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Abstract. The use of ground sampled water quality information for global studies is limited due to practical
and financial constraints. Remote sensing is a valuable means to overcome such limitations and to provide
synoptic views of ambient water quality at appropriate spatio-temporal scales. In past years several large data
processing efforts were initiated to provide corresponding data sources. The Diversity II water quality dataset
consists of several monthly, yearly and 9-year averaged water quality parameters for 340 lakes worldwide and
is based on data from the full ENVISAT MERIS operation period (2002–2012). Existing retrieval methods and
datasets were selected after an extensive algorithm intercomparison exercise. Chlorophyll-a, total suspended
matter, turbidity, coloured dissolved organic matter, lake surface water temperature, cyanobacteria and floating
vegetation maps, as well as several auxiliary data layers, provide a generically specified database that can be
used for assessing a variety of locally relevant ecosystem properties and environmental problems. For validation
and accuracy assessment, we provide matchup comparisons for 24 lakes and a group of reservoirs representing
a wide range of bio-optical conditions. Matchup comparisons for chlorophyll-a concentrations indicate mean
absolute errors and bias in the order of median concentrations for individual lakes, while total suspended matter
and turbidity retrieval achieve significantly better performance metrics across several lake-specific datasets. We
demonstrate the use of the products by illustrating and discussing remotely sensed evidence of lake-specific
processes and prominent regime shifts documented in the literature. The Diversity II data are available from
https://doi.pangaea.de/10.1594/PANGAEA.871462, and Python scripts for their analysis and visualization are
provided at https://github.com/odermatt/diversity/.

1 Introduction

Freshwater ecosystems have undergone more dramatic
changes than any other type of ecosystem (Sectretariat of
the Convention on Biological Diversity, 2010). Lakes con-
tain about 87 % of all surface freshwater (Gleick, 1996). The
major threats that affect lakes and reservoirs are water-level
changes, toxic pollution, salinization, eutrophication, acid-
ification, sediment pollution and invasion of exotic species.
Several upstream anthropogenic activities are related to these

threats, such as agriculture, forestry, grazing, mining, irriga-
tion, urbanization and dams, hydraulic engineering and in-
dustrial development. All these pressures are interconnected
and act concurrently to reduce water quality and contribute
to the deterioration of the ecosystem, including habitat loss
and reduced biodiversity.

The conditions of inland waters vary over a wide range
of spatial and temporal scales, leading to important logistic
and economic difficulties in monitoring them on a regular ba-
sis. Some countries have national or regional lake monitoring
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Figure 1. Global density maps for the bulk reprocessed MERIS FR dataset in the years 2002–2012, and distribution of the 340 lakes available
in the Diversity II water quality dataset (bottom right).

programmes, which are primarily based on ground surveys.
However, ground surveys often fail to sample on appropri-
ate spatial and temporal scales. Other countries do not have
monitoring programmes due to a lack of funds. The use of
satellite remote sensing is a potentially cost-effective and ef-
ficient way to supplement the conventional in situ point sam-
pling surveys. Remotely sensed products for water availabil-
ity and quality are complementary to in situ data in terms of
spatial and temporal coverage. They provide synoptic views
of spatial distribution unachievable by other means and are
ideally suited to covering the broad range of space scales and
timescales associated with inland water applications. How-
ever, remote sensing is limited in terms of parameter cover-
age and depth resolution.

The Medium Resolution Imaging Spectrometer (MERIS)
was operated by the European Space Agency (ESA) in 2002–
2012 and demonstrated unparalleled capabilities for water
quality remote sensing. Extensive reviews of popular re-
trieval methods revealed a wide range of different algorithms,
but the usage of MERIS data prevailed (Matthews, 2011;
Odermatt et al., 2012). The first globally representative lake
water quality dataset from remote sensing provided a snap-
shot of chlorophyll-a (chl-a) concentrations in 80 000 lakes
worldwide based on MERIS full-resolution (FR) data ac-
quired in 2011 (Sayers et al., 2015). However, this dataset
was compiled with an algorithm optimized for ocean colour
remote sensing, whose suitability for inland waters was dis-
avowed on several occasions (see e.g. Mobley et al., 2004;
Morel and Prieur, 1977). Therefore we carried out an inter-
comparison of well-known and publicly available algorithms

for the retrieval of chl-a and other water quality parameters
in optically complex waters with a heterogeneous reference
dataset for more than 40 lakes (Odermatt et al., 2015a). The
Diversity II water quality dataset is produced with the most
suitable retrieval methods identified through these investiga-
tions.

