
Earth Syst. Sci. Data, 10, 19–26, 2018
https://doi.org/10.5194/essd-10-19-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Rainfall simulation experiments in the southwestern USA
using the Walnut Gulch Rainfall Simulator

Viktor Polyakov1, Jeffry Stone1, Chandra Holifield Collins1, Mark A. Nearing1, Ginger Paige2,
Jared Buono3, and Rae-Landa Gomez-Pond4

1Southwest Watershed Research Center, USDA-ARS, Tucson, AZ, USA
2Ecosystem Science and Management, University of Wyoming, Laramie, WY, USA

3Independent researcher: Ecohydrologist, Chennai, India
4School of Natural Resources, University of Nebraska, Lincoln, NE, USA

Correspondence: Viktor Polyakov (viktor.polyakov@ars.usda.gov)

Received: 26 July 2017 – Discussion started: 28 August 2017
Revised: 30 October 2017 – Accepted: 21 November 2017 – Published: 9 January 2018

Abstract. This dataset contains hydrological, erosion, vegetation, ground cover, and other supplementary in-
formation from 272 rainfall simulation experiments conducted on 23 semiarid rangeland locations in Arizona
and Nevada between 2002 and 2013. On 30 % of the plots, simulations were conducted up to five times during
the decade of study. The rainfall was generated using the Walnut Gulch Rainfall Simulator on 2 m by 6 m plots.
Simulation sites included brush and grassland areas with various degrees of disturbance by grazing, wildfire,
or brush removal. This dataset advances our understanding of basic hydrological and biological processes that
drive soil erosion on arid rangelands. It can be used to estimate runoff, infiltration, and erosion rates at a variety
of ecological sites in the Southwestern USA. The inclusion of wildfire and brush treatment locations combined
with long-term observations makes it important for studying vegetation recovery, ecological transitions, and the
effect of management. It is also a valuable resource for erosion model parameterization and validation.

The dataset is available from the National Agricultural Library at https://data.nal.usda.gov/search/type/dataset
(DOI: https://doi.org/10.15482/USDA.ADC/1358583).

1 Introduction

Soil erosion negatively impacts rangelands by impairing their
ability to produce biomass (Stavi et al., 2009; Yisehak et
al., 2013). The extent of this influence in comparison with
other environmental and anthropogenic factors is poorly un-
derstood. Preservation and sustainable management of semi-
arid ecosystems require good knowledge of the physical pro-
cesses involved in soil erosion and their interaction with plant
communities. The experimental data needed to generate this
knowledge are limited in time and space and often lacks the
ecological context in which they were gathered. Further, such
data are difficult and costly to acquire by instrumenting nat-
ural hydrological systems (Nichols, 2006).

Artificial rainfall experiments on small plots provide a rel-
atively quick and economical way to obtain necessary ero-
sion information in a controlled and replicable setting (Las-

celles et al., 2000; Parsons and Lascelles, 2000; Yakubu and
Yusop, 2017). Field experiments under simulated rainfall
have been conducted in the US since the 1930s using sta-
tionary sprinkler systems (Meyer and McCune, 1958). Later
simulators utilized a rotating boom design and V-jet nozzles
(Swanson, 1965), which enhanced uniformity and allowed
easier control of rainfall intensity. Further advancement came
with the development of a portable Walnut Gulch Rainfall
Simulator (WGRS) that featured improved spatial distribu-
tion of rainfall over a wider plot area, with rainfall energy
and drop sizes similar to those of natural events (Paige et al.,
2004).

The presented rainfall simulation data were collected by
the Southwest Watershed Research Center (SWRC) over the
period of 12 years (2002–2013) using a WGRS. The set
encompasses 272 simulation experiments conducted at 23
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Table 1. Summary of rainfall simulation sites.

