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Abstract. There is broad consensus that wildfire activity is likely to increase in western US forests and wood-
lands over the next century. Therefore, spatial predictions of the potential for large wildfires have immediate
and growing relevance to near- and long-term research, planning, and management objectives. Fuels, climate,
weather, and the landscape all exert controls on wildfire occurrence and spread, but the dynamics of these con-
trols vary from daily to decadal timescales. Accurate spatial predictions of large wildfires should therefore strive
to integrate across these variables and timescales. Here, we describe a high spatial resolution dataset (250 m
pixel) of the probability of large wildfires ( > 405 ha) across forests and woodlands in the contiguous west-
ern US, from 2005 to the present. The dataset is automatically updated on a weekly basis using Google Earth
Engine and a “continuous integration” pipeline. Each image in the dataset is the output of a random forest
machine-learning algorithm, trained on random samples of historic small and large wildfires and represents
the predicted conditional probability of an individual pixel burning in a large fire, given an ignition or fire
spread to that pixel. This novel workflow is able to integrate the near-term dynamics of fuels and weather
into weekly predictions while also integrating longer-term dynamics of fuels, the climate, and the landscape.
As a continually updated product, the dataset can provide operational fire managers with contemporary, on-
the-ground information to closely monitor the changing potential for large wildfire occurrence and spread. It
can also serve as a foundational dataset for longer-term planning and research, such as the strategic target-
ing of fuels management, fire-smart development at the wildland–urban interface, and the analysis of trends
in wildfire potential over time. Weekly large fire probability GeoTiff products from 2005 to 2017 are archived
on the Figshare online digital repository with the DOI https://doi.org/10.6084/m9.figshare.5765967 (available
at https://doi.org/10.6084/m9.figshare.5765967.v1). Weekly GeoTiff products and the entire dataset from 2005
onwards are also continually uploaded to a Google Cloud Storage bucket at https://console.cloud.google.com/
storage/wffr-preds/V1 (last access: 14 September 2018) and are available free of charge with a Google account.
Continually updated products and the long-term archive are also available to registered Google Earth Engine
(GEE) users as public GEE assets and can be accessed with the image collection ID “users/mgray/wffr-preds”
within GEE.
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1 Introduction

Wildfire predictions for near-term operations versus long-
term planning and research operate at different spatiotempo-
ral scales, aiming either to understand the risk posed over the
course of an individual fire or fire season or to understand the
broadscale characteristics of fire regimes. For example, oper-
ational needs emphasize contemporary, on-the-ground con-
ditions (Brillinger et al., 2003; Martell et al., 1989; Sullivan,
2009a, b) and largely ignore the longer-term controls on fire
(e.g., occurring years to decades prior to a fire). By contrast,
predictions across longer time frames and often larger spa-
tial scales will omit the contemporary weather patterns that
drive fire occurrence (Krawchuk and Moritz, 2014; Littell
et al., 2009; Urbieta et al., 2015). While many models and
datasets exist to support these needs, they also reflect differ-
ent and non-overlapping scales. We sought to fill this gap by
developing a dataset of the predicted conditional probabil-
ity that an area on the landscape will burn in a large wild-
fire (i.e., > 405 ha) given an ignition or fire spread to that
area, which integrates across spatiotemporal scales in an em-
pirical framework. We developed the dataset at a high spa-
tial resolution (250 m pixel) and moderate temporal resolu-
tion (updated weekly) across forests and woodlands in the
contiguous western US. The resulting dataset is intended to
meet multiple objectives of local to national research, man-
agement, and planning efforts.

The dataset that we describe in this paper is continually up-
dated with near-term information, which we define as occur-
ring over a period of days to months prior to and during a fire.
A well-developed approach to similarly incorporate the dy-
namic near-term drivers of wildfires is to simulate the spread
of individual fires over a landscape (Finney, 2004; Sullivan,
2009c; Tymstra et al., 2010). Modeling systems that perform
these simulations, such as Farsite (Finney, 2004) and FSPro
(Finney et al., 2011b), are used widely during wildfire in-
cidents and in real time to understand the potential spread
and behavior of burning fires. These tools can provide criti-
cal information for individual or localized fire probability in
real time but are limited in their ability to elucidate regional
and cross-regional fire risk at similar time frames and are
dependent on fuels data, e.g., from the LANDFIRE project
(Rollins, 2009), which are often not updated for years at a
time. Although the work described herein does not attempt to
model the risk posed by individual fires, it is meant to provide
contemporary fire information across regional extents, draw-
ing on continually updated fuel and weather data to predict
conditional large fire probability at a high resolution. There-
fore, it provides a needed, complementary dataset to existing
models that operate on near-term timescales.