In addition to the optimized methodology, the Diversity
II water quality dataset excels previous work by covering the
full MERIS operation period with monthly, yearly and 9-year
product aggregates, and several additional water quality pa-
rameters. Hence it provides a generically specified database
that can be used for assessing a variety of locally relevant
ecosystem properties and environmental problems. Several
case studies are available that demonstrate such assessments
with lake-specific foci (Odermatt et al., 2015b), but the larger
part of the dataset is yet to be exploited.

2 Input data

2.1 Geographical scope

We selected 340 lakes for processing (Fig. 1) based on
their biodiversity relevance, size, auxiliary and reference
data availability, geographic distribution and particular user
requests. Sixty-six of those lakes are at least 50 km2

large and located within Ramsar Wetlands or listed as
LakeNet Biodiversity Priority sites (www.worldlakes.org).
The data table (https://doi.pangaea.de/10.1594/PANGAEA.
871462?format=html#download) allows for their identifica-
tion. The dataset includes 250 of the world’s 350 largest
lakes by extent, whereas size implies regional relevance and
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favours the feasibility of remote sensing retrievals in general
and of lake surface water temperature (LSWT) in particular
(Politi et al., 2016). Various contributors provided in situ wa-
ter quality measurements for 42 lakes, which are used as ref-
erence sites for quality assessment (Odermatt et al., 2015a).
The largest reservoirs in South America and individual sites
in Asia and Australia are included in order to improve the
global representativeness. Fifty additional lakes are included
due to specific stakeholder requests.

In principle, the Diversity II water quality dataset could be
extended to a much larger number of lakes. Size is the most
important restriction in this regard, with a contiguous open
water surface of roughly 1 km by 1 km being the theoretical
minimum, but with certain complications occurring even for
larger water bodies. The total number of suitable lakes world-
wide is expected to be between the 80 000 demonstrated by
Sayers et al. (2015), and, neglecting shape properties, the
350 000 lakes larger than 1 km2 identified by Verpoorter et
al. (2014).

2.2 ENVISAT MERIS L1B FSG imagery

MERIS was operated in 2002–2012 on-board the near-polar
orbiting ENVISAT satellite by the European Space Agency
(ESA; Rast et al., 1999). It measured reflected solar radi-
ance in 15 narrow spectral bands across visible and near-
infrared (NIR) wavelengths. In FR mode, its push-broom
charge-coupled device (CCD) arrays sampled the 1150 km
wide swath at approximately 260 by 290 m ground resolu-
tion in across-track and along-track directions, respectively.
MERIS had a nominal revisit time of 2–3 days at the Equator
and less at higher latitudes, but FR data were not systemati-
cally acquired in the early years until 2005, and in later years
they varied slightly due to mission operations, and therefore
the availability of usable data varies regionally and tempo-
rally (Fig. 1).

We refer to three widely, but not consistently, used satel-
lite image processing levels, in which Level 1 (L1) consists
of top-of-atmosphere (TOA) signals, Level 2 (L2) includes
derived geophysical quantities and Level 3 (L3) represents
spatio-temporally aggregated data. Approximately 300 000
MERIS L1 images were used as input for the production
of the Diversity II water quality dataset. The data represent
calibrated TOA radiance, also referred to as at-sensor ra-
diance. It emerged from the 2014 bulk reprocessing using
MERIS Instrument Processing Facility version 6. Its geo-
orthorectification was improved using the Accurate MERIS
Ortho-Rectified Geolocation Operational Software (AMOR-
GOS; Bourg and Etanchaud, 2007); thus, the data are re-
ferred to as MERIS L1B Full-Swath Geo-corrected (FSG),
and have an absolute and relative pixel location accuracy of
77 and 52 m, respectively.