Location Site MLRA Ecological Precipitation Vegetation Soil texture Plot Slope Simulation years
ID site (mm) type no. (%)

Audubon EM 41-3 Loamy Slope 300–400 perennial grass sandy loam 4 13.0 2002, 2003, 2004
Ranch PC 41-3 Loamy Upland 300–400 perennial grass gravelly loam 8 8.0 2002, 2003, 2004,

2006

Empire ER1 41-3 Loamy Upland 300–400 perennial grass gravelly loam 4 12.9 2003
Ranch ER2 41-3 Loamy Upland 300–400 perennial grass gravelly loam 8 12.9 2003, 2007, 2010,

2013
ER3 41-3 Loamy Upland 300–400 perennial grass gravelly loam 12 13.3 2005, 2006, 2009,

2013
ER4G 41-3 Loamy Upland 300–400 perennial grass gravelly loam 8 4.7 2006, 2010, 2013
ER4S 41-3 Loamy Upland 300–400 shrub gravelly loam 4 4.3 2006, 2007, 2010,

2013
ER5 41-3 Loamy Upland 300–400 perennial grass gravelly loam 4 6.3 2010

Porter PCE 28B Loamy Slope 400–500 juniper very gravelly loam 6 35.8 2009
Canyon PCW 28B Loamy Slope 400–500 juniper cobbly sandy loam 4 23.5 2009

San
Rafael

Ab 41-1 Loamy Upland 400–500 oak savanna gravelly loam 8 10.3 2003, 2004, 2005,
2007

Valley SA 41-1 Loamy Upland 400–500 oak savanna gravelly loam 8 16.1 2005, 2006, 2009
Ta 41-3 Clay Loam Upland 300–400 perennial grass very gravelly loam 8 25.4 2004, 2005, 2007
Wi 41-3 Loamy Upland 400–500 perennial grass gravelly loam 8 8.4 2006, 2007, 2010

WGEW K2 41-3 Loamy Upland 300–400 perennial grass gravelly fine sandy loam 8 10.8 2005, 2007, 2008,
2010, 2013

K3 41-3 Loamy Upland 300–400 perennial grass gravelly fine sandy loam 8 9.7 2008
CR 41-3 Limy Upland 300–400 shrub gravelly sandy loam 6 14.7 2009
LH1 41-3 Limy Upland 300–400 shrub gravelly sandy loam 6 15.8 2003, 2007
LH2 41-3 Limy Upland 300–400 shrub gravelly sandy loam 8 7.8 2008
LH3 41-3 Limy Upland 300–400 shrub gravelly sandy loam 4 8.4 2004

Young Yg1 38-1 Clay Loam Upland 500–600 perennial grass clay loam 8 12.7 2011
Yg2 38-1 Clay Loam Upland 500–600 perennial grass clay loam 8 8.8 2011, 2012
Yg3 38-1 Clay Loam Upland 500–600 treated juniper clay loam 8 5.2 2012

rangeland sites located in grassland, shrubland, juniper, and
oak savanna communities, many of which were affected by
wildfire, grazing, or brush and tree removal. The dataset con-
tains hydrological (runoff rate and flow velocity) and erosion
(sediment concentration and rate) measurements obtained
over a wide range (60 to 180 mm h−1) of rainfall intensi-
ties. Ground cover (vegetation, basal, litter, rock, soil) and
other supporting information are also provided. The dataset
is supplemented with photographs of individual plots and
landscapes. The compiled and organized dataset will facil-
itate better dissemination of information among researchers,
enabling further insights into soil erosion processes. It will
compliment a similar and ongoing effort by SWRC to docu-
ment long-term watershed-scale processes on arid rangelands
(Nichols et al., 2008; Stone et al., 2008).

Our objectives are to provide information on (a) basic ero-
sion processes and interactions between rainfall, runoff, infil-
tration, surface cover, and their spatial variability; (b) erosion
rates at different ecological sites; (c) the impacts of grazing,
brush treatment, wildfires, and ecological transitions on ero-
sion; (d) parameters for hydrological and erosion models and
their validation.

2 Experimental area

Twenty-three rainfall simulation sites were established
throughout Arizona and Nevada rangelands (Table 1; Ap-
pendix B in Stone et al., 2017). In Arizona the climate is
defined by the North American Monsoon (Adams and Com-
rie, 1997). Most precipitation is delivered by short-duration,
high-intensity convective storms that occur in July through
September. May and June are the driest months of the year.