By simulating individual fires across time and space, the
fire modeling systems described above can also scale up to
predict the long-term, multiyear potential of fires at every
point on a landscape (Finney et al., 2011a; Parisien et al.,
2005). This approach is commonly used for the longer-term

planning of fuel treatments and other fire risk planning and
assessments (Haas et al., 2013; Thompson et al., 2017). How-
ever, these landscape-scale simulations can be user and com-
putationally intensive (Parisien et al., 2012a; Varner et al.,
2009), constraining the ability of analysts and planners to
update datasets at both broad spatial scales and decision-
relevant timescales. For example, regional or national pre-
dictive datasets may need to be updated according to changes
in fuel that occur within a fire season and on an interannual
basis.

Alternative methods to predict fire occurrence relate em-
pirical fire data to environmental predictors in statistical
models (Gray et al., 2014; Preisler et al., 2016; Stavros et
al., 2014). Data availability in this case, namely the spa-
tiotemporal alignment of accurate and high-resolution fire,
weather, and fuels data, also acts as a constraint on either
the spatial or temporal scale of analysis (Taylor et al., 2013).
However, such statistical methods are common in predicting
fire occurrence on a macroscale because they can draw on
coarse-scale data to overcome this constraint (Krawchuk et
al., 2009; Moritz et al., 2012; Parisien et al., 2012b). Ow-
ing to the flexibility of model specification and data inputs
as well as increasingly accurate and high-resolution observa-
tional data, statistically based empirical models can integrate
both the contemporary, near-term drivers as well as the long-
term controls on fire potential.

Indeed, recent studies have explicitly compared the role
of the temporal scale in predicting fire occurrence and have
shown that long-term normals and variability in climate and
vegetation provide complementary predictive power (Abat-
zoglou and Kolden, 2011, 2013; Parisien et al., 2014; Riley
et al., 2013). For example, the long-term climate exerts an
influence on the flammability (e.g., due to biomass produc-
tion, vegetation composition, and average fuel moisture) of a
fuel bed, but weekly and sub-weekly weather will moderate
fuel moisture in a site-specific way. Similarly, relatively re-
cent disturbance events such as previous burns can regulate
biomass production and the subsequent fire risk on interan-
nual timescales (Parisien et al., 2014; Parks et al., 2015). It
follows that predictive datasets of wildfire potential should
strive to integrate across complex, dynamic interactions at
near- and long-term timescales. Here, we describe a time se-
ries of the conditional probability of a large fire, continually
updated on a weekly basis (with a 1 week lag) to integrate
the near-term controls on fire occurrence, which also con-
siders the longer-term influences of land use, disturbance,
the climate, and topography. The complete dataset (2005–
present) can also be considered a foundational dataset for un-
derstanding the long-term, probabilistic exposure of forests
and woodlands to large fires.
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2 Methods

2.1 Modeling

We modeled the conditional probability of large fire occur-
rence, which we define as the probability that an area on
the landscape will burn in a large (i.e., > 405 ha) fire, condi-
tional on either an ignition event or fire spreading to that area.
While defining large fire size is somewhat arbitrary, 405 ha is
commonly used to distinguish large from small fires in west-
ern US forests (e.g., Westerling, 2006), and fires > 405 ha
accounted for approximately 95 % of the area burned in west-
ern forests and woodlands from 1992 to 2015 (Short, 2017).
Additionally, our method focused only on the probability of
a large fire, irrespective of ignition likelihood or sources. Ig-
nitions are non-random events that adhere to spatial patterns
tied to anthropogenic or lightning activity, which are not ac-
counted for in this dataset.

We used a random forest (RF) classification algorithm
(Breiman, 2001) to train predictive models of large fire prob-
ability. RF is a machine-learning technique that recursively
partitions variables to classify an outcome of interest, in this
case small or large fire events. Multiple classification trees
are fit to bootstrapped samples of the training data, but at
each node, only a fraction of randomly selected predictors
are available for the binary partitioning. The randomized pro-
cess of recursive partitioning uncovers hidden structures in
the data without overfitting and yields strong predictive mod-
els (Prasad et al., 2006). This makes RF an ideal method to
predict fire occurrence across broad and diverse ecoregions,
where high dimensionality is needed to account for unfore-
seen interactions between the climate, fuels, and the land-
scape (Cutler et al., 2007).