2.3 AATSR ARC-Lake LSWT products

The Diversity II water quality dataset includes LSWT prod-
ucts that were readily provided by the ESA ARC-Lake
project as version 3 production in rasters of 0.05◦ cell size.
The LSWT retrieval was performed with an optimal esti-
mation approach (MacCallum and Merchant, 2013, 2012).
Lake-specific prior surface temperatures were generated us-
ing an iterative scheme that is initiated with the monthly
MODIS land and sea surface temperature climatologies. The
ARC-Lake processor then uses valid satellite observations,
simulations with the FLake model (Mironov, 2008) and
data interpolating empirical orthogonal function (DINEOF;
Alvera-Azcárate et al., 2005) techniques to iteratively create
from this spatially and inter-annually invariant initial guess a
field of spatially resolved temperature fields.

Several product types using different processing tech-
niques and spatial and temporal aggregations are avail-
able (MacCallum and Merchant, 2014). We selected
the DINEOF reconstructed, day- and night-time acquired
monthly products in 0.05◦ spatial resolution, whose
filenames are ALIDXXXX_PLREC9D_TS012SR.nc and
ALIDXXXX_PLREC9N_TS012SR.nc, respectively, with
XXXX being a four-digit lake ID. They are available for
298 out of the 340 lakes considered, and empty LSWT prod-
uct layers are contained in the remaining 42 lakes. Users re-
quiring actual measurements of LSWT are recommended to
download them from ARC-Lake or a comparable database
directly.

2.4 Auxiliary data

Each lake’s perimeter was defined in a shapefile that re-
sulted from vectorized outlines of the Synthetic Aper-
ture Radar Water Bodies (SAR-WB) map created by San-
toro and Wegmüller (2014). These perimeters represent
the maximum extent of water available from ENVISAT-
ASAR acquisitions between 2002 and 2012, and each
polygon’s area and circumference were added to an at-
tribute table. The polygons are intersected with the Global
Lakes and Wetlands Database (GLWD; Lehner and Döll,
2004) Level 1 dataset, and ambiguities were manually re-
solved. The merged tabulated attributes are available in
a metadata list (https://doi.pangaea.de/10.1594/PANGAEA.
871462?format=html#download). Alternative lake names
were added to the list at every opportunity, but are neither
exhaustive nor tracked.

Lake water surface level data (Crétaux et al., 2011) pro-
vided by the Laboratory of Studies on Spatial Geophysics
and Oceanography (LEGOS) through their Hydroweb por-
tal (http://www.legos.obs-mip.fr/soa/hydrologie/hydroweb/)
were originally distributed with the Diversity II database.
This data come as 1-D discrete time samples, as opposed
to the 2-D temporal aggregated water quality maps. Further-
more, they are based on independent developments and up-
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dates that would require continuous mirroring. Due to these
differences, we refrained from adding them to the Pangaea
Diversity II repository.

3 Data processing methods

The bulk production of temporally aggregated water quality
parameters from L1B and auxiliary data requires a combina-
tion of several methods in an unsupervised processing chain.
For this purpose we implemented the CaLimnos v1 process-
ing chain (Fig. 2) for deployment on ESA’s Earth observation
data processing cluster Calvalus (Fomferra et al., 2012). It is
composed of several processors for the ESA BEAM Tool-
box (Fomferra and Brockmann, 2005), which has recently
evolved into the Sentinel Application Platform (SNAP). The
same input and auxiliary data and pre- and post-processing
modules were also used to create 10-day aggregates for the
investigation of phenological cycles in Lake Balaton (Palmer
et al., 2015), and corresponding CaLimnos v1 L2 intermedi-
ate outputs were used for assessing the spatio-temporal vari-
ability of chl-a in Lake Geneva (Kiefer et al., 2015).

