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Abstract. The Chinese Tian Shan (also known as the Chinese Tianshan Mountains, CTM) have a complex
ecological environmental system. They not only have a large number of desert oases but also support many
glaciers. The arid climate and the shortage of water resources are the important factors restricting the area’s
socioeconomic development. This study presents a unique high-resolution (1 km, 6-hourly) air temperature data
set for the Chinese Tian Shan (41.1814–45.9945◦ N, 77.3484–96.9989◦ E) from 1979 to 2016 based on a robust
elevation correction framework. The data set was validated by 24 meteorological stations at a daily scale. Com-
pared to original ERA-Interim temperature, the Nash–Sutcliffe efficiency coefficient increased from 0.90 to 0.94
for all test sites. Approximately 24 % of the root-mean-square error was reduced from 3.75 to 2.85 ◦C. A skill
score based on the probability density function, which was used to validate the reliability of the new data set
for capturing the distributions, improved from 0.86 to 0.91 for all test sites. The data set was able to capture the
warming trends compared to observations at annual and seasonal scales, except for winter. We concluded that the
new high-resolution data set is generally reliable for climate change investigation over the Chinese Tian Shan.
However, the new data set is expected to be further validated based on more observations. This data set will be
helpful for potential users to improve local climate monitoring, modeling, and environmental studies in the Chi-
nese Tian Shan. The data set presented in this article is published in the Network Common Data Form (NetCDF)
at https://doi.org/10.1594/PANGAEA.887700. The data set includes 288 nc files and one user guidance txt file.
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1 Introduction

Near-surface air temperature is the primary indicator of cli-
mate change and significantly impacts local as well as global
water, energy, and matter cycles (e.g., Bolstad et al., 1998;
Gao et al., 2012, 2014a; Prince et al., 1998). Air temperature
is a necessary input variable for most hydrological and envi-
ronmental models because it controls a large number of en-
vironmental processes. Long-term and high-resolution tem-
perature data including historic, current, and future series are
a prerequisite for accurate climate change assessment partic-
ularly on a regional scale (Gao et al., 2012; Minder et al.,
2010; Maurer et al., 2002; Mooney et al., 2011; Pepin and
Seidel, 2005). However, as the most common sources for air
temperature time series, observational networks suffer from
low station density in complex terrains, in particular high
mountainous areas (Gao et al., 2014a). The installation and
maintenance of stations in these regions are the main chal-
lenges (Kunkel, 1989; Rolland, 2003). To obtain spatially
continuous temperature data, interpolation technologies such
as natural neighborhood, inverse distance weighting, and a
series of kriging methods are usually applied. However, these
methods rely on the density of surface stations. The relia-
bility of interpolated results decreases with increasing dis-
tance from the selected stations, particularly when using the
inverse distance weighting method. Thus, interpolation ap-
proaches may induce large errors for a large region with a
low density of stations (e.g., Vogt et al., 1997).

In contrast to the low availability of observations, reanal-
ysis products provide long-term and spatially consistent data
sets and have been increasingly applied for climate change
assessment during the past 2 decades (e.g., Gao et al., 2014a;
Mooney et al., 2011). Reanalysis is designed to estimate the
state of real atmosphere and land surface characteristics by
assimilating a large number of observations (Decker et al.,
2012; Simmons et al., 2010). However, reanalysis contains
uncertainties, such as observational changes and model mis-
representation (Simmons et al., 2010). With the development
of a reanalysis assimilation system, the spatial resolution has
been enhanced to 0.125◦, for example ERA-Interim. How-
ever, local processes such as temperature inversions in deep
valleys as well as snowpack accumulation and melting are
still not explicitly considered. Furthermore, because of the
heterogeneity over the land surface, many hydrological and
climatic impact models use applications of high resolution,
which tend to run on a scale of 0.1–1 km (Bernhardt and
Schulz, 2010; Gao et al., 2012; Maraun et al., 2010). To this
end, downscaling and correcting reanalysis data are neces-
sary (Gao et al., 2012, 2014b, 2016).

Previous studies have shown that the elevation difference
between the reanalysis grid point and the corresponding me-
teorological station leads to a large systematic bias (Gao et
al., 2012, 2014a, 2016). Thus, an elevation correction scheme
based on a lapse rate, which explains the empirical relation-
ship between air temperature and altitude, can significantly

reduce this bias. A constant lapse rate within a range of−6.0
to −6.5 ◦C km−1 (e.g., Dodson and Marks, 1997; Lundquist
and Cayan, 2007; Marshall et al., 2007; Maurer et al., 2002)
is commonly used. Monthly temperature gradients within
the atmosphere are also widely applied in different regions
(Kunkel, 1989; Liston and Elder, 2006). However, previous
studies have shown that a fixed lapse rate may be problem-
atic because the values of the lapse rate can significantly vary
within short time periods of less than 1 month (Lundquist and
Cayan, 2007; Minder et al., 2010; Rolland, 2003). To address
this issue, using a lapse rate calculated from meteorological
stations shows the best performance in many regions (e.g.,
Gao et al., 2012, 2017). However, the observed lapse rate
completely relies on the density of sites, and it is not ap-
plicable for regions without observations, such as the high
mountains.

Gao et al. (2012) introduced one other strategy that obtains
temporal variability of lapse rates by calculating from tem-
peratures and geopotential heights at different pressure lev-
els of the ERA-Interim. For example, 0500_700 represents the
temperature lapse rate between the 500 and 700 hPa pressure
levels. It is completely derived from ERA-Interim on inter-
nal pressure levels. It is therefore independent of local station
observations. This method has been successfully applied in
cases in the European Alps and on the Tibetan Plateau (Gao
et al., 2012, 2017). Furthermore, this approach has the poten-
tial to be used to correct ERA-Interim temperature data for
any other high mountainous areas. Following this approach,
for the first time, 0.25◦× 0.25◦, 6-hourly ERA-Interim 2 m
temperature data from 1979 to 2016 were downscaled and
corrected to 1 km, 6-hourly temperature data for the Chinese
Tian Shan (also known as the Chinese Tianshan Mountains,
CTM). The temperature data set presented here is extraor-
dinarily unique because it covers such a large area of com-
plex terrain with long-term continuous data both in space and
time. The validation with observations from meteorological
stations shows that this data set is generally reliable and suit-
able for climate change impact assessment as well as for hy-
drological and environmental modeling.

Specific information regarding the CTM is described in
Sect. 2. Used data including ERA-Interim and observations,
elevation correction methods, and evaluation criteria are pre-
sented in Sect. 3. Section 4 provides the validation results,
and the data accessibility is presented in Sect. 5. The discus-
sion and conclusions are presented in Sect. 6.

2 Study area

The Tian Shan are among the seven major (and the largest)
independent latitudinal mountain systems of the world. They
span four countries including China, Kazakhstan, Kyrgyzs-
tan, and Uzbekistan in the east–west direction. They stretch
approximately 2500 km in length with an average width of
250–350 km (Chen et al., 2014; Hu, 2004; Wang et al.,
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Figure 1. Location of the 24 meteorological stations (triangles) and ERA-Interim 0.25◦×0.25◦ grid points (dots). The elevation ranges from
−161 m to 7100 m a.s.l., with a DEM resolution of 1 km.

2011). The eastern Tian Shan are termed the Chinese Tian
Shan and extend over 1700 km into Xinjiang province, China
(Fig. 1). They occupy approximately one-third of the entire
area of Xinjiang province (∼ 570000 km2). The CTM con-
sist of three parallel mountain ranges (Hu, 2004; Wang et
al., 2011). The north branch of the mountains mainly in-
cludes Ala Mount, Keguqin, Borokoonu, and Bogda moun-
tains. The central branch includes Arakar, Nalati, Erwin-
gen, and Hora mountains. The south branch mainly includes
Kochsal, Khark, Lerke, and Karake mountains (Hu, 2004).
The elevation decreases from west to east, with an average
elevation of approximately 4000 m. The CTM also serve as
a boundary between the northern and southern hillsides, as
represented by the Junggar Basin and the Tarim Basin, re-
spectively. Mt. Tomur is the highest peak of the Tian Shan at
an elevation of 7443.8 m (Hu, 2004).