The binary response variable in our RF models was a point
on the landscape where there was an ignition event that re-
sulted in a small fire (i.e., < 405 ha; “0” response) or that
historically burned in a large fire (i.e., > 405 ha; “1” re-
sponse). Therefore, model outputs (i.e., raster maps) can be
interpreted as reflecting the probability that a given area on
the landscape will burn in a large fire, conditional on either
an ignition or spread of fire to that area. We sampled large
fire points from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) burned area (BA) dataset (MCD45A1 v6;
Roy et al., 2008), which is a 500 m remote sensing product
that contains the day of burn. We sampled small fire points
from a database of reported fires in the United States (Short,
2014, 2017) that contains the day of discovery (Sect. 2.2).
To avoid spatial autocorrelation within large fires, we drew
at most 1 sample (a point location) within each large fire (see
Sect. 2.2). We then matched these large fire samples with an
equally sized random sample of small fires (see Sect. 2.3) to
build a single RF model across the western US.

While spatial autocorrelation is invariably present within
individual fires, burning conditions can also be quite hetero-
geneous over the course of a single large fire (Turner, 2010).

Therefore, we took a step further in capturing this hetero-
geneity. We repeated the above sampling and model build-
ing protocol using 10 different random samples of large and
small fires, such that each of 10 RF models was not entirely
independent but contributed slightly novel information to a
mean prediction across those 10 models. This type of en-
semble modeling provides a means of producing models that
are more accurate than the individual models that make them
up, while depicting the variance across predictions, which is
critical for risk assessment (Dietterich, 2000; Palmer et al.,
2005).

Using 10 trained RF models, we created spatial predic-
tions of the mean and standard deviation of large fire prob-
ability at 250 m resolution across western US forests and
woodlands. Daily spatial predictions were created at weekly
intervals from 2005 through the present. See Sect. 4 below
that describes the process by which new predictor data ac-
quisitions are automatically and continually integrated into
weekly predictions and uploaded to the cloud. Models were
trained and spatial predictions created within Google Earth
Engine (GEE; Gorelick et al., 2017), which is a cloud-based
platform that makes terabyte-scale analysis available on an
extensive catalog of satellite imagery and geospatial datasets.

2.2 Response variables

We sampled large fires by retaining MODIS BA pixels that
were within 8 days of the reported burn date of neighboring
burned pixels. This boosted our confidence in the likelihood
that connected pixels were part of the same fire (Archibald
and Roy, 2009), which we also required to be connected to
≥ 15 other pixels (∼= 405 ha). We then used the Monitoring
Trends in Burn Severity (MTBS; Eidenshink et al., 2007)
dataset to delineate the perimeters of annual large wild-
fires (excluding prescribed fires) and sampled daily MODIS
burned area pixels in a given year from within these perime-
ters. We masked burned areas according to forest or wood-
land land cover types classified in the 2001 US National
Land Cover Dataset (NLCD, 30 m resolution; Homer et al.,
2007) before drawing 10 random samples across all large
fires (n∼= 900 in each sample) from 2005 to 2014. Each indi-
vidual large fire sample was taken as the centroid of a 500 m
pixel (Fig. 2). We used the 2001 NLCD product because it
represents the closest complete land cover prior to the fires
selected for training data in this analysis.

We drew random samples of small wildfires from the US
Fire Occurrence Dataset (FOD; Short, 2014, 2017), masked
by NLCD forest and woodland cover. We did not draw small
samples from the BA dataset because the estimated minimum
detectable burn size is approximately 120 ha, which means
that smaller fires are grossly underestimated (Giglio et al.,
2009; Roy and Boschetti, 2009). Within each Environmental
Protection Agency (EPA) level III ecoregion in the contigu-
ous western US (Fig. 2), we paired an equally sized random
sample of small fires with each of the 10 large fire samples,
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Figure 1. The dataset described in this paper predicts conditional large fire probability across forests and woodlands in the 11 contiguous
western US states. Environmental Protection Agency (EPA) level III ecoregions were used to stratify sampling and create a spatially balanced
1 : 1 sample of small and large fires across diverse ecoregions, which was then used to train a single random forest model across the western
US to predict large fire probability.

resulting in spatially balanced, 1 : 1 training datasets across
diverse ecoregions. Although there are ecoregional differ-
ences in the individual drivers of large wildfires (e.g., Bar-
bero et al., 2014), we used the spatially balanced response
data and a myriad of predictor data (see below) to develop
an RF model that covered all ecoregions. RF was an ideal
method in this case because high dimensionality in the pre-
dictor data accounts for unforeseen interactions between the
climate, fuels, and the landscape (Cutler et al., 2007), which
likely drive ecoregional differences in fire response.