3.1 Pre-processing

The identification of pure water pixels is an essential pre-
processing step, because even sub-pixel signal contributions
from land surfaces can strongly affect the retrieval proce-
dures, especially when using band arithmetic algorithms that
do not check for input signal compliance at runtime. The Ide-
pix algorithm is an open-source SNAP processor and per-
forms such identification for clouds, cloud shadows, cloud
buffers, land, snow/ice, sun glint and mixed pixels (Danne,
2016) based on bottom-of-Rayleigh reflectance (BRR; San-
ter et al., 1999). BRR is subject to a partial correction of at-
mospheric effects, representing reflectance at the hypotheti-
cal boundary between an infinitesimally small aerosol layer
and gaseous air layers above. It is the preferred signal when
background reflectance for the estimation of aerosol optical
thickness is highly uncertain, and therefore BRR intermedi-
ate products are also used for the identification of shallow
water areas and as input for the Maximum Peak Height pro-
cessor (Matthews et al., 2012) according to Fig. 2.

Idepix uses the Shuttle Radar Topography Mission
(SRTM) Water Body Dataset (SWBD; Slater et al., 2006) as a
static a priori land–water mask, which is a snapshot of global
water surface extent between 56◦ S and 60◦ N in February
2000. It applies several arithmetic expressions, a spectral
unmixing algorithm for mixed pixel identification, and two
back-propagation neural networks (NNs) for cloud identifi-
cation to MERIS FSG L1B and BRR input data (Kirches et
al., 2013). Output is a pixel identification flag layer which
is much better suited for water constituent retrieval than
the original L1B product flags (Ruescas et al., 2014). How-
ever, usage with inland waters is subject to two particu-
lar challenges. First, Idepix’ sea ice identification uses cli-

matological auxiliary data that are not available for lakes,
and therefore lake ice identification is less accurate. Sec-
ond, ephemeral water surfaces that may extend far beyond
the SRTM observed extent are always clipped to the latter.

Bottom visibility is a critical and unmastered error source
for water quality retrieval, because most algorithms that pro-
vide concentrations of water constituents do not account for
benthic reflectance contributions in these so-called optically
shallow waters. In fact, a pre-condition for them is opti-
cally deep water (i.e. no bottom reflection). Sandy or vege-
tated substrates cause surface-leaving signals that can closely
resemble increased suspended sediment and phytoplankton
concentrations in the water column, respectively, and thus
distort retrievals. Only very few algorithms actually deal with
the detection of optically deep water, and none of them ap-
plies to inland waters. Based on recommendations for clear
coastal waters (Cannizzaro and Carder, 2006) and our own
investigations, we defined a band ratio that evaluates the rel-
ative elevation of oligotrophic lakes’ 555 nm water-leaving
reflectance peak, but using BRR in three MERIS bands as
input due to the lack of robust automated atmospheric cor-
rection algorithms for such conditions (Eq. 1; Odermatt et
al., 2015a).

IF ratio490 =
BRRband3 ·BRRband7

(BRRband5)
< Thres,shallow= TRUE (1)

Due to the ambiguity of certain substrates’ shallow water re-
flectance and deep-water reflectances, this optical signature
alone is prone to false positive identifications. It becomes
much more robust when applied to temporally aggregated
ratio_490 due to the relative persistence of benthic features
as opposed to the dynamically changing water composition.
Summer half-year mean averages were selected after evalu-
ation of several statistical aggregation methods. Correspond-
ing aggregates are composed of all cloud-free MERIS ob-
servations in May to October 2008 for the Northern Hemi-
sphere, and November 2008 to April 2009 for the South-
ern Hemisphere. Lakes with constantly high turbidity, such
as Lake Balaton, still trigger false positives. Therefore, each
ratio_490 aggregate map was verified with high-resolution
satellite imagery and bathymetry information. Considerable
shallow water areas in about 30 oligotrophic to mesotrophic
lakes were masked using a threshold of 0.65, which, in the
case of the Beaver Island Archipelago in Lake Michigan,
masks areas that are between 5 and 10 m deep (Fig. 3). Pixels
removed in such a manner are indicated in a separate prod-
uct layer (shallow, Fig. 3c). In the Lake Michigan example,
there are some patterns in the chl_fub product that still re-
semble bathymetry features, but their concentration levels are
within variations for deep-water areas apart from a few indi-
vidual pixels. Especially in more turbid lakes, lower thresh-
olds are applied to prevent false positives according to the
corresponding column in the lakes list (https://doi.pangaea.
de/10.1594/PANGAEA.871462?format=html#download).
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Figure 2. The CaLimnos v1 processing chain for inland waters. Colouration indicates algorithms and downstream processes (white), input
and auxiliary data (dark grey), intermediate products (light grey) and output products (blue).

