figs. 2 and 3). Lakes with particularly
low alkalinity were found in coastal areas, whereas lakes
with particularly high alkalinity were found in Nevada, west-
ern Washington, and parts of North Dakota. Comparisons
among regions was easy for some well-sampled lake chem-
istry parameters such as TP but more difficult for undersam-
pled lake chemistry parameters. A particularly extreme ex-
ample of this difficulty was total nitrogen measurements in
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Table 2. Mean and standard deviation (SD) for each variable in each NES region.

Region Western Central Northeastern Southeastern
Variable Mean±SD Mean±SD Mean±SD Mean±SD

Drainage area (km2) 2.5× 104
± 7.8× 104 2.1× 104

± 7.5× 104 3.2× 103
± 1.4× 104 5.3× 103

± 1.4× 104

Surface area (km2) 44.57± 99.83 54.38±1.4× 102 27.25± 99.01 42.7±1.4× 102

Mean depth (m) 16.71± 27.08 5.97± 4.49 7± 9.37 6.4± 6.07
Total inflow (m3 s−1) 52.1±1.1× 102 31.82± 71.77 23.1± 65.26 82.6±2.3× 102

Retention time (yr) 7.27± 43.32 2.78± 6.98 2.01± 4.77 0.59± 1.12
Alkalinity (mgL−1) 1.7× 102

± 3.7× 102 1.5× 102
± 91.51 1.2× 102

± 1.6× 102 72.18± 66.25
Conductivity (µ�) 4.9× 102

± 1.0× 103 6.4× 102
± 7.6× 102 3.3× 102

± 4.0× 102 2.5× 102
± 2.2× 102

Secchi depth (m) 2.86± 2.64 1.2± 0.91 1.81± 1.71 1.22± 0.82
Total P (mg L−1) 0.07± 0.13 0.11± 0.16 0.16± 0.35 0.12± 0.27
Total inorg. P (mgL−1) 0.04± 0.11 0.04± 0.07 0.11± 0.3 0.05± 0.15
Total inorg. N (mgL−1) 0.14± 0.23 0.33± 0.58 0.47± 0.66 0.72± 0.91
Total N (mg L−1) 0.62± 0.65 1.22± 1.11 0.12 1.56± 1.25
P pt. source mun. (kgyr−1) 2.5× 104

± 8.7× 104 2.3× 104
± 5.6× 104 3.5× 104

± 1.5× 105 4.5× 104
± 1.1× 105

P pt. source ind. (kgyr−1) 2.5× 104
± 4.0× 104 1.3× 104

±NA 2.7× 104
± 4.9× 104 1.7× 104

± 4.5× 104

P pt. source sep. (kgyr−1) 56.62±1.4× 102 60.62± 93.67 1.6× 102
± 3.4× 102 98.55±2.3× 102

P nonpt. source (kgyr−1) 1.4× 105
± 4.2× 105 1.8× 105

± 6.8× 105 5.6× 104
± 2.1× 105 1.9× 105

± 5.5× 105

P total inputs (kg yr−1) 1.5× 105
± 4.7× 105 2.0× 105

± 7.0× 105 8.7× 104
± 3.4× 105 2.3× 105

± 5.8× 105

N pt. source mun. (kgyr−1) 7.8× 104
± 2.5× 105 7.3× 104

± 1.7× 105 1.4× 105
± 5.4× 105 1.4× 105

± 3.8× 105

N pt. source ind. (kgyr−1) 2.3× 107
± 6.1× 107 4.0× 103

±NA 1.6× 105
± 4.2× 105 1.7× 105

± 5.6× 105

N pt. source sep. (kgyr−1) 5.7× 106
± 5.0× 107 2.2× 103

± 3.5× 103 4.3× 103
± 5.5× 103 3.3× 103

± 6.7× 103

N nonpt. source (kgyr−1) 1.8× 106
± 4.9× 106 1.8× 106

± 4.4× 106 1.2× 106
± 4.1× 106 3.1× 106

± 8.9× 106

N total inputs (kgyr−1) 6.8× 106
± 5.7× 107 1.8× 106

± 4.3× 106 1.3× 106
± 4.6× 106 3.2× 106

± 9.0× 106

P total exports (kgyr−1) 6.2× 104
± 1.7× 105 7.4× 104

± 1.9× 105 7.3× 104
± 3.1× 105 1.9× 105

± 6.3× 105

P retention (%) 47.77± 28.5 57.55± 26.01 36.93± 25.2 42.7± 23.34
P load per area (gm−2 yr−1) 5.61± 21.36 3.3± 9.2 28.46± 97.49 9.43± 17.06
N total exports (kgyr−1) 1.6× 106