Six sites were located at the Walnut Gulch Experimen-
tal Watershed (WGEW) in the upper San Pedro River
basin in southeastern Arizona in CRA (Common Resource
Area) 41.AZ3 (Chihuahuan–Sonoran Semidesert Grass-
lands). Mean annual temperature in the area is 17.7 ◦C.
The LH and CR sites are located on Limy Upland (site
ID R041XC309AZ) that dominate the western portion of
the WGEW. The representative soil series there are Lucky-
hill (coarse-loamy, mixed, superactive, thermic Ustic Haplo-
calcids) and McNeal (fine-loamy, mixed, superactive, ther-
mic Ustic Calciargids) very gravelly sandy loam (NRCS,
2003). The soil consists of approximately 39 % gravel, 32 %
sand, 16 % silt, and 13 % clay. Limy Uplands have enough
precipitation (290 mm yr−1) to support grass communities;
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however, the soils (coarsely textured and high in carbon-
ates) favor drought-tolerant shrubs, such as creosote (Lar-
rea tridentata (DC.) Coville) and whitethorn (Acacia con-
stricta Benth.). Grasses in this environment account for no
more than 30 % of biomass production, even less if the
area is grazed. Brush control measures on Limy Uplands
have a low chance of long-term success. The Kendall sites
(K2, K3) are located on Loamy Upland (R041XC313AZ).
The area receives an average of 345 mm of precipitation a
year. The soils there are a complex of Stronghold (coarse-
loamy, mixed, thermic Ustollic Calciorthids), Elgin (fine,
mixed, thermic, Ustollic Paleargids), and McAllister (fine-
loamy, mixed, thermic, Ustollic Haplargids) (NRCS, 2003).
Stronghold, a dominant soil, contains 67 % sand, 16 % silt,
and 17 % clay, with 79 % coarse fragments (> 2 mm). The or-
ganic carbon content of the soil surface (0–2.5 cm) is 1.1 %.
Desert bunchgrasses, such as black grama (Bouteloua eri-
opoda Torr.), side oats grama (B. curtipendula Torr.), three-
awn (Aristida sp.), and cane beard grass (Bothriochloa barbi-
nodis (Lag.) Herter) and forbs dominate the area. Some
shrubs and succulents are also present. The site has been af-
fected by a recent Lehmann love grass (Eragrostis lehman-
niana Nees) invasion (Moran et al., 2009; Polyakov et al.,
2010).

Six rainfall sites located on the historic Empire Ranch
northeast of Sonoita, Arizona, are also in CRA 41.AZ3 and
all are Loamy Uplands. Empire Ranch has been heavily
grazed in the past, although the timing and extent of graz-
ing is poorly documented. The annual precipitation at these
locations ranges between 300 and 400 mm yr−1. The soils are
gravelly loams and belong to the White House (fine, mixed,
thermic, Ustollic Haplargids) soil series (NRCS, 2003). They
were formed on alluvial fans and are characterized by a shal-
low A horizon underlain by deep argillic and calcic hori-
zons. Sites ER1, ER2, and ER5 have a historic climax plant
community (HCPC) dominated by beard grass (Bothriochloa
spp.), grama (Bouteloua spp.), love grass (Eragrostis spp.),
three-awn (Aristida spp.), and native forbs. ER3, ER4S, and
ER4G have a mesquite–native plant community. All Empire
Ranch sites were being grazed at the time of the experiments,
except for ER5 which has been an exclosure since the mid-
1980s. The ER2 site had a wildfire in 2000 and had heavy
grazing until the mid-2000s. The ER3 site burned in 2005
prior to rainfall simulation that year. The ER4S has estab-
lished mesquites on the plots, and the mesquites on ER4G
were mechanically removed in 2006 a month after rainfall
simulation. By 2010, the mesquite had resprouted and was
approximately 2 m tall. ER4S and ER4G are located in close
proximity to each other and share the same hydro-ecological
characteristics.