www.earth-syst-sci-data.net/10/1527/2018/ Earth Syst. Sci. Data, 10, 1527–1549, 2018



1532 D. Odermatt et al.: Diversity II global water quality data

Figure 3. Shallow water flagging for the Beaver Island Archipelago in the north of Lake Michigan. (a) Sentinel-2A true colour image, 8 May
2017. (b) Ratio_490 from MERIS data, acquired in May–October 2008. (c) Shallow water mask for ratio_490 with a threshold of 0.65 on
top of the chl layer for October 2011 as contained in product layer shallow. Bathymetry data provided by NOAA-NCEI.

Table 1. Input, output and aggregation specifications for the monthly products.

Algorithm L2 input layer(s) Aggr. L3 output layer(s)

MPH chl: float (mg m−3) mean chl_mph: float (mg m−3)
FUB algal-2: float (mg m−3) mean chl_fub: float (mg m−3)
FUB yellow_subs: float (m−1) mean cdom_fub: float (m−1)
CoastColour bb_spm_443 mean tsm_cc: float (g m−3)
CoastColour turbidity: floating numbers (FTU) mean turbidity_cc: float (FTU)
MPH if CYANO_FLAG not FLOAT_FLAG: binary mean immersed_cyanobacteria: float (0–1, dL)
MPH if CYANO_FLAG and FLOAT_FLAG: binary mean floating_cyanobacteria: float (0–1, dL)
MPH if FLOAT_FLAG not CYANO_FLAG: binary mean floating_vegetation: float (0–1, dL)
OWT dominant_class: integer (1–7, dL) mode owt_cc_dominant_class: integer (1–7, dL)
ratio_490 See Sect. 4.1 mean shallow: binary
lswt_d See Sect. 3.3 none lswt_d_mean: float (K)
lswt_n See Sect. 3.3 none lswt_d_mean: float (K)

3.2 Water quality retrieval

Chl-a retrieval in optically complex waters is straightforward
when using the secondary reflectance peak at red and near-
infrared (NIR) wavelengths (e.g. Gitelson, 1992; Gons, 1999;
Gower et al., 1999). However, using MERIS observations
this peak is only accessible in moderately productive or tur-
bid waters, while clear and humic waters call for different
approaches (Odermatt et al., 2012). Moore et al. (2014) de-

veloped an optical water type classification (OWT) frame-
work, which supports the distinction of these different wa-
ter types, and which is available as a SNAP plugin (Peters,
2016). It assigns water-leaving reflectance spectra to seven
end members, which were identified through cluster anal-
ysis of in situ measurements. Classes 1–3 represent clear
or absorbing waters, classes 4–5 represent high phytoplank-
ton and classes 6–7 represent high suspended mineral con-
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tents (Fig. 4). The OWT algorithm depends on the accu-
rate correction of atmospheric effects (Eleveld et al., 2017),
which was assessed by classifying 42 matchup pairs of in situ
reflectance measurements in 10 diverse lakes and MERIS
water-leaving reflectance from various atmospheric correc-
tions. Water-leaving reflectance obtained with the Coast-
Colour NN algorithm (description below) achieved the best
agreement, in which half the matchup pairs were assigned
to the same OWT, and adjacent classes were assigned in 14
cases (Odermatt et al., 2015a). In five out of the remaining
seven cases, the optically quite similar classes 1 and 3 are
confused. This mismatch due to differences between in situ
measured and satellite observed reflectance is quite signif-
icant. However, when considering only the separation be-
tween classes 1–3 and 4–7, and thus the feasibility of chl-
a retrieval based on the secondary reflectance peak, the ap-
proach becomes very robust, with only 2 out of the 42 pairs
being confused. The OWT maps therefore provide a rough
but robust indicator for chl-a algorithm selection. Most lakes
are relatively clearly dominated by either OWT 1–3 or 4–7,
which makes the chl-a product selection straightforward. In
rare cases like Lake Turkana (Fig. 5), such a selection can
only be made if either the lower or upper end of the dynamic
range is considered more relevant. Otherwise, it is recom-
mended to either split the lake perimeter or merge the chl-a
products, e.g. by weighting them with turbidity levels.