The Tian Shan have a special arid climatic regime because
they are the furthest distance from the sea compared to that
of other major mountain systems over the world. Many rivers
such as the Syr, Chu, and Ili rivers originate in the Tian Shan
(Chen et al., 2014, 2017; Hu, 2004). The CTM not only
have a large number of desert oases in the basins, but also
support a large number of glaciers. Statistically, there are
9035 glaciers in the CTM, with an area of 9225 km2 and a
volume of 1011 km3 (Shi, 2008; Shi et al., 2010). However,
most of the glaciers in the CTM are in a state of rapid re-
treat because of global warming (e.g., Ding et al., 2006; Li et
al., 2003, 2010). As a climatic transition zone, the CTM are
known as a “wet island” in an arid region (Chen et al., 2015;
Deng and Chen, 2017). The glaciers and snow cover in the
high mountains are the most sensitive indicators of climate
change. Global warming, particularly the impacts of signif-
icantly increased temperatures on the retreat of glaciers and
the ablation of snow, further influences the regional water re-

sources and ecological environment (Chen et al., 2014, 2017;
Wang et al., 2011; Wei et al., 2008; Zhang et al., 2012).

Because of the special geographical location and com-
plex terrain, the temperature changes on the northern and
southern hillsides of the CTM are regionally and season-
ally significant. Because of limited long-term observations
in the CTM, the link between climate change and glacier
variation remains unclear. During the past few decades, most
studies have focused on Glacier No. 1 at the headwaters of
the Urumqi River (e.g., Li et al., 2003). With the develop-
ment of the geographic information system (GIS), remote-
sensing (RS), and climatic reconstruction technologies, great
progress has been made regarding glacier fluctuation investi-
gations (e.g., Chen et al., 2012; Li et al., 2010). However,
a reliable long-term series of temperature data is greatly
needed to understand glacier variations under a warming and
wetting climate (Chen et al., 2015).

3 Data and method

3.1 ERA-Interim data

The European Centre for Medium Range Weather Forecast
(ECMWF) reanalysis product, ERA-Interim, was elevation
corrected in this study. ERA-Interim provides data from 1979
onwards and continues in real time (Berrisford et al., 2009;
Dee et al., 2011). Cycle 31r2 of ECMWF’s Integrated Fore-
cast System (IFS) was used for the ERA-Interim product.
Compared to ERA-40, ERA-Interim significantly improved
in terms of the representation of the hydrological cycle, the
quality of the stratospheric circulation, and the handling of
biases by using a four-dimensional variation analysis (Dee
et al., 2011; Dee and Uppala, 2009; Simmons et al., 2006;
Uppala et al., 2008). The ERA-Interim model in this con-
figuration comprises 60 vertical levels, with the top level at
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0.1 hPa. It uses the T255 spectral harmonic representation for
basic dynamical fields and a reduced Gaussian grid (N128)
with an approximately uniform spacing of 79 km (Dee et
al., 2011; Uppala et al., 2008). ERA-Interim assimilates four
analyses per day at 00:00, 06:00, 12:00, and 18:00 UTC (Dee
et al., 2011; Uppala et al., 2008). Because of a usage lim-
itation, 6-hourly assimilation data at 00:00, 06:00, 12:00,
and 18:00 UTC from 1979 to 2016, projected on a grid of
0.25◦× 0.25◦, were used. This grid was interpolated from
the original reduced Gaussian grid. The used output variables
are 2 m temperature, surface pressure, and temperature and
geopotential height at the 925, 850, 700, 600, and 500 hPa
pressure levels. The geopotential height is related to the vari-
ation in gravity with latitude and elevation and is calculated
by the normalization of the geopotential over gravity (Gao et
al., 2012).

3.2 Observations

Daily air temperature records from 24 meteorological
stations on the CTM from the China Meteorological Data
Sharing Service System of the National Meteorological
Information Center (CMA-CMDC, http://data.cma.cn/, last
access: 16 November 2018) were used in the analysis. The
observations include daily maximum temperature, minimum
temperature, and mean temperature calculated from four
observed records (6-hourly) from the previous 20:00 to the
present 20:00 Beijing time. An overview of the observations
is provided in Fig. 1 and Table 1. Some stations were
relocated, which led to a different initial time (Table 1). The
elevation was adjusted for station no. 24, but the coordinate
was not changed. The quality of the observed data is strictly
controlled by the National Meteorological Information Cen-
ter of China. Therefore, 6-hourly ERA-Interim temperature
is adjusted according to the time differences to match obser-
vations. Please note that only 7 out of the 24 meteorological
stations are available for international users via the CMA-
CMDC with registration. These 7 sites are a small part of
the global exchange data set, which covers 194 sites starting
during January 1951 over China for the global exchange
program (http://data.cma.cn/en/?r=data/detail&dataCode=
SURF_CLI_CHN_MUL_DAY_CES_V3.0, last access:
16 November 2018). These 7 sites are nos. 2, 5, 6, 8, 15, 18,
and 23 in this study.

A very important but difficult to answer issue is that if
some individual sites are assimilated by the ECMWF Inte-
grated Forecast System, the ERA-interim predictions are not
fully independent from the observed data which are subse-
quently used for calibration and validation. We investigated
the ECMWF assimilation records and found that 9 of the
24 sites were possibly assimilated by the IFS. Table 2 shows
the details of the assimilated sites. The long-term tempera-
ture records (1979–2011) from nos. 6, 8, 18, and 23 were as-
similated. Only short-term observations (less than 15 years)
from the other five sites were assimilated. According to the

information from the ECMWF, it can be assumed that al-
though 9 of the 24 sites were possibly assimilated, the other
15 sites were not used by ERA-Interim and therefore rep-
resent a fully independent data set. Furthermore, compared
to the assimilated short-term observations, we tested a much
longer time series. Thus, we cautiously believe that this is-
sue does not affect the skill of ERA-Interim as well as the
validation.

3.3 Elevation correction method

The original ERA-Interim temperature can be corrected via
Eq. (1). TERA_2m is the original 6-hourly ERA-Interim 2 m
temperature at a model height of a 0.25◦ grid. The 0 value
describes the lapse rate with a decrease in air temperature
with elevation. The 1h value is the altitude difference be-
tween the 1 km digital elevation model (DEM) grid (re-
sampled from 90 m of a Shuttle Radar Topography Mission
(SRTM) DEM to 1 km) and the ERA-Interim grid model
height.

Ti = TERA_2m+0×1h (1)

Here, 0 represents the ERA-Interim internal lapse rates cal-
culated from the temperatures and geopotential heights at dif-
ferent pressure levels. For example, 0500_700 represents the
temperature lapse rate between the 500 and 700 hPa pres-
sure levels. Specifically, it is calculated by the temperature
differences divided by height differences between the 500
and 700 hPa pressure levels. All variables and parameters
are from ERA-Interim, which means this method is fully in-
dependent of observations. In the present study, 0 was de-
fined according to the 1 km grid altitude. For example, if one
1 km DEM grid is 500 m in altitude, 0850_925 will be applied
based on the 850 and 925 hPa pressure levels, which repre-
sent an average height of 1500 and 150 m, respectively. If the
DEM grid height is 4500 m, 0500_600 between the 500 hPa
(geopotential height ∼ 5000 m) and 600 hPa (geopotential
height ∼ 4000 m) pressure levels will be used for the cor-
rection model. Normally, the zone higher than 4000 m in
the CTM is mainly dominated by free airflow. In summary,
0500_600, 0600_700, 0700_850, and 0850_925 were used for the
DEM grids with heights of ≥ 4000, 3000–4000, 1500–3000,
and ≤ 1500 m, respectively. More details regarding the cor-
rection method can be found in Gao et al. (2012, 2017).