The San Rafael Valley and Audubon Ranch south of
Sonoita, Arizona, contained six simulation locations. SA and
Ab in San Rafael Valley are located in CRA 41.AZ1 (Mex-
ican Oak–Pine Forest and Oak Savannah) at 1550–1600 m
elevation in a 400–500 mm precipitation zone. Vegetation

there includes Emory oak (Quercus emoryi Torr.), Mexican
blue oak (Q. oblongifolia Torr.), Arizona white oak (Q. ari-
zonica Sarg.), and grama species (Bouteloua spp.). The eco-
logical sites in this area are Loamy Uplands (PC, Wi, Ab,
and SA), Loamy Slope (EM) and Clay Loam Uplands (Ta).
The San Rafael Valley is dominated by the White House
soil series. The soil on EM is Terrarossa (fine, mixed, su-
peractive, thermic Aridic Paleustalfs), and on PC it is Black-
tail (fine, mixed, superactive, thermic Calcidic Argiustolls).
The PC, EM, Wi, and Ta sites are grasslands dominated by
black grama (Bouteloua eriopoda Torr.), plains love grass
(Eragrostis intermedia Hitchc.), and cane bluestem (Both-
riochloa barbinodis (Lag.) Herter) with inclusion of native
forbs. All of the sites experienced recent wildfires: EM, and
PC in 2002, Ab in 2003, Ta in 2004, SA in 2005, and Wi in
2006. At all San Rafael Valley sites a set of natural (non-
burned) plots were established next to the burn sites as a
control. Grasslands were under a US Forest Service grazing
management plan during the time of the experiments.

Three experimental sites (Yg1, Yg2, and Yg3) were lo-
cated 9 km north of Young, Arizona, in Major Land Resource
Area (MLRA) 38 (Mogollon Transition Area) on Clay Loam
Upland (R038XC303AZ) (USDA, 2006). The average an-
nual precipitation in the area is 580 mm and the mean an-
nual temperature is 11 ◦C. Snow falls occasionally in winter.
The soil is Terrarossa clay loam (fine, mixed, superactive,
thermic Aridic Paleustalfs). It is deep and well drained with
> 1 % organic matter, has a well-developed argillic horizon
and can be easily compacted by livestock when moist. The
depth of soil freezing in the winter is 10–15 cm. Yg1 and
Yg2 sites are in HCPC state dominated by grama species
(Bouteloua sp.) (canopy cover of 40 to 60 %) and cool season
grasses. Mean annual production of aboveground biomass is
estimated at 1600 kg ha−1, and the effective rooting depth of
perennial grasses is 70 cm. The possible state and transition
model (STM) transition (with disturbance, invasion, or alter-
ation of fire regimes) is to juniper woodland. Wildfires in the
area occur every 10 to 15 years. Yg3 was in alligator juniper
woodland state. Juniper was mechanically removed at the site
a year prior to the 2012 rainfall simulation.

Two sites (PCE, PCW) were located in Nevada, 100 km
east of Fallon in MLRA 28B (central Nevada Basin and
Range) on Loamy Slopes (028BY113NV). The climate asso-
ciated with this site is semiarid, characterized by cold, moist
winters and warm, dry summers with large temperature vari-
ations. The driest period is from midsummer to mid-autumn.
Average annual precipitation is 400 mm. Mean annual air
temperature is 6 ◦C, and the freeze-free period averages
125 days. The soil at the site is the Tierney series (loamy-
skeletal, mixed, superactive, frigid Cumulic Haploxerolls). It
is formed in alluvium derived from mixed parent material,
is very deep and well drained, and has very low available
water capacity. The clay content averages 12 %, and rock
fragments are 35 % by volume. The dominant vegetation at
the site is bluegrass (Poa annua L.), mountain big sagebrush
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(Artemisia tridentata Nutt.), needle and thread (Hesperostipa
comata (Trin. & Rupr.) Barkworth), rubber rabbitbrush (Eri-
cameria nauseosa (Pall. ex Pursh) G. L. Nesom & Baird),
sedge (Cyperaceae spp.), and western wheatgrass (Pascopy-
rum smithii (Rydb.) Á. Löve). The fire return interval varies
from 15 to 25 years. Plants are readily killed in all seasons,
even by light severity fires. Overgrazing and the decline in
ecological conditions leads to an increase in big sagebrush
and a decline in understory plants.