For the Diversity II production the Maximum Peak Height
algorithm (MPH; Matthews et al., 2012) was developed fur-
ther and implemented in a SNAP operator (Block, 2016)
because it outperformed other red-NIR reflectance peak al-
gorithms in the algorithm intercomparison study (Matthews
and Odermatt, 2015; Odermatt et al., 2015a). It uses BRR in
MERIS bands 6–10 and 14 for the retrieval of the red-NIR re-
flectance peak height and position, which allow for the iden-
tification of cyanobacteria- and eukaryote-dominated pixels,
water surface covering by cyanobacteria scum or floating
vegetation, and chl-a quantification. Dedicated empirically
calibrated equations are used for the retrieval of chl-a con-
centrations in eukaryote- and cyanobacteria-dominated wa-
ters. Technically, the algorithm is designed to cover the range
of 0–1000 mg m−3 chl-a. However, retrieval accuracy is sig-
nificantly better for lakes that are predominantly OWT 4–7,
namely eutrophic to hypertrophic waters.

The FUB algorithm (Schroeder et al., 2007), named af-
ter the Free University of Berlin, is a bundle of dedicated
NN algorithms for chl-a, total suspended matter (TSM) and
coloured dissolved organic matter (CDOM) retrieval from
MERIS L1B data, and a fourth NN that computes AOT at
four wavelengths (440, 550, 670, 870 nm) and water-leaving
reflectance in all bands up to 708 nm, except at 680 nm.
The algorithms are trained with radiative transfer simulations
using the Matrix Operator Model (MOMO; Fell and Fis-
cher, 2001) covering chl-a, TSM and CDOM concentration
ranges of 0.05–50 mg m−3, 0.05–50 g m−3 and 0.005–1 m−1,
respectively, and using MERIS bands 1–7, 9, 10 and 12–14
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Figure 4. OWT end-member water-leaving reflectance spectra and
a OWT 2 retrieval example for an in situ and MERIS CCL2 re-
flectance pair from Lake Zurich, 15 August 2007. Respective class
membership scores are indicated in the legend.

Figure 5. Nine-year aggregated OWT in Lake Turkana (a;
owt_cc_dominant_class_mode), which features a very prominent
gradient in turbidity (b; turbidity_cc_mean). Maximum turbidity
and predominantly OWT 7 are observed in the north, where its main
tributary, the Omo River, provides about 90 % of the lake’s inflow
(Beadle, 1981). In contrast, the terminal basin in the south corre-
sponds to OWT 1 and 3, which are second and third lowest in tur-
bidity according to the end members in Fig. 4.

as input. The training ranges are a severe limitation for global
usage, but specific retrieval quality flags indicate for each of
the four NN algorithms whether the input or output exceeds
the training range. However, for oligotrophic to eutrophic
and in particular humic lakes, which are commonly iden-
tified as OWT 1–3, the FUB algorithm’s chl-a output out-
performed all other candidates in the intercomparison study
(Odermatt et al., 2015a). Note that FUB uses shorter wave-
lengths that reach deeper into the water column than MPH,
which means that the two chl-a products represent different
depths and may not converge at intermediate concentrations
(ca. 10–30 mg m−3), where both algorithms produce valid re-
sults.