3.4 Evaluation criteria

To evaluate the correction temperatures, two statistical ac-
curacy measures were applied. The root-mean-square error
(RMSE) was used for an assessment of the bias between the
corrections and observations (Eq. 2). The Nash–Sutcliffe ef-
ficiency coefficient (NSE) evaluated the performance of the
new data set using Eq. (3), which ranged from 1 (perfect fit)
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Table 1. Test sites information (ERA_height is the ERA-Interim grid height). The date format is year-month-day.

ID Name Latitude Longitude Elevation ERA_height Initial time
(◦) (◦) (m) (m)

1 Wenquan 44.98 81.07 1133 1866 1979-01-01
44.97 81.02 1355 1866 1981-01-01

2 Jinghe 44.62 82.90 320 1133 1979-01-01
44.60 82.90 319 1133 2006-03-01

3 Wusu 44.43 84.67 479 963 1979-01-01
4 Caijiahu 44.20 87.53 441 913 1979-01-01
5 Qitai 44.02 89.57 794 1258 1979-01-01
6 Yining 43.95 81.33 663 1325 1979-01-01
7 Zhaosu 43.15 81.13 1851 1963 1979-01-01
8 Urumqi 43.78 87.62 918 1492 1979-01-01

43.78 87.65 935 1458 2000-01-01
9 Baluntai 42.67 86.33 1753 2616 1979-01-01

42.73 86.30 1737 2616 1994-12-01
10 Dabancheng 43.35 88.32 1104 1491 1979-01-01
11 Qijiaojing 43.48 91.63 873 1232 1979-01-01

43.22 91.73 790 1077 1999-01-01
12 Kumishen 42.23 88.22 922 1305 1979-01-01
13 Bayinbrook 43.03 84.15 2458 2841 1979-01-01
14 Yanqi 42.08 86.57 1055 1618 1979-01-01
15 Turfan 42.93 89.20 35 1115 1979-01-01
16 Baicheng 41.78 81.90 1229 1730 1979-01-01
17 Luntai 41.78 84.25 976 1338 1979-01-01

41.82 84.27 982 1338 2011-01-01
18 Kuche 41.72 82.95 1099 1460 1979-01-01

41.72 83.07 1082 1460 1993-01-01
19 Kuerle 41.75 86.13 932 1245 1979-01-01
20 Balitang 43.73 93.07 1638 1549 1979-01-01

43.60 93.00 1165 1482 1985-01-01
43.60 93.05 1677 1482 2003-07-01

21 Naomaohu 43.77 95.13 479 1066 2013-12-31
22 Yiwu 43.27 94.70 1729 1494 2013-12-31
23 Hami 42.82 93.52 737 1208 2013-12-31
24 Hongliuhe 41.53 94.67 1170 1450 2002-06-30

41.53 94.67 1568 1450 2002-07-01

Table 2. Assimilated sites in ERA-Interim. The date format is year-
month-day.

ID Name WMO ID Starting date Ending date

2 Jinghe 51334 1979-06-21 1993-01-21
5 Qitai 51379 1979-06-03 1985-05-20
6 Yining 51431 1978-12-31 2011-12-31
8 Urumqi 51463 1978-12-31 2011-12-31
11 Qijiaojing 51495 1979-04-07 1993-04-24
15 Turfan 51573 1981-06-30 1984-08-08
18 Kuche 51644 1978-12-31 2011-12-31
19 Kuerle 51656 1979-01-03 1994-12-30
23 Hami 52203 1978-12-31 2011-12-31

to minus infinity (worst fit) (Nash and Sutcliffe, 1970).

RMSE=

√√√√1
n

n∑
t=1

(To− Td)2, (2)

NSE= 1−

n∑
t=1

(To− Td)2

n∑
t=1

(
To− To

)2 , (3)

where To is the observed temperature at time t , Td is
the corrected temperature at time t , and n is the number of
records in the same time series.

A measure of skill based on the probability density func-
tion (PDF) proposed by Perkins et al. (2007) was applied in
this analysis. This skill score calculates the cumulative mini-
mum intersections (or overlaps) between the two distribution
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binned values in the given PDFs. The skill score ranges from
0 to 1. A value of 1 means the PDF shape of the corrected
temperature perfectly matched the observed PDF. The value
0 means there is no common area between the PDFs of ob-
servations and corrections. In other words, these two PDFs
are completely independent. The PDF-based skill score was
calculated via Eqs. (4) and (5):

skill score=
m∑
1

Pm, (4)

Pm =

{
P m

d , P m
d < P m

o
P m

o , P m
d ≥ P m

o
(m= 1,2,3. . .n), (5)

where n is the number of bins for the PDF calculation, Pd
is the frequency of values in a given bin from the corrected
temperatures, and Po is the frequency of the values in a given
bin from the observations (Gao et al., 2016; Perkins et al.,
2007). In this comparison, 1 ◦C is used as the interval of bins
for all the skill score calculations. The PDF-based evaluation
method allows merging data from multiple stations across
different time periods (Gao et al., 2016; Perkins et al., 2007).
This evaluation method has been proven to show more cred-
ible climatic variations particularly for extreme values com-
pared to those of the conventional mean-based assessment
method (Gao et al., 2016; Mao et al., 2010). Furthermore,
1 % quantile and 5 % quantile temperatures are represented
for extreme low temperatures, while 95 % quantile and 99 %
quantile temperatures are selected for extreme high tempera-
tures. A quantile function is more reliable than absolute min-
imum and maximum values, particularly for data sets in dif-
ferent time series. The corrected temperature is during the
period of 1979–2016 and the observation is during the period
of 1979–2013. These different durations of two data sets do
not affect the comparison using a PDF-based skill score and
quantile function.

Notably, the corrected temperature is accordingly aver-
aged over nine grid points surrounding each meteorological
station. This process was suggested by a referee when the
authors evaluated the ERA-Interim temperature over the Ti-
betan Plateau (Gao et al., 2014a). The referee claimed that
this approach can evaluate the ability of ERA-Interim over
different topographies by selecting 3×3 grids with the station
in the center grid. Thus, in this study we took this suggestion.

Here, we would like to emphasize that averaging nine grid
points may lead to a systematic bias because the station el-
evation does not perfectly coincide with the mean elevation
of the considered grid cells. However, the elevation differ-
ences among the averaged nine DEM grids and station ele-
vations are quite small with an average of −8 m (Table S1
in the Supplement). Except for no. 9, the stations have less
than a 50 m elevation difference. The elevation differences
among the nine grids at a 1 km× 1 km grid resolution are
very small (less than 2 m). From this point of view, a DEM
generally matches the station elevations, and the systematic

bias is very small. Thus, we believe this approach does not
affect the validation.