2.3 Predictor variables

We derived predictor variables that describe the land surface
and climate over multiyear, long-term time frames. Similarly,
we derived predictor variables that describe the land surface
and weather over weekly, near-term time frames (Table 1).
Specifically, an individual large or small fire sample was spa-
tially related to long-term predictors derived over a multiyear
period and near-term predictors derived over the week before
and after a fire occurrence. The integration of predictors in
this way resolves the dynamic probability of a large fire into
long-term drivers of fire and near-term land surface and am-
bient conditions directly leading up to and following a fire
event. To account for the difference in spatial scales between

a large fire and the native resolution of spatial predictors (i.e.,
ranging from 30 m to 4 km), we used a moving window to
summarize predictors within a circular kernel with a radius
of 1135 m. Predictor variables that were not in a native 250 m
resolution were resampled using bilinear interpolation.

2.3.1 Long-term land-surface variables

To characterize long-term live fuel availability and water
content per pixel, we used the enhanced vegetation index
(EVI, 250 m resolution) from the MODIS MOD13Q1 v006
product (Didan, 2015) and the normalized difference water
index (NDWI, 500 m resolution) derived from the MODIS
MCD43A4 v006 product (Schaaf, 2015). MODIS EVI and
the normalized difference vegetation index (NDVI) both pro-
vide proxies for total vegetation, but the EVI is more sensi-
tive to canopy variations in densely vegetated areas (Huete
et al., 2002). We used a multiyear time series of the EVI
not only to capture the variability in overall biomass pro-
duction across the western US, but also as a basis to capture
variability in sub-pixel vegetation dynamics (e.g., Helman et
al., 2015). We also included the EVI to capture longer-term
changes in fuel abundance due to prior burns, based on find-
ings that forested ecoregions have shown large to moderate

Earth Syst. Sci. Data, 10, 1715–1727, 2018 www.earth-syst-sci-data.net/10/1715/2018/



M. E. Gray et al.: Weekly large fire probability in the western US 1719

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

0 5 10 Mi

0 5 10 km$
Training samples

!( !( !( !( !( !( !( !( !( !(

MTBS >405 ha fire perimeters
MODIS>405 ha  burned areas

Figure 2. Example of how the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area (BA) dataset was used to draw 10
random samples from within large fires. Each sample, taken across all large fires in 2005–2014, was used to train a random forest model to
predict large fire probability. Fire perimeters from the Monitoring Trends in Burn Severity (MTBS) dataset are included because they were
used to restrict BA sampling within individual wildfires (excluding prescribed fires).

post-fire reductions in MODIS NDVI over a 10-year period
(Yang et al., 2017).

The NDWI was originally proposed as a complementary
vegetation index to the NDVI and EVI to detect vegeta-
tion liquid water content (Gao, 1996), and has since been
shown to relate strongly to the total water content per pixel
(Cheng et al., 2006; Maki et al., 2004). Similar to the EVI,
we included a multiyear time series of the NDWI to capture
moisture gradients across space. The NDWI has also been
successful in estimating vegetation moisture and fire hazard
when coupled with an estimate of the total vegetation. Thus,
the interaction between the EVI and NDWI may provide im-
portant information about pixel-wise fuel moisture (Maki et
al., 2004).

Each of the NDWI and EVI products used in our analy-
sis were 16-day composites computed from atmospherically
corrected, bidirectional daily surface reflectance. MOD13Q1
contains pixel quality information and MCD43A4 contains

pixel and band quality information. For both products, we
only retained observations that were free of ice and snow and
that fell between the pixel-wise median date of the onset of
greenness and the median date of the onset of senescence,
determined from the MODIS Global Vegetation Phenology
product (MCD12Q2 v005). We took the median greenness
and senescence days of year from 2001 to 2004, correspond-
ing to the beginning of MCD12Q2 availability to the start
of our fire samples. In general, limiting observations to the
growing season is more appropriate for land cover mapping
(Hansen et al., 2013). We extracted 5 percentile values (10,
25, 50, 75 and 90 %) of the EVI and NDWI as well as the
slope of linear regression of the EVI and NDWI versus im-
age date from 2000 (the year MODIS was deployed) to the
approximate date of each fire occurrence. These values pro-
vided at least 5 complete years of the observed EVI and
NDWI prior to the occurrence of a given fire. We included
these metrics to build a generic feature space to characterize
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Table 1. Spatially explicit climate and land-surface predictors of conditional large fire probability, including the data source, spatial resolu-
tion, and description of how variables were derived from the source data. Grouping of predictor variables indicates whether they are derived
over the near term (months or weeks preceding fire occurrence) or long term (multiyear).