3 Instrumentation

3.1 Water application

Rainfall was generated by a WGRS, a portable, computer-
controlled, variable-intensity simulator (Paige et al., 2004).
The WGRS can deliver rainfall rates ranging between 13 and
178 mm h−1 with a variability coefficient of 11 % across a
2 m by 6.1 m area. The estimated kinetic energy of simulated
rainfall was 204 kJ ha−1 mm−1, and the drop size ranged
from 0.288 to 7.2 mm. The simulator is equipped with a sin-
gle oscillating boom with four V-jet nozzles with an overlap-
ping spray pattern and a 50◦ sweep. The operating height of
the nozzles is 2.4 m above ground at 55 kPa water pressure.
The oscillations are controlled by a high-torque stepper mo-
tor that varies the speed of the nozzles, slower at the ends of
the oscillation and faster in the middle when the nozzles are
pointed directly down. This approach improves the unifor-
mity of the water application across the plot. The spray time
and sequence are controlled by three-way solenoids. A PC
and a controller are used to set up various rainfall programs.
A detailed description and the design of the simulator are
available in Paige et al. (2004). Prior to each field season the
simulator was calibrated over a range of intensities using a
set of 56 rain gages arranged on the plot in a rectangular grid.
During the experiments windbreaks were placed around the
simulator to minimize the effect of wind on rain distribution.
The general view of the simulator with windbreaks, runoff
flume, and control equipment is shown in Fig. 1.

During 93 simulations run-on flow was applied at the top
edge of the plot using a perforated pipe placed horizontally
over a narrow strip of cloth directly on the soil surface.
This arrangement ensured uniform initial sheet flow and pre-
vented localized scour. The purpose of run-on water appli-
cation was to simulate hydrological processes that occur on
longer slopes (> 6 m) where the upper portion of the slope
contributes runoff onto the lower portion. In a limited num-
ber of experiments, the run-on flow rate was unknown. In
these cases it was labeled as “rate1”, “rate2”, etc., in the data
file.

3.2 Runoff

The runoff rate from the plot was measured using a V-shaped
supercritical flume positioned at a 4 % slope and equipped

Figure 1. Walnut Gulch Rainfall Simulator.

with an electronic depth gage. Flow depth was recorded man-
ually and converted to flow rate using the following depth-to-
discharge relationship:

Q= ahb, (1)

where Q is discharge (L s−1), h is the flow depth in the flume
(mm), and a and b are calibration coefficients. The flume was
calibrated before every field season.

3.3 Flow velocity

Overland flow velocities on the plots were measured using
an electrolyte and fluorescent dye solution starting in 2006.
Two liters of the solution were uniformly applied on the sur-
face using a perforated PVC pipe placed across the plot 3.3 m
from the outlet. Dye moving from the application point to the
outlet was timed with a stopwatch. Electrolyte transport in
the flow was measured by resistivity sensors imbedded in the
edge of the outlet flume at the end of the plot. The data were
collected at 0.37 s intervals with real-time graphical output
using LoggerNet software and CR10X data logger by Camp-
bell Scientific. The maximum flow velocity (Vm, m s−1) was
defined as the velocity of the leading edge of the solution
and was determined from dye front. Mean flow velocity (Va,
m s−1) was calculated using mean travel time obtained from
the salt concentration breakthrough curve (Fig. 2) and the
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Figure 2. Breakthrough curve of electrolyte solution in runoff at
150 mm h−1 rainfall intensity.

following equation:

Ta =

te∑
i=ts

ci ti

te∑
i=ts

ci

, (2)

where ts is curve start time (s), te is curve end time or return to
baseline (s), ti is instantaneous time (s), and ci is normalized
conductivity.

3.4 Erosion

Sediment concentrations from the plots were determined
from 1 L runoff samples collected during each run. Sampling
interval time was variable and aimed to represent rising and
falling limbs of the hydrograph, any changes in runoff rate,
and steady-state conditions (a minimum of 3 samples). This
resulted in approximately 30 to 50 samples per simulation.
A coagulant solution was added to the samples to flocculate
and settle the sediments. After the settling, the excess wa-
ter was decanted and the sediments were dried at 105 ◦C.
Wet and dry samples were weighed, and sediment concen-
tration in the runoff samples was calculated gravimetrically.
Soil losses were determined from the combination of sedi-
ment concentration and discharge rates.