± 4.0× 106 1.2× 106
± 2.8× 106 1.2× 106

± 4.9× 106 3.0× 106
± 8.3× 106

N retention (%) 39.33± 27.13 43.41± 23.97 28.41± 23.62 26.28± 18.85
N load per area (gm−2 yr−1) 1.8× 102

± 1.1× 103 42.67±1.1× 102 2.8× 102
± 9.1× 102 1.3× 102

± 2.4× 102

the eastern region, as this parameter was only measured for
a single lake (Table 1).

The ability to examine these spatial trends was made pos-
sible by our OCR procedure, which had 6–17 % accuracy de-
pending on region and archival report scan quality. In total,
we carried out approximately 5000 corrections to the auto-
mated data product by hand as part of our manual quality
control review. A total of approximately 650 lakes had val-
ues for at least 80 % of the total number of variables shown
in Table 1. On an individual lake basis, the most common
“missing” data were nutrient loading estimates for individ-
ual point- and nonpoint-source components. In many cases,
these data may not actually be missing but they may not have
been a component of the budget for that particular lake. For
example, not all lakes have industrial land use so no data are
expected in these cases.

4 Code and data availability

Original scanned reports from the EPA are available from the
EPA National Service Center for Environmental Publications

(https://www.epa.gov/nscep). Our cleaned and useable data
are available for download at Stachelek et al. (2017). The
data are provided as a zip file, which contains all versions
of the data including the raw and quality-checked versions
(Stachelek et al., 2017). Moreover, the R package and R code
used to scrape and analyze the data are provided by Stachelek
(2017) so that the methods may be reproduced and openly
available for (re)use. All figures and summary statistics were
generated with R scripts available in the data supplement.

5 Discussion

We have demonstrated an approach for rescuing historical
data from scanned documents. In particular, our approach in-
volved a two-step process of automated data scraping fol-
lowed by curation by hand and quality assurance. Overall,
we found that OCR was an efficient method for reducing the
labor associated with transcribing analog text records (e.g.,
Drinkwater et al., 2014). Unfortunately, OCR technology
does not have absolute accuracy. In our case, transcription
was hampered by poor print and scan quality of the source
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paper documents. We discovered through our manual vali-
dation procedure that the OCR computations produced in-
accurate values in approximately 6–17 % of the cells in the
complete dataset (n= 4836). We expect that accuracy could
be improved by experimenting with varying the window size
of the local adaptive thresholding algorithm relative to the
document font size. Our ability to experiment with thresh-
olding window size was limited due to the computationally
expensive nature of these extractions.

The end result of our approach was data from every lake
and nearly every variable in the NES survey dataset. The
only primary subset of the NES data that is not included
in our final product is the phytoplankton distribution data,
which have already been digitally transcribed by Stomp et al.
(2011). The results of the present study could be used to
explore anthropogenic and environmental drivers of lake
eutrophication as well as to verify previously documented
trends. One example is the 2007 National Lakes Assessment
Report, which included a reanalysis of some of the NES
study lakes (USEPA, 2009). This reanalysis considered pop-
ulation level trends in the NES lakes but did not consider
trends in individual lakes or potential environmental drivers
contributing to observed trends. On a population basis, the
NLA reanalysis found that less than 30 % of the NES lakes
had increased chlorophyll and phosphorus concentrations.
The results of the present study could be used to verify these
claims as well as to compare the NES data with more re-
cent work such as the 2012 National Lakes Assessment. Note
that sampling techniques may differ from current techniques;
thus, care should be given when making comparisons. In
addition to their utility in validating historical trends, this
dataset has value because it contains data on a number of hy-
drographic variables that are difficult to estimate, such as wa-
ter residence (retention) time. Such data are critical to a vari-
ety of hydrological and water quality modeling efforts (Brett
and Benjamin, 2008).

Although our goal was to digitally transcribe the full NES
dataset to facilitate studies on historical nutrient loading, it
is worth noting the similarities between the present study
and other scientific record digitization initiatives. Such initia-
tives are common in the climate and ocean sciences but they
are just starting to gain momentum in the biological sciences
(Allan et al., 2011; Freeman et al., 2017). To our knowledge,
the present study is the first large-scale attempt at digitization
of historical limnology records. We hope that by making our
analysis open and reproducible we will inspire future efforts
to recover important records from the pre-digital era.
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