4 Results

4.1 Evaluation of original ERA-Interim temperature data

The correlation coefficient ranges from 0.949 to 0.995 with
an average of 0.986 for all the stations (the detailed results
not shown here). This high correlation coefficient indicates
that the original ERA-Interim temperature captures the tem-
poral variation in observations very well. However, the origi-
nal ERA-Interim cannot capture the spatial characteristics at
finer scales (Fig. S1). The very general spatial variation could
be captured by the original ERA-Interim. The temperature is
warmer in the lower basins in the southern and northern CTM
and colder in the higher mountains in the central and western
CTM. However, the temperature spatial variation is not cap-
tured at microtopographic scales because of the coarse reso-
lution. The characteristics of temperature changes in the val-
leys and summits in the western and central CTM, such as the
Ili River basin and Bogda Mountain, are not identified by the
original ERA-Interim. This indicates that the original ERA-
Interim is needed to correct for a finer spatial resolution. Ta-
ble 3 shows a comparison of original ERA-Interim 2 m tem-
perature data to daily observations from 24 meteorological
stations. The NSE ranges from 0.46 to 0.97 for all stations.
Only five stations (nos. 6, 8, 9, 13, and 15) have NSEs lower
than 0.90. The average NSE of 0.90 for all stations shows
that the ERA-Interim data reproduce observations very well.
The lowest NSE is found at station no. 9 (Baluntai), while the
highest NSE is found at no. 5 (Qitai) and no. 24 (Hongliuhe).
The RMSE ranges from 2.05 to 7.76 ◦C with an average of
3.75 ◦C for all stations. Three stations (nos. 9, 13, and 15)
have RMSEs higher than 5 ◦C. As the NSE indicated, station
no. 9 (Baluntai) has the largest RMSE (7.76 ◦C), followed
by station no. 15 (7.69 ◦C). The smallest RMSE is found at
station no. 24 (Hongliuhe).

Station no. 9 (Baluntai) is in a valley with an elevation
of ∼ 1700 m, while the terrain height of the corresponding
grid in ERA-Interim is 2616 m (Table 1). The approximate
900 m elevation difference may be responsible for the large
RMSE. Station no. 13 (Bayinbrook) is in the hinterland of
the CTM in the Kaidu River valley. The elevation difference
between the site and the ERA-Interim grid is 383 m, which
partly accounts for the large RMSE. Station no. 15 (Turfan) is
in a basin on the southern hillside of the CTM at an elevation
of only 35 m. The ERA-Interim grid height (1115 m) is much
higher than the site, which may lead to a large bias. Figure 2
shows the comparison of observational and original ERA-
Interim temperature data at station nos. 10, 24, 9, and 15. The
ERA-Interim estimates both lower and higher temperatures
quite well at station nos. 10 and 24 (Fig. 2a and b). The ERA-
Interim underestimates observations for station nos. 9 and 15
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Table 3. Comparison of the original and corrected ERA-Interim temperature with daily observations. The NSE, PDF-based skill score, and
RMSE in ◦C are listed.

ID NSE RMSE PDF-based skill score

original correction original correction original correction

1 0.92 0.94 3.61 3.07 0.82 0.90
2 0.93 0.92 3.89 4.32 0.83 0.89
3 0.95 0.96 3.47 2.95 0.84 0.92
4 0.93 0.92 4.23 4.75 0.81 0.87
5 0.97 0.96 2.81 3.01 0.88 0.89
6 0.89 0.96 3.86 2.25 0.86 0.94
7 0.94 0.95 2.58 2.32 0.89 0.91
8 0.89 0.96 4.57 2.61 0.79 0.87
9 0.46 0.82 7.76 4.47 0.67 0.76
10 0.96 0.98 2.35 1.83 0.92 0.93
11 0.93 0.96 3.68 2.82 0.88 0.92
12 0.94 0.97 3.33 2.32 0.88 0.95
13 0.78 0.69 6.65 7.80 0.71 0.75
14 0.92 0.97 3.39 2.27 0.85 0.93
15 0.71 0.94 7.69 3.45 0.76 0.92
16 0.95 0.93 2.61 3.14 0.92 0.86
17 0.96 0.98 2.53 1.53 0.93 0.95
18 0.93 0.98 3.17 1.63 0.90 0.95
19 0.92 0.98 3.39 1.78 0.88 0.97
20 0.94 0.97 3.19 2.32 0.89 0.93
21 0.92 0.98 4.19 2.02 0.86 0.98
22 0.95 0.97 2.49 2.03 0.89 0.93
23 0.96 0.98 2.56 2.00 0.93 0.94
24 0.97 0.98 2.05 1.60 0.94 0.96
Average 0.90 0.94 3.75 2.85 0.86 0.91

Figure 2. Scatter plots of observation and original ERA-Interim
temperature data for (a) station no. 10, (b) station no. 24, (c) station
no. 9, and (d) station no. 15. The corresponding RMSEs can be
found in Table 3.

because of their higher grid elevation, particularly for higher
temperatures (Fig. 2c and d).

The PDF-based skill score ranges from 0.67 to 0.94 with
an average of 0.86 for all stations. Four stations (nos. 8, 9,
13, and 15) have skill scores less than 0.8. The highest skill

score is found at station no. 24, while the smallest is found
at station no. 9. Figure 3 shows greater detail particularly in
terms of the temperature bins of the PDFs, which could help
to easily identify how well ERA-Interim estimates lower and
higher temperatures. For station no. 10, the original ERA-
Interim captures the shape of the observed PDF very well,
particularly in the range of 0–15 ◦C. In the range of −10–
0 ◦C and higher than 20 ◦C, the observed probability is higher
than that of the original ERA-Interim. However, the prob-
ability of the original ERA-Interim is higher than that for
observations at lower temperatures (<−10 ◦C). For station
no. 24, the original ERA-Interim fits the shape of the ob-
served PDF very well nearly for the entire temperature range.
It only has a lower probability for temperatures lower than
−10 ◦C. For higher temperatures (> 20 ◦C), the probability
of the original ERA-Interim is slightly higher than that for
observation. For station no. 9, the shape of the PDF from
original ERA-Interim is higher (higher probability) for the
temperatures lower than 12 ◦C and is lower (lower probabil-
ity) for the temperatures higher than 12 ◦C compared to the
observed PDF. For station no. 15, the original ERA-Interim
does not generally match the shape of observed PDF. The
probability of the original ERA-Interim is much higher than
that for the observational data for temperatures cooler than
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Figure 3. Probability density functions for observation, original ERA-Interim, and corrected ERA-Interim for (a) station no. 10, (b) station
no. 24, (c) station no. 9, and (d) station no. 15. The corresponding PDF-based skill score can be found in Table 3.

approximately 25 ◦C, while it is much lower than that of the
observational data for higher temperatures (> 25 ◦C). The
aforementioned analysis indicates that although the original
ERA-Interim captures the temporal variation in the observa-
tions very well, the large RMSE and poor performance for
extreme temperatures suggest that a correction process of
ERA-Interim is necessary for application at individual sites.

4.2 Temporal variability of lapse rates

Lapse rate shows the empirical relationship between temper-
ature and altitude. However, it significantly changes over a
short time and distance, particularly in a valley during win-
ter, in which the lapse rate could reverse (Li et al., 2015). Pre-
vious studies (Gao et al., 2012, 2017) have tested the ERA-
Interim internal lapse rates in the German and Swiss Alps as
well as on the Tibetan Plateau. The results showed that in
general the internal lapse rates could capture the variability
in the observed lapse rates, although the performances were
different for the different grid cells (large spatial variation).
To illustrate the reliability of the ERA-Interim lapse rates
in the CTM, 0700_925 was calculated to compare to the ob-
served lapse rate for the 24 sites. In previous studies (Gao et
al., 2012, 2017), the observed lapse rate was calculated from
two or three sites within the same ERA-Interim grid. Unfor-
tunately, the sparse station distribution cannot support this
calculation in the CTM. Thus, we investigate the lapse rate
based on the temperature and elevational information from
all 24 sites using a linear regression from 1979 to 2013. To
ensure the site elevations (ranging from 35 to 2458 m) are in
accordance with the ERA-Interim pressure height, 0700_925

was calculated using the temperature and geopotential height
at the 925 hPa (∼ 150 m) and 700 hPa (∼ 3000 m) pressure
levels. Subsequently, the monthly lapse rates for the observa-
tional and ERA-Interim data from 1979 to 2013 were calcu-
lated, respectively.