3.5 Vegetation and surface cover

Shortly before the simulations, plot surface and vegetative
cover was measured at 400 points on a 15 cm× 20 cm grid
using a laser and line-point intercept procedure (Herrick et
al., 2005). Vegetative cover was classified as forbs, grass,
and shrub. Surface cover was characterized as rock, litter,
plant basal area, and bare soil. These four metrics were fur-
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Figure 3. Typical hydrograph of a rainfall simulation run.

ther classified as protected (located under plant canopy) and
unprotected (not covered by the canopy).

In addition, plant canopy and basal gaps were measured on
the plots over three lengthwise and six crosswise transects.
These were reported as the sum and the average of all inter-
canopy and inter-basal spaces greater than 10 cm along the
transects.

4 Experimental procedure

Four to eight 6.1 m by 2 m replicated rainfall simulation plots
were established at each site (Mayerhofer et al., 2017). The
plots were bound by sheet metal borders hammered into the
ground on three sides. On the downslope side a collection
trough was installed to channel runoff into the measuring
flume. If a site was revisited, repeat simulations were always
conducted on the same long-term plots. In these cases the lat-
eral borders remained installed in the field, while at the top,
the border and runoff flume were removed to avoid obstruct-
ing natural runoff during the interim period.

The plots were classified as “burn” or “natural” (labeled
as “B” or “N” respectively in Appendix B). The burn plots
were established at six sites affected by wildfires that oc-
curred between 2000 and 2006. These plots were in various
stages of recovery during the experiments. The natural plots
had no recent documented wildfires. With the exception of
the Audubon Research Ranch burn plots were paired with
natural control plots located in close proximity at the same
site. At 53 plots (13 sites) rainfall simulations were repeated
up to 5 times in the following years (2002 through 2013) in
order to monitor post brush treatment, burn recovery, or eco-
logical site transition.

The experimental procedure was as follows. First, the plot
was subjected to 45 min long, 65 mm h−1 intensity simulated
rainfall (dry run) intended to create initial saturated condi-
tions that could be replicated across all sites. This was fol-
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Table 2. An example of rainfall simulation data organization.

Sediment Flow velocity

Run Run Precipi- Run-on Runoff Concentra- Discharge surface mean
Site Plot Plot Year Month Day type time tation flow discharge tion
ID condition no. (min) (mm h−1) (mm h−1) (mm h−1) (%) (g s−1) (m s−1) (m s−1)

ER2 N 1 2013 7 30 DRY 0 74 0 0 N/A 0.00 0.00 0.00
ER2 N 1 2013 7 30 DRY 6.33 74 0 0 N/A 0.00 0.00 0.00
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ER2 N 1 2013 7 30 DRY 40 74 0 9 0.28 0.09 N/A N/A
ER2 N 1 2013 7 30 DRY 45 0 0 9 0.16 0.05 N/A N/A
ER2 N 1 2013 7 30 DRY 45.67 0 0 4 0.08 0.01 N/A N/A
ER2 N 1 2013 7 30 DRY 46.33 0 0 0 N/A 0.00 N/A N/A
ER2 N 1 2013 7 30 WET 0 74 0 0 N/A N/A N/A N/A
ER2 N 1 2013 7 30 WET 4.58 77 0 0 N/A N/A N/A N/A
ER2 N 1 2013 7 30 WET 46 153 0 109 0.13 0.50 N/A N/A
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ER2 N 1 2013 7 30 WET 48 153 0 109 0.12 0.45 0.084 0.031
ER2 N 1 2013 7 30 WET 50 153 0 109 0.14 0.51 N/A N/A
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

lowed by a 45 min pause and a second simulation with vary-
ing intensity (wet run) (Fig. 3). During wet runs, two modes
of water application were used as previously described: rain-
fall and run-on. Rainfall-only wet runs accounted for 79 % of
simulations, while the rest were run-on flow only or a com-
bination of rainfall and run-on flow. Table 2 shows an ex-
cerpt from one of 272 simulation data sheets. The first seven
columns are site attributes and the rest are time series of data
recorded during the run. N/A indicates “not measured” or
missing. The run time (min) of each experiment begins at the
commencement of water application and ends at the cessa-
tion of runoff.