Predictor Source Resolution Description

(1) Long-term climate variables
Annual precipitation, temperature seasonality,
precipitation of the warmest month, mean tem-
perature of the wettest month, mean tempera-
ture of the warmest month

PRISM 800 m Derived from monthly normals from 1981 to 2010

(2) Long-term land-surface variables
EVI MODIS 250 m 10th, 25th, 50th, 75th, and 90th percentiles, and slope

of linear regression with image date, from 2000 to the
date of fire occurrence

NDWI MODIS 500 m

Human modification, distance to urban devel-
opment

CSP 2016 30 m Index or distance value at 2001 for fires pre 2011, and
2011 for fires post 2011

Elevation, slope, aspect, topographic rough-
ness

USGS 30 m

(3) Near-term land-surface variables
EVI MODIS 250 m Index or temperature value immediately preced-

ing fire occurrenceNDWI MODIS 500 m
LST MODIS 1 km

(4) Near-term weather variables
100 h fuel moisture, 1000 h fuel moisture,
burning index, energy release component, pre-
cipitation, temperature, relative humidity, spe-
cific humidity, potential evapotranspiration,
solar radiation, wind speed, wind direction,
PDSI

GRIDMET 4 km Mean values in the 2 weeks surrounding fire occurrence

vegetation over at least 5 complete years, as they have been
used in previous machine-learning applications to character-
ize regional-scale forest cover (Hansen et al., 2013).

To characterize the land surface as modified by humans
over the long-term, we included indices of human modifi-
cation for the years 2001 and 2011 (Conservation Science
Partners Inc., 2016; 30 m resolution). This index quantifies
the cumulative degree of modification of natural lands at-
tributable directly to energy, residential, commercial, trans-
portation, and agricultural development. Since they are less
natural and generally more fragmented, we hypothesized that
more developed landscapes are less likely to burn in large
fires. We also used the associated residential and commercial
development dataset (Conservation Science Partners Inc.,
2016; 30 m resolution) to compute the Euclidean distance to
urban development in 2001 and 2011. Urban development in
this case was approximated by a “moderate” value of residen-
tial and commercial development, which is roughly equiva-
lent to the “built-up moderate” class in the NLCD, except
that it removes the exaggerated effects of roads. We assumed
that suppression resources and mandates are more readily ac-
cessed closer to urban centers and thus constrains the likeli-
hood of large fires. Lastly, we used the Shuttle Radar To-

pography Mission digital elevation data (Farr et al., 2007) to
characterize topographic variables, namely, elevation, slope,
aspect, and terrain roughness (standard deviation of eleva-
tion), each at a 30 m resolution.

2.3.2 Long-term climate variables

We incorporated predictors computed from monthly climato-
logical normals of temperature and precipitation for the pe-
riod 1981–2010, as derived from the Parameter-elevation Re-
gressions on Independent Slopes Model (PRISM Norm81m
vM2; 800 m resolution; Daly et al., 1994). We selected 5
metrics which summarized the long-term annual means, ex-
tremes, and seasonality of temperature and precipitation and
have been used previously to capture the amount and dryness
of biomass to predict fire occurrence (Krawchuk et al., 2009;
Moritz et al., 2012). These metrics included the annual pre-
cipitation, precipitation of the warmest month, mean temper-
ature of the wettest month, mean temperature of the warmest
month, and temperature seasonality (i.e., the standard devia-
tion of mean monthly temperatures; O’Donnell and Ignizio,
2012).

Earth Syst. Sci. Data, 10, 1715–1727, 2018 www.earth-syst-sci-data.net/10/1715/2018/
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2.3.3 Near-term land-surface variables

We characterized the short-term live vegetation abundance
and condition as well as pixel water content with the single
EVI and NDWI observations in the month prior to fire occur-
rence. These near-term indices are meant to capture the vege-
tation abundance and condition immediately prior to burning.
For instance, when coupled with the EVI, the NDWI has been
shown to contribute to fire risk on sub-monthly timescales
(Maki et al., 2004).