Figure 4 shows the temporal variability in the monthly
lapse rates. In general, ERA-Interim (0700_925) has a higher
temperature gradient than that of the observation for the
whole year. However, 0700_925 captures the variability in ob-
served lapse rate very well, particularly during the warmer
months (May to August). The inter-monthly variability in the
observed lapse rate is much higher than 0700_925, particularly
from September to January. The temperature gradient signif-
icantly decreases from September onward, which represents
the transition month from a warm to cold climatic regime.
The temperature gradient significantly increases from March
onward, which represents a climatic regime transfer from
cold to warm conditions. Table 4 shows the average monthly
lapse rates for all 24 sites during the period of 1979–2013.
The lapse rate differences are small (less than 0.5 ◦C km−1)
from May to August, while the differences are greater than
1 ◦C km−1 from September to December and during January.

In order to evaluate the intra-seasonal variations of lapse
rate, the correlation between observed and modeled lapse
rates for each month and season were analyzed (Table S4).
The correlation ranges from 0.25 to 0.74 with an average of
0.45. The seasonal correlation is 0.62, 0.43, 0.41, and 0.32
for spring, summer, autumn, and winter, respectively. Except
for April, May, and September, the correlation is lower than
0.5 for other months. Only spring has a higher correlation
than 0.6 compared to other seasons. Although, the correla-
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Figure 4. Box plots of monthly lapse rates for observation and
ERA-Interim (0700_925). Thick horizontal lines in boxes show the
median values. Boxes indicate the inner-quantile range (25 % to
75 %) and the whiskers show the full range of the values.

tion is at a low level, it does not mean that the lapse rate of
ERA-Interim does not work. There are several reasons for
the nonsignificant statistical correlation. Firstly, the observed
lapse rate was from the linear regression based on 24 sites.
Secondly, the time series is only 35 years, which is relatively
short for a temporal correlation analysis. The best way to
compare observed and model lapse rate is the approach in
Gao et al. (2012, 2017), which compared the two lapse rates
in the same ERA-Interim grid cell. However, this analysis
further indicates that more observations are really needed for
evaluation.

4.3 Validation of corrected ERA-Interim temperature
data

The average correlation coefficient changes from 0.986 to
0.987 for all stations (not shown here) with respect to the
original and corrected ERA-Interim temperature data. Ta-
ble 3 shows a comparison of corrected ERA-Interim 2 m tem-
perature with daily observations from 24 meteorological sta-
tions. The NSE for the corrected ERA-Interim ranges from
0.69 to 0.98 for all sites. The average NSE enhances by 5 %
from 0.90 to 0.94. The NSE significantly increases from 0.46
to 0.82 for station no. 9 and from 0.71 to 0.94 for station
no. 15. Applying the elevation correction framework does not
lead to an increased NSE at station nos. 2, 4, 5, and 13, par-
ticularly for station no. 13 (Bayinbrook). This indicates that
other factors also affect the temperature changes, not only
altitude. The RMSE of the corrected ERA-Interim changes
is from 1.53 to 7.80 ◦C. An average 0.9 ◦C (24 %) RMSE
is reduced from 3.75 to 2.85 ◦C. The RMSE reduces at all
sites except nos. 2, 4, 5, 13, and 16. The RMSE increases ap-
proximately 0.5 ◦C for station nos. 2, 4, 5, and 16. RMSE in-
creased by 1.15 ◦C for station no. 13. RMSE reduced by 42 %
and 55 % for station nos. 9 and 15, respectively. A total of 16
out of the 24 sites have RMSEs lower than 3.0 ◦C following

Table 4. Average monthly lapse rates (◦C km−1) for the 24 sites in
1979–2013.

Month observation 0700_925

January −2.79 −4.00
February −4.01 −4.81
March −5.42 −5.96
April −6.14 −6.90
May −6.92 −7.35
June −7.55 −7.52
July −7.48 −7.49
August −6.95 −7.40
September −5.93 −7.10
October −4.86 −6.27
November −3.94 −4.95
December −2.88 −3.88

the correction process. Figure 5 shows a comparison of ob-
servational and corrected ERA-Interim temperature data at
station nos. 9, 10, 15, and 24. The scatter plot shows a slight
improvement (for higher temperature) at station nos. 10 and
24 compared to the original ERA-Interim data (Figs. 2 and
5). However, the scatter plot is more concentrated along the
1 : 1 line for station no. 9 and particularly no. 15 (Fig. 5c and
d), which suggests that the correction procedure works well
at these two stations.

Temperature significantly varies during different seasons
and different times of the day because of complex topogra-
phy. For example, during the winter nights, the lapse rate pos-
sibly reverses (local inversion) from the bottom of the valley
to the high mountains because of a “cold lake” (Gerlitz et al.,
2014). To identify the limitations for end users, we tested the
seasonal bias using the 24 sites. Table 5 shows the RMSE of
the seasonal mean temperatures between the original ERA-
Interim and corrected temperatures for all sites. The RMSE
for spring ranges from 0.26 to 4.22 ◦C with an average of
1.24 ◦C. The performance for summer and autumn is simi-
lar at an approximately 1.4 ◦C RMSE. Winter has the largest
average RMSE (2.96 ◦C) during the year. Different stations
show significantly different performance. For example, sta-
tion no. 13 shows the largest RMSE for winter and the small-
est RMSE for summer. Station no. 9 shows the opposite per-
formance, in that the summer has the largest RMSE (5.47 ◦C)
while the winter has the smallest RMSE (2.32 ◦C). This fur-
ther illustrates that the complex terrain of the CTM leads to
complexity and diversity in climate. In general, the warmer
season (May to September) is much better than the colder
months.

The average PDF-based skill score increases from 0.86
to 0.91 for all stations (Table 3). The correction results
show better probability distribution functions compared to
the original ERA-Interim for all stations except no. 16
(Baicheng). Although five stations have increased RMSEs,
the PDF-based skill score enhances at four of the five stations
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Figure 5. Scatter plots of observation and corrected ERA-Interim
temperature data for (a) station no. 10, (b) station no. 24, (c) station
no. 9 and (d) station no. 15. The corresponding RMSE can be found
in Table 3.

(station nos. 2, 4, 5, and 13). This indicates that the correction
procedure reduces the PDF discrepancy between the original
ERA-Interim and observational data. Figure 3 shows more
details regarding correction performances for the four repre-
sentative stations. For station no. 10, the PDF curve of the
corrected ERA-Interim shifts right compared to that of the
original, and it perfectly fits with observed PDF in a range of
temperatures lower than −8 ◦C. The probability of the cor-
rected ERA-Interim is less than that of the observation at
temperatures between −8 and 22 ◦C (Fig. 3a). For station
no. 24, the PDF shape of the corrected ERA-Interim shifts
slightly left against the original and fits the observed PDF
much better for temperatures higher than 0 ◦C (Fig. 3b). For
station no. 9, the probability of the corrected ERA-Interim
is much higher than that of the observed temperature at a
temperature lower than 15 ◦C, particularly in the range of
0–15 ◦C. It performs better than the original ERA-Interim
for higher temperatures (> 15 ◦C). A much better agreement
between the PDF curves of the corrected ERA-Interim and
observational data is found at station no. 15 (Fig. 3d). The
probability of the corrected ERA-Interim is much nearer the
observational data compared to that of the original ERA-
Interim in the range of 15–35 ◦C. The correction procedure
reduces a significant PDF discrepancy for station no. 15,
which lies at a lower elevation (35 m). The validation sug-
gests that the correction method is generally reliable and it
could significantly reduce the RMSE and PDF discrepancy
for most of the stations, although it does not perform well for
some individual sites.