Rainfall wet runs typically consisted of a series of ap-
plication rates (65, 100, 125, 150, and 180 mm h−1) that
were increased after runoff had reached steady state for at
least 5 min. Runoff samples were collected on the rising and
falling limb of the hydrograph and during each steady state
(a minimum of three samples). Overland flow velocities were
measured during each steady state as previously described.
Run-on wet runs followed the same procedure as rainfall
runs, except that water application rates varied between 100
and 300 mm h−1.

In approximately 20 % of simulation experiments, the wet
run was followed by another simulation (wet2 run) after a
45 min pause. Wet2 runs were similar to wet runs and also
consisted of a series of varying-intensity rainfalls and/or run-
on input.

5 Data availability

The dataset is available from the National Agricultural Li-
brary at website https://data.nal.usda.gov/search/type/dataset
(DOI: https://doi.org/10.15482/USDA.ADC/1358583). It in-
cludes a short description and the methods, data dictio-

nary, geographic information, hydrological, erosion, vegeta-
tion data files, and a set of sites and plot images.

6 Conclusion

Soil erosion researchers study complex system with a large
number of temporally variable inputs, interactions, feed-
backs, and stochastic relationships. Many variables are dif-
ficult to measure accurately. Hence, it is critical to assemble
comprehensive and long-term datasets to enable robust sta-
tistical analysis, facilitate comparisons, and detect long-term
trends. There is also a need to standardize rainfall simulators
and experimental protocols (Kibet et al., 2014) and provide
for a better dissemination of collected information among re-
searchers (Parsons and Lascelles, 2000).

This paper presents the results of 272 rainfall simulation
experiments on small plots in semiarid rangelands of the
southwestern USA. The experiments spanning 12 years were
conducted in Arizona and Nevada in four MLRAs (28B, 38-
1, 41-1, 41-3) and represented four ecological sites (Clay
loam upland, Limy upland, Loamy slope, Loamy upland).
These sites are characterized by coarse gravelly soils and an-
nual precipitation of 250 to 500 mm.

The simulations were conducted under a wide range of
rainfall intensities (60–180 mm h−1) on plots with a variety
of slopes (4–40 %), ground cover (22–99 %), and foliar cover
(0–85 %). Many of the locations have been affected by graz-
ing, wildfire, or brush treatment and were in various stages of
recovery or ecological transition during the experiments. Re-
peat multiyear simulations and detailed vegetation and land
management records place the results in a broader ecological
context, rare for this type of studies.

Runoff and erosion rates on plots were affected by the
high heterogeneity and complex spatial structure of range-
land sites. Gravelly soils often develop a surface rock layer
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with increased roughness resulting in complex hydrological
interactions. Hence, variability between replicated plots was
greater than typically observed on cultivated fields. The vari-
ation in sediment yield during runs was also significant, sug-
gesting that three runoff samples may not be enough to ac-
curately characterize a steady-state sediment yield at a given
rainfall rate. In a small number of simulations run-on flow
rates were unknown, as previously described. Care must be
taken when scaling the results to a hillslope or watershed
size. On the plot size areas, surface roughness, vegetation
pattern, and sheet-to-rill flow transition are critical factors,
while lithology, topography, and channel network need to
be considered at a greater spatial magnitude (Kirkby et al.,
1996). Transmission losses of sediment and runoff at slope
(Parsons et al., 2006) and watershed (Lane et al., 1997) scales
have been observed. Although the simulator was shielded
from wind while in operation some wind interference should
not be discounted.

The scope of this data set combined with state of the art
rainfall simulation equipment makes it particularly valuable
to advance our understanding of basic erosion and trans-
port processes specific to arid rangelands. Orthogonal pho-
tographs of the plots provide the basis for cover structure and
connectivity analysis. The data can be used to evaluate and
compare management practices and study ecological states,
transitions, and thresholds. It can also support erosion model
development and validation.
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