We used the MODIS MOD11A2 daytime Land Sur-
face Temperature (LST) 8-day composites (1 km resolution;
NASA LP DAAC, 2015), which represent average values of
clear-sky LSTs, to similarly characterize the ground temper-
ature immediately leading up to a fire occurrence. Due to
feedback between LST and near-surface humidity, remotely
sensed LST has been used to predict the vapor pressure
deficit, which in itself is a good short-term predictor of fine
dead fuel moisture and fire danger (Boer et al., 2017; Nolan
et al., 2016). We included the value of LST from the 8 days
prior to the fire.

2.3.4 Near-term weather variables

The standard meteorological variables known to influence
the daily fire and fuel environment were taken from the
GRIDMET gridded daily surface meteorological dataset
(4 km resolution; Abatzoglou, 2013). We incorporated the
total precipitation, mean minimum and maximum tempera-
tures, mean minimum and maximum relative humidity, mean
wind speed and direction and the mean Palmer drought sever-
ity index (PDSI) for the 2 weeks surrounding fire occurrence.

The standard weather variables have also been compiled
into indices that more directly address the processes by
which they effect fires and fuels, including the energy re-
lease component (ERC), the burning index (BI), and 100 and
1000 h dead fuel moisture (FM100 and FM1000). These in-
dices are components of the US National Fire Danger Rating
System (NFDRS) and are derived from models built on the
combustion physics and moisture dynamics of the fuel envi-
ronment, assuming a consistent fuel model “G” typified by
short needle pine and heavy dead loads (Abatzoglou, 2013;
Schlobohm and Brain, 2002). The FM100 and FM1000 in-
dices represent the modeled moisture content of large dead
fuels in the 2.5 to 7.6 cm diameter class and the 7.6 to 20.3 cm
diameter class, respectively. ERC is a cumulative fuel mois-
ture index reflecting the contribution of all live and dead fuel
moisture on the potential heat release and is also an input
into the BI, which additionally incorporates the potential rate
of fire spread. GRIDMET assumes that the persistent fuel
environment includes all size classes of dead fuels as well
as herbaceous and woody live fuels, all contributing to the
derived values of these indices. We incorporated the mean
values of ERC, BI, FM100, and FM1000 in the 2 weeks sur-
rounding fire occurrence.

Near-term weather (a) 

Near- and long-term 
EVI, NDWI, and LST 

Human modification 

Near-term weather (b) 

Long-term climate 

Topography 

0.0 0.15 0.30 

Figure 3. Graph of relative variable importance, based on the per-
mutation importance measure, which directly measures importance
by observing the effect on model accuracy by randomly permut-
ing the values of each predictor variable. Because random for-
est “spreads” variable importance across collinear variables, non-
independent variables were grouped together to determine their col-
lective importance (see Table 1 for details on the variable groups).
Near-term weather variables (a) include the energy release compo-
nent, burning index, 100 and 1000 h fuel moisture, relative humid-
ity, and precipitation. Near-term weather variables (b) include tem-
perature, vapor pressure deficit, specific humidity, solar radiation,
wind speed, and wind direction.

3 Dataset evaluation

Using all training data from 2005 to 2014 (i.e., no inde-
pendent testing data), we compared models in R using the
“caret” package (Kuhn, 2008), and extracted variable im-
portance using the “rfpimp” package in Python (available at
https://github.com/parrt/random-forest-importances, last ac-
cess: 14 September 2018). We ranked predictor variable im-
portance based on the permutation importance, which di-
rectly measures importance by observing the effect on model
accuracy by randomly permuting the values of each predic-
tor variable (Cutler et al., 2007). Since RF “spreads” variable
importance across collinear variables (Cutler et al., 2007), we
used a built-in function in the “rfpimp” package to permute
collinear variables together and determine their relative and
collective importance (Fig. 3). Across the 10 models, overall
accuracy was consistently between 0.77 and 0.79 and area
under the receiver operating curve (AUC) was consistently
0.83–0.86. Out of 46 total predictor variables, the most im-
portant variables were near-term weather variables that in-
cluded the ERC, BI, FM100, FM1000, relative humidity, and
precipitation, as well as the collective near- and long-term
EVI, NDWI, and LST variables (Fig. 3).