In order to evaluate whether the elevation correction ap-
proach captures important characteristics and processes in
similar environments, the 24 sites were divided into 5 groups
in different elevation ranges: 0–500 m (nos. 2, 3, 4, 15,
21), 500–1000 m (nos. 5, 6, 8, 11, 12, 17, 19, 23), 1000–
1500 m (nos. 1, 10, 14, 16, 18), 1500–2000 m (nos. 7, 9,

Table 5. RMSEs of seasonal temperatures between the original
ERA-Interim and corrections for the 24 sites in 1979–2013.

ID Spring Summer Autumn Winter

1 1.33 0.67 1.61 3.70
2 1.99 2.63 3.18 5.32
3 0.57 0.66 1.17 4.24
4 1.56 0.89 2.47 7.69
5 1.38 1.79 1.49 4.02
6 0.47 1.63 0.96 1.16
7 0.89 1.42 1.78 0.64
8 0.40 1.88 0.60 3.14
9 4.22 5.47 3.65 2.32
10 0.84 1.62 0.85 0.91
11 1.78 1.28 2.07 3.61
12 1.02 0.78 0.52 1.84
13 3.22 0.42 3.23 12.80
14 0.54 1.00 0.69 2.84
15 2.04 0.95 0.95 2.67
16 0.83 2.76 2.38 3.32
17 0.51 1.20 0.74 0.71
18 1.03 0.85 0.49 0.72
19 1.36 0.71 1.02 0.61
20 1.11 1.65 1.05 1.77
21 0.26 0.58 0.58 1.57
22 0.63 0.62 0.89 2.63
23 0.48 1.70 1.54 1.25
24 1.24 0.71 0.72 1.59
Average 1.24 1.41 1.44 2.96

20, 22, 24), and 2000–2500 m (no.13). The averaged NSE,
RMSE, and PDF-based skill scores for different elevation
groups were analyzed. Table S2 shows the averaged NSE,
RMSE, and PDF-based skill scores between the original and
corrected ERA-Interim temperatures for different elevation
groups. Except the highest elevation group (2000–2500 m),
NSE enhances and RMSE decreases significantly after ele-
vation correction for other groups. However, it is arbitrary to
judge that the correction method does not work for higher
elevation sites. There are two main possible reasons. Firstly,
there is only one site in this group (no. 13), which is not
enough to evaluate the performance of correction method.
Actually, Gao et al. (2012) showed that the higher sites (e.g.,
Zugspitze site, 2964 m) were better compared to the ground
site. Secondly, the local topographical characteristics may af-
fect the temperature changes at site no. 13. Table S3 shows
the averaged RMSEs of seasonal temperatures between the
original ERA-Interim and corrections for different elevation
groups. Winter has the largest RMSE for the sites lower than
1500 m. These three groups applied the lapse rate 0850_925.
RMSEs are relatively smaller than 1.5 ◦C for these sites in
spring, summer, and autumn. The group of 1500–2000 m has
RMSEs lower than 2 ◦C for the seasons. Again, the highest
group (no. 13) has the largest RMSE for spring, autumn, and
especially winter. However, it has the best performance for
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Table 6. Climatology of the entire CTM based on corrected ERA-Interim temperatures (1 km, 6-hourly, 1979–2016) and daily observations
(daily, 1979–2013, ◦C).

1 % quantile 5 % quantile 95 % quantile 99 % quantile Mean

Corrected ERA-Interim −20.6 −15.5 25.9 29.5 6.0
Observation −23.2 −15.0 27.2 31.4 7.8

summer. Table 4 and Fig. 4 have shown an almost perfect
lapse rate against observation. However, the mechanism of
temperature changes in the winter should be further investi-
gated.

4.4 Climatology of the Chinese Tian Shan based on the
high-resolution data set

The low density of meteorological stations in the CTM may
lead to uncertainty in the representation of the entire area’s
temperature climatology. Interpolation also carries a risk in
representing the climatology because it is based on meteoro-
logical stations. Here, the entire area’s climatology was in-
vestigated using the corrected high-resolution data set from
1979 to 2016. Quantile temperature is more reliable than
absolute minimum and maximum temperatures if an out-
lier exists. Thus, the 1 % quantile and 99 % quantile of the
long-term series were selected to represent the extreme cold
and hot temperatures, respectively. Figure 6 shows a new
comprehensive climatology of the extreme low temperature
over the CTM based on the corrected ERA-Interim temper-
ature data. The 1 % quantile temperature ranges from −49
to −12 ◦C, which is consistent with the topography. The
lower temperatures could be found at the Borokoonu, Bogda,
and Khark mountains. The extreme cold temperatures (<
−40 ◦C) are on the Tomur, Bogda, and Tianger peaks. The
higher temperatures could be found in the Ili River valley
and Junggar, Turfan, Hami, and Tarim basins. The extreme
hot temperatures are found at the border of the Ili River val-
ley and the western Tarim Basin.

Figure 7 shows the 99 % quantile temperature which repre-
sents the extreme warm temperature in the CTM. The Turfan
Basin and Hami Basin are the hottest areas over the entire
CTM. The highest temperature can reach 45 ◦C. The tem-
perature in the high mountain areas such as Tomur Peak and
Bogda Peak can be higher than 0 ◦C. The minimum temper-
ature of the 99 % quantile is approximately −3 ◦C. Figure 8
shows the mean temperature in the CTM. The temperature
ranges from −25 to 16 ◦C. The mean temperature distribu-
tion is consistent with extreme cold and hot temperatures. It
suggests that the topography has a significant impact on tem-
perature.

Table 6 illustrates a climatological comparison for the
entire CTM using corrected ERA-Interim temperature and
24 stations. The 1 % and 5 % quantile were selected to repre-
sent the colder temperatures while the 95 % and 99 % quan-

tiles for the higher temperatures. Please note that these two
data sets (corrections and observations) have different spatial
resolution and time series and thus sample numbers. How-
ever, this does not affect the general climatological compari-
son very much. The new data set underestimates the observa-
tions except for the 1 % quantile, which suggests that it may
be warmer than the observation during the cold season. Only
a 0.5 ◦C difference was found between the two data sets for
the 5 % quantile. Temperatures of 1.3, 1.9, and 1.8 ◦C were
the underestimates by the new data set for the 95 % quantile,
95 % quantile, and mean temperature, respectively. It can be
concluded that the new data set could generally capture the
climatology of the entire CTM, particularly for warmer tem-
peratures. Some researchers are more interested in maximum
and minimum temperatures rather than 1 % and 99 % quan-
tiles. Thus, the figures for spatial distribution of the maxi-
mum and minimum temperatures over the CTM are also pro-
vided in the Supplement (Figs. S2 and S3).

4.5 Trends of the annual and seasonal Tmax, Tmin, and
diurnal temperature range (DTR) in the CTM

Previous studies have shown that the elevation dependent
warming trend and the spatial and seasonal variations in the
diurnal temperature range are very important features for an
alpine climate (Gerlitz, 2014; Gerlitz et al., 2014; Sun et al.,
2018; Shekhar et al., 2018). To better illustrate the limita-
tions of the new data set, the daily maximum temperature
(Tmax), daily minimum temperature (Tmin), and diurnal tem-
perature range (DTR) from the original ERA-Interim and the
corrected temperatures for the 24 sites during the period of
1979–2013 were analyzed.

The warming trends of observation, original ERA-Interim,
and correction temperatures for the 24 sites during the pe-
riod of 1979–2013 were compared (Fig. 9, Table 7). The
original ERA-Interim significantly underestimated (approx-
imately 2 ◦C) the observations. However, the corrections
overestimated by approximately 1 ◦C. An annual warming
trend with an increase rate of 0.420 ◦C 10 a−1 was found
for the observation. Generally, the original ERA-Interim and
corrected temperatures capture the warming trend very well
with a rate of 0.378 and 0.349 ◦C 10 a−1, respectively. Ta-
ble 7 shows the trends in seasonal temperatures for the
24 sites during the period of 1979–2013. Spring has the
largest positive trend with a rate of 0.664 ◦C 10 a−1. The orig-
inal ERA-Interim and corrected temperatures captured the
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Figure 6. The 1 % quantile temperature of the entire CTM based on the high-resolution data set.

Figure 7. The 99 % quantile temperature of the entire CTM based on the high-resolution data set.

warming trends for spring quite well with a rate of 0.659 and
0.638 ◦C 10 a−1, respectively. The correction temperatures
showed better performance than the original ERA-Interim
during summer. However, the ERA-Interim and corrections
both underestimated the trend with nearly the same rate for
the autumn trend. Unfortunately, the slight positive warm-
ing trend during winter is not captured by the original ERA-
Interim and correction temperatures. These two data sets
show similar negative trends.

Figure 10 shows the temporal variations in Tmax for the
24 sites during the period of 1979–2013. The bias of ERA-
Interim is approximately 4 ◦C compared to that of the obser-
vations. The corrections have a bias of less than 2 ◦C. The
variations are consistent with the similar warming trend. Ta-
ble 8 shows the trends for seasonal Tmax for the 24 sites dur-
ing the period of 1979–2013. In general, the original ERA-
Interim and corrections capture the warming trend quite well

Table 7. Trends (◦C 10 a−1) of annual and seasonal temperatures
over the 24 sites in 1979–2013.

Annual Spring Summer Autumn Winter

observation 0.420 0.664 0.432 0.532 0.018
ERA-Interim 0.378 0.659 0.530 0.448 −0.153
correction 0.349 0.638 0.478 0.443 −0.195

(∼ 0.370 ◦C 10 a−1). Observational data have the largest pos-
itive trend during spring with a rate of 0.693 ◦C 10 a−1, fol-
lowed by autumn (0.528 ◦C 10 a−1). The warming trends are
slightly overestimated by ERA-Interim and corrections dur-
ing the summer. The original ERA-Interim and corrections
capture the negative trend for winter, but at a higher magni-
tude than that of the observations.
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Figure 8. Mean temperature of the entire CTM based on the high-resolution data set.

Figure 9. Temporal variations of annual temperatures for observation, original ERA-Interim, and the correction temperatures for the 24 sites
in 1979–2013.

Table 8. Trends (◦C 10 a−1) of annual and seasonal Tmax over the
24 sites in 1979–2013.

Annual Spring Summer Autumn Winter

Observation 0.370 0.693 0.397 0.528 −0.176
ERA-Interim 0.367 0.741 0.468 0.478 −0.262
Correction 0.379 0.767 0.461 0.507 −0.261

Figure 11 demonstrates the temporal variations in Tmin for
the 24 sites during the period of 1979–2013. The original
ERA-Interim agrees with the observations very well at less
than 1 ◦C. The corrections have a bias of approximately 2 ◦C
compared to the observations. The original ERA-Interim and
corrections underestimate the observed warming trend. Ta-
ble 9 shows the specific values of the trends for seasonal Tmin
for the 24 sites during the period of 1979–2013. In general,
the original ERA-Interim and corrections capture the warm-

Table 9. Trends (◦C 10 a−1) of annual and seasonal Tmin over the
24 sites in 1979–2013.

Annual Spring Summer Autumn Winter

Observation 0.547 0.700 0.578 0.661 0.209
ERA-Interim 0.338 0.479 0.519 0.409 −0.084
Correction 0.344 0.493 0.505 0.439 −0.093

ing trends for spring, summer, and autumn with lower rates,
particularly for spring and autumn (Table 8). Observational
data have the largest positive trend during spring with a rate
of 0.700 ◦C 10 a−1, followed by autumn (0.661 ◦C 10 a−1).
The observed warming trend for winter is positive with a rate
of 0.209 ◦C 10 a−1. However, the ERA-Interim and correc-
tions did not capture the positive trend.

Figure 12 demonstrates the temporal variations in DTR
for the 24 sites during the period of 1979–2013. The origi-
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Figure 10. Temporal variations of Tmax from observation, original ERA-Interim, and correction temperatures for the 24 sites in 1979–2013.

Figure 11. Temporal variations of Tmin from observation, original ERA-Interim, and correction temperatures for the 24 sites in 1979–2013.

nal ERA-Interim has a bias greater than 3 ◦C DTR compared
to that of the observations. The corrections reduce the DTR
bias nonsignificance. The original ERA-Interim and correc-
tions did not capture the significant decreasing trend of the
DTR. Table 10 shows the specific values of the trends for
seasonal DTR for the 24 sites during the period of 1979–
2013. Decreasing trends are observed for annual and for
seasonal DTR. Winter shows the largest decreasing rate at
−0.384 ◦C 10 a−1. Spring shows an nonsignificant decreas-
ing trend (−0.001 ◦C 10 a−1), which may result from the sig-
nificant increasing rate of Tmax. The original ERA-Interim
and corrections capture the decreasing trends for summer and
winter at smaller rates. However, they capture opposite trends
for spring and autumn, particularly for spring (Table 10).
The main reason is that the increasing rates for spring Tmin
are significantly underestimated by the original ERA-Interim
and corrections (Table 9).

We would like to emphasize that we compared the DTR
to the 24 observations rather than over the whole CTM. An
analysis of the Tmax, Tmin, and DTR shows that the correc-
tions can generally capture the annual trend, although not
well at a seasonal scale. However, it is true that we need more

Table 10. Trends (◦C 10 a−1) of annual and seasonal DTR over the
24 sites in 1979–2013.

Annual Spring Summer Autumn Winter

Observation −0.177 −0.001 −0.181 −0.132 −0.384
ERA-Interim 0.029 0.262 −0.052 0.069 −0.178
Correction 0.036 0.274 −0.044 0.068 −0.168

observations to validate the performance of the new data set
on DTR and spatial variations at local scales. At present, we
are collecting more local observations from the CMA, partic-
ularly for specific subregions (for example, the Kaidu River
basin) of interest to researchers.

5 Data availability

The data set presented in this article is published
in the Network Common Data Form (NetCDF) at
https://doi.org/10.1594/PANGAEA.887700 (Gao, 2018).
The coverage of the data set is 41.1814–45.9945◦ N,
77.3484–96.9989◦ E. The grid point was derived from an
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Figure 12. Temporal variations of DTR from observation, original ERA-Interim and correction temperatures for the 24 sites in 1979–2013.

SRTM DEM, which was resampled from 90 m to 1 km.
The total number of grid points is 818 126. The time
step is 6-hourly at 00:00, 06:00, 12:00, and 18:00 UTC.
The time series is from 1979 to 2016. To reduce the size
of each file, the grid points (818 126) are divided into
41 groups. Thus, each nc file contains 20 000 grid points,
which is according to the grid point ID (see grid_points.nc).
The time series also is divided into 5 years. The nc file
name specifically shows the data information. For exam-
ple, t2m_1979_1984_1_20000.nc means t2m_“beginning
year”_“ending year”_“beginning grid point”_“ending grid
point”.nc. The total number of nc files is 288. The disk usage
of the data set is approximately 187 GB. Users can access the
data via the DOI link to the PANGAEA web page (view data
set as HTML under the Download Data item) by completing
the following steps. (1) Download the grid_points.nc file,
and then select the grid points for the target study area
according to the coordinates. For example, a study area
covers grid point IDs from 200 to 1000 and 14 000 to
25 000. The time series is supposed to be 1985 to 1989.
(2) Download the data files t2m_1985_1989_1_20000.nc
and t2m_1985_1989_20001_40000.nc. (3) Extract the tem-
perature data according to the grid point IDs. (4) Analyze
the data and plot figures. The data set that is organized in a
monthly format (each month with all points in one nc file)
will be accessible at PANGAEA in the future.