To independently evaluate the model on data from 2015
to 2016, we used the MODIS BA and FOD datasets to draw
a testing sample from within all large fires and an equally
sized random sample of small fires (response value of “0”
and “1”, respectively; n∼= 400 large fires). Again, large sam-
ples were taken as the centroid of 500 m pixels. Using weekly
predictions (i.e., raster maps; Fig. 5) of large fire probability
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Figure 4. Receiver operating curve (ROC) for an independent test-
ing dataset of small and large fires that occurred from 2015 to 2016.
Sensitivity and (1-specificity) values are shown for the point where
large fire probability values > 0.47 are classified as a large fire and
values < 0.47 are classified as a small fire, since this value was
found to simultaneously maximize sensitivity and specificity.

in 2015 and 2016, we extracted the predicted values at the
time (i.e., the closest prediction in time prior to fire occur-
rence) and location of individual testing points. We used the
R package “OptimalCutpoints” (López-Ratón et al., 2014) to
determine an optimal cutoff between 0 and 1 that simultane-
ously maximized the sensitivity (true positive rate) and speci-
ficity (true negative rate) of predictions. In this case, using
a probability cutoff of 0.47 to predict binary large (> 0.47)
versus small (< 0.47) fires resulted in the greatest rate of true
positives and negatives in our testing datasets. Based on an
optimal cutoff of 0.47 and 2 years of independent data, the
sensitivity of the dataset was 0.76, the specificity was 0.75,
and the area under the receiver operating curve (ROC) curve
was 0.82 (Fig. 4). We took another step to visualize model
performance by mapping the rate of false positives and false
negatives (i.e., the number of false positives or false nega-
tives normalized by the number of testing samples) within
each EPA level III ecoregion to examine any obvious biases
in under or overprediction across ecoregions (Fig. 6). There
was more of a tendency for the model to overpredict large
fires in some of the drier ecoregions, such as the Colorado
Plateau and the Central Basin and Range, and the inverse
was true in some of the wetter ecoregions. In particular, the
Cascades and Southern Rockies tended to underpredict large
fires rather than overpredict (Fig. 6).

4 Continuous integration

We developed a continuous integration (CI) “pipeline” to
generate new predictions as soon as the dynamic predic-
tors upon which the model is conditioned become available
in GEE. The refresh rate of each predictor varies based on
the data sources. For example, GRIDMET assets are up-
dated approximately every 2 days, whereas the MODIS prod-
ucts are updated approximately every 8 days. The pipeline,
which tests for the availability of predictors against the re-
quirements of the model, runs on a schedule, compiling each
morning at 04:00 Pacific standard time. If all of the crite-
ria are met, a new prediction is generated and appended to
the existing collection. We used GitLab.com because GitLab
offers continuous integration (CI) services at no cost. The
builds are executed using a custom Docker image, which is a
bare-bones Ubuntu image configured with the Google Earth
Engine Python application program interface (API) client li-
brary and its dependencies.

5 Band descriptions

Each image in the dataset contains the following bands:

– Band 1 (“mean”) represents the mean probability of
large fires across 10 trained models. Values range from
0 to 1.

– Band 2 (“stdDev”) represents the standard deviation of
the probability of large fires across 10 trained models.

– Band 3 (“modis_QA”) indicates if one of the near-term
predictors (i.e., MOD13Q1, MCD43A4, or MOD11A2
immediately preceding the prediction date) had unreli-
able quality. If this band value is equal to 0, all near-
term MODIS pixels were processed and of good qual-
ity. If this band value is equal to 1, at least one near-term
MODIS pixel was not processed or was of bad quality
(note: for the MODIS products described above, only
good quality pixels were retained for model training,
but all pixels were retained when creating spatial pre-
dictions).

6 Code and data availability

Weekly large fire probability GeoTiff products from 2005 to
2017 are archived on the Figshare online digital repository
with the DOI https://doi.org/10.6084/m9.figshare.5765967
(Gray et al., 2018; available at
https://doi.org/10.6084/m9.figshare.5765967.v1). Geo-
Tiff products and the entire dataset from 2005 onwards are
also continually uploaded to a Google Cloud Storage bucket
at https://console.cloud.google.com/storage/wffr-preds/V1
(last access: 14 September 2018) and are available free of
charge with a Google account. Continually updated products
and the long-term archive are also available to registered
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Figure 5. Predicted conditional large fire probability for the week of 30 July 2015. MTBS fires greater than 405 ha that started in August 2015
are overlaid on the map. White (non-colored) areas are non-forested.

GEE users as public GEE assets and can be accessed with
the image collection ID “users/mgray/wffr-preds” within
GEE. All source code is available at a GitLab repository
(https://gitlab.com/wffr,last access: 14 September 2018;
only accessible after free registration on GitLab).

7 Conclusions

The dataset we describe here of weekly predictions of the
probability of large forest or woodland fires across the west-
ern US invokes interacting effects over multiple timescales
that contribute to a site’s dynamic fire potential. By draw-
ing on weather, climate, and land-surface dynamics at multi-
ple timescales to predict individual fire occurrence at a high
spatial and temporal resolution, this dataset fills a gap in ex-
isting datasets. The result is relevant to research, planning,
and management objectives that span across the western US,
ranging from short-term outlooks to long-term planning.