ERA-Interim data were supported by the ECMWF (https:
//www.ecmwf.int/en/forecasts/datasets/archive-datasets/
reanalysis-datasets/era-interim/, last access: 16 Novem-
ber 2018). The meteorological data have been provided
by China Meteorological Data Sharing Service Sys-
tem of the National Meteorological Information Center
(http://data.cma.cn/, last access: 16 November 2018). The
7 out of 24 sites for global exchange are provided by
CMDC (http://data.cma.cn/en/?r=data/detail&dataCode=
SURF_CLI_CHN_MUL_DAY_CES_V3.0, last access:
16 November 2018).

6 Discussion and conclusion

Although the average temporal correlation (R = 0.986) be-
tween the ERA-Interim and observations over the CTM is en-
couraging, an average RMSE of 3.75 ◦C suggests that a cor-
rection process for ERA-Interim data is needed. Many factors
may lead to errors, such as assimilated observational errors,
the model background and operator errors in the ECMWF
system. However, previous studies have shown that the ele-
vation difference between the ERA-Interim grid and the in-
dividual site is a key factor for errors in high mountains such
as the European Alps and on the Tibetan Plateau (Gao et al.,
2012, 2014a, 2017). Therefore, it is possible to reduce such
errors as well as correct (downscale) the grid value to a finer
local scale using elevation-based methods.

Gao et al. (2012, 2017) claimed that the elevation correc-
tion method based on ERA-Interim internal, vertical lapse
rates outperformed several conventional methods such as the
use of fixed monthly lapse rates and observed lapse rates
from meteorological stations in the European Alps and on
the Tibetan Plateau. The performances were similar to the
internal ERA-Interim vertical lapse rates derived from differ-
ent pressure levels in the European Alps (Gao et al., 2012).
Among these methods, using the lapse rate calculated from
the pressure levels covering the highest and lowest meteoro-
logical stations has proven to be more accurate on the Tibetan
Plateau (Gao et al., 2017). The most prominent advantage
is that this method is fully independent from the observed
data. Therefore, it provides a possibility to extrapolate ERA-
Interim temperature data to any other high mountainous areas
where no measurements exist.

Based on this hypothesis, the 0.25◦× 0.25◦, 6-hourly
ERA-Interim 2 m temperature data were corrected (down-
scaled) to a 1 km grid from 1979 to 2016 in the CTM, where
there is serious lack of long-term temperature observations.
To our knowledge, the presented data are the first data set
(version 1.0) with high spatiotemporal resolution over such
a long-term series for this region. To evaluate the quality of
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the new data set, observations from 24 meteorological sta-
tions were used for comparison. The average NSE was en-
hanced by 5 % from 0.90 to 0.94, and the average 0.9 ◦C
(24 %) RMSE was reduced from 3.75 to 2.85 ◦C. The aver-
age PDF-based skill score increased from 0.86 to 0.91 after
correction for all test sites. Except for a few sites, the correc-
tion method showed good performance for most of the sites,
particularly for the site in the valley (no. 16 Baicheng). The
PDF shape of the new high-resolution grid data fits the ob-
served PDF much better in comparison to that of the original
ERA-Interim temperature data. The validation indicates that
the correction method is reliable and the RMSE and PDF dis-
crepancy is significantly reduced for most stations.

The new data set captures the climatology of the entire
CTM very well. It seizes the distribution characteristics, such
as high temperature in the river valleys and basins and low
temperature on the peaks. The bias is only 1.8 ◦C between the
corrected and observational values. Except for extreme cold
temperatures, the new data set has a bias of less than 2 ◦C
compared to observations. In general, the corrected data set
is appropriate for climate impact assessment and has the po-
tential to be used for hydrological and environmental model-
ing. In general, the corrections capture the warming trend of
annual mean temperature well (0.349 ◦C 10 a−1) compared
to the observations (0.420 ◦C 10 a−1), except during winter.
The corrections capture the Tmax warming trend best for the
annual and seasonal temperatures (∼ 0.370 ◦C 10 a−1). How-
ever, the new data set underestimates the Tmin trend com-
pared to the observations, particularly the opposite trend dur-
ing winter. It also fails to reproduce the DTR trend for an-
nual, spring, and autumn with a reverse trend. This indi-
cates that the temperature significantly changes during win-
ter. A temperature inversion layer may occur during the win-
ter night in the valleys.

Certainly, some issues regarding the quality of the data set
as well as the validation should be addressed here. The main
hypothesis is that elevation plays the crucial role in temper-
ature changes. This means that the temperature changes fol-
low the lapse rate law in the vertical direction. However, in
the horizontal direction, microtopographical features, such
as aspect and mountain slope, possibly affect the tempera-
tures in a short time. Temperature can be significantly dif-
ferent on a shady slope and a sunny slope. The lapse rate
can sharply change or even inverse during the cold winter.
This might be the main reason for the failure of the correc-
tion method at some sites, particularly during winter (e.g.,
no. 16 Baicheng). Figures 10, 11, and 12 have shown that the
new data set still has a relatively large warm and cold bias
(around 2 ◦C) for Tmin and Tmax. The DTR is also underesti-
mated. The potential users should be careful if they want to
investigate the minimum and maximum temperature changes
for complex regions, especially for winter. At present, Tmin,
Tmax, and DTR are evaluated only at sites. The performances
at subregions will be investigated to explore the mechanisms
of local temperature changes with respect to microtopogra-

phy characteristics such as aspect and slope based on more
observations in the ongoing research. The grid height of the
data set was derived from an SRTM DEM, which was re-
sampled from 90 m to 1 km. As shown in Fig. 1, the highest
altitude from the resampled SRTM is approximately 7100 m,
which is approximately 300 m lower than the highest peak
(Mount Tomur, 7443.8 m) in the CTM. Therefore, DEM bias
may lead to a systematic error compared to observations. The
number of meteorological stations for validation here was
limited to 24. These stations are mainly in valleys and basins.
Thus, it is difficult to evaluate the credibility of the data set in
the high mountains where more glaciers occur. Other obser-
vational resources, such as remote-sensing data, are helpful
for further validation. We are attempting to collect and apply
more observations from the CMA to validate the new data
set. However, at present, we have used the best available. We
expect other researchers to validate our product using differ-
ent data resources. More validation and applications are wel-
come. Because of the limitation in computational resources
and the accessibility of data sources (only 6-hourly ERA-
Interim temperature data are open access to the public), the
resolution of this data set is limited to 6-hourly and 1 km grid
spacing. However, the current data set (∼ 187 GB) is huge to
process and store. The computational resource and disk us-
age of the data set will exponentially increase when the spa-
tiotemporal resolution increases. For such a huge amount of
data, storage and extraction are not convenient. Supercom-
puters and parallel computing are necessary in the future.
Higher resolution, more validation, and correction method
improvement (version 2.0) are topics of ongoing and future
research.

We admit that the data set is not particularly friendly at
present. We have attempted various means to make it easier
to use for the end user. For example, we bundled all points
together for a single year in a single NetCDF file, but it was
still more than 5 GB. A normal desktop cannot read it. If we
divided it into monthly or daily increments, the number of
files would be huge (456 files for monthly). Thus, we prefer
to provide the smaller parts with limited points and time se-
ries. The advantage is that potential users can download the
data points according to the boundary of a study area. It is
not necessary to download all data points. We are working
on version 2.0, which will be friendlier to users. The acces-
sibility of the data set (including data format) will also be
improved in version 2.0.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-10-2097-2018-supplement.
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