More strategic planning for fuels management is criti-
cally needed to adapt to an inevitable increase in wildfires
in the western US in the coming decades (Schoennagel et
al., 2017). For instance, fuels treatments as currently im-
plemented are limited in their ability to mitigate the broad-
scale effects of wildfires, because it is relatively rare that
treatments actually encounter wildfires (Barnett et al., 2016).
Strategically targeting areas for treatment based on large
wildfire potential, coupled with estimates of burn severity,

will lead to more cost and ecologically effective decisions
(Scott et al., 2016; Thompson et al., 2017). However, model-
ing systems currently used for this purpose are often compu-
tationally and user-intensive, constraining the ability to up-
date results at both broad spatial scales and timescales con-
current with the changing fire environment. For example, the
Wildland Fire Potential dataset is available for the entire US
at 270 m resolution and describes the static fire potential as
of 2007, 2012, and 2014 (Dillon et al., 2015). The dataset we
describe here is automatically updated weekly (as reflected
in fuel abundance and condition and fire weather) and an-
nually (as reflected in the NDWI and EVI) to match higher-
frequency dynamics of the fuel and fire environment, which
change on these timescales and critically effect fuels- man-
agement decisions.

Another area where probabilistic fire exposure analysis
can help with strategic fuels and fire planning is at the
wildland–urban interface (WUI; e.g., Haas et al., 2013). WUI
lands in the western US have expanded dramatically over
the past few decades, and roughly 40 % of these lands are
predicted to experience moderate to large increases in the
probability of wildfires in the next 20 years (Schoennagel et
al., 2017). Considering also that a large percentage of poten-
tial WUI lands are still undeveloped, strategic planning for
both fuels management and infrastructure development can
make communities more resilient to wildfires. This dataset
can help guide development plans on multiple scales (e.g.,
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Figure 6. False positive (FP) and false negative (FN) rates of an independent testing dataset of small and large fires from 2015 to 2016,
mapped across Environmental Protection Agency (EPA) level III ecoregions. No testing data were available for those ecoregions that are not
displayed.

city, county, or state), drawing on a rich time series that gives
analysts and planners access to the observed trends, means,
and extremes of the potential for large wildfires over time.
For example, planners may be interested in assessing the risk
of new development within the WUI, recognizing that new
development would potentially introduce more sources of ig-
nition throughout the year. Therefore, planners might seek to
understand interannual patterns in the timing and magnitude
of the conditional probability of large fires, given an increase
in the number of ignition sources.

In contrast to longer-term predictions, contemporary pre-
dictions of large fire potential provide operational fire man-
agers with immediate, on-the-ground information to closely
monitor how changing conditions affect active or impend-
ing fires and the likelihood that fire suppression will re-
quire outside resources. In the US, contemporary predictions
are widely used during the peak fire season (Owen et al.,
2012). Available products through the US Predictive Services
program (http://psgeodata.fs.fed.us/, last access: 14 Septem-
ber 2018) and the Wildland Fire Assessment System (www.
wfas.net, last access: 14 September 2018; Preisler et al.,
2016) consider fuel and weather conditions that change on
daily to weekly timescales while ignoring the longer-term
climate and fuel variability that moderate a site’s current fire
potential. Modeling systems that perform simulations of fires
as they are occurring, such as FARSITE and FSPro, provide
critical information for individual or localized fire probabil-
ity and behavior but are limited in their ability to elucidate
contemporary regional and cross-regional fire risk and are
additionally dependent on fuels data (e.g., from LANDFIRE)
that are not updated to the present. The dataset described here
provides continually updated predictions across the western
US while simultaneously accounting for dynamic fuel and
landscape compositions that are shaped over the near and
long term. Thus, the dataset is a needed addition to opera-
tional products of contemporary fire potential.

As the observational record grows longer to include more
temporal variability and new normals, we can continue to re-
train models on the same basis of predictors and update and
evaluate this dataset. This will allow for any non-stationary
relationships between wildfires, the climate, fuels, and the
landscape to be easily integrated into predictions. For exam-
ple, if underlying relationships such as the precipitation of
the wettest month or average early May EVI change in the
future, models would simply need to be retrained on updated
datasets to integrate such non-stationarities. In future devel-
opment, forecasted climate, weather, and fuels data may also
be integrated into the analysis in order to create predictions
of large fire probability into the future.
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