For the retrieval of TSM via particulate backscattering
at 443 nm (bb_spm_443 in Fig. 2) and turbidity, as well

www.earth-syst-sci-data.net/10/1527/2018/ Earth Syst. Sci. Data, 10, 1527–1549, 2018



1534 D. Odermatt et al.: Diversity II global water quality data

z [m]

Moderate

resolution

remote sensing
Chlorophyll a

patterns In situ

measurements

Mesoscale process (gyre) 

Internal
waves

Deep chlorophyll
maximum

x [km]

y [km]

x [km]

y [km]

z [m]

x [km]

y [km]

z [m]

(a) (b) (c)

Figure 6. Comparison of how typical chl-a distribution patterns (a) are resolved with moderate-resolution satellite sensors (b) and in situ
measurements (c).

as water-leaving reflectance input for the OWT classifica-
tion, we used the CoastColour NN algorithm. Its architec-
ture is based on the approach described in Doerffer and
Schiller (2007), with two dedicated NN systems perform-
ing atmospheric correction and inherent optical property re-
trieval (Doerffer, 2011; Ruescas et al., 2014). In contrast
to earlier NN algorithms, the CoastColour NN was trained
with significantly larger concentration ranges, namely 0.03–
1000 g m−3 TSM and 0.03–500 mg m−3 chl. It was exten-
sively validated with the CoastColour Round Robin dataset
(Nechad et al., 2015; available in Pangaea) and lake in situ
measurements (Odermatt et al., 2015a).

3.3 Post-processing and auxiliary data

The aggregation of L2 to L3 products (Fig. 2) facilitates tem-
poral binning and collocation in a common coordinate grid
with the WGS 84 (EPSG 7030) coordinate system. Monthly
aggregates are created using the input, output and aggrega-
tion methods listed in Table 1, and the same aggregation
methods are used to create yearly and 9-year aggregates from
monthly and yearly aggregates, respectively, which ensures
that all months inputting aggregate periods are weighted
equally even if the numbers of L2 available in these periods
may differ strongly. Aggregation of biophysical parameters
is done using the mean of all valid nearest-neighbour input
pixels for each output pixel, while the OWT L3 output layer
consists of the most frequently observed class value across
all available input layers, using the lower class in the rare
case of a draw.

Monthly, yearly and 9-year aggregates for each lake are
saved in individual GeoTIFF files, and compressed in 13 ZIP
files representing 11 annual archives for the monthly aggre-
gates, one archive for the yearly aggregate, and the 9-year ag-
gregate. These 13 ZIP archives are zipped again to make each
lake available for download in a single file of up to 18.9 GB
in size (Caspian Sea).

To extract product statistics and for visualization of the
products, a Python package is available at https://github.com/
odermatt/diversity. The scripts included in the package allow

for creation of spatial and temporal plots such as shown in
Sect. 5 (Figs. 5, 12–18). They also feature the use of black-
lists, e.g. to exclude all products with scarce lake extent cov-
erage from further analyses.

4 Product assessment

4.1 Performance metrics and reference data

The estimation of remotely sensed water quality product
accuracy is complicated by the relevance, consistency and
availability of reference measurements, especially across dif-
ferent lakes and countries. Authoritative in situ reference
measurements are obtained from lab-analysed samples or
probe records; they apply well-known standards and are
checked for consistency. But such measurements are gen-
erally not optimized for comparability with remote sensing
data. They represent volumes in the order of litres, either
from discrete samples or along depth profiles, in contrast
to the pixel-sized satellite sampling (Fig. 6), whose verti-
cal sensitivity depends on the derivative of the round-trip
attenuation in each pixel (Zaneveld et al., 2005). Further-
more, our 10-year satellite mission with at least 3 days re-
visit time yields only an expectancy value of 20 matchup data
pairs with monthly in situ measurements in a location with
50 % cloud probability. Against this background, Seegers et
al. (2018) recently suggested a set of performance metrics
that consists of error and decision metrics, as well as spa-
tial and temporal maps and decision graphics. We provide
these metrics, namely the mean average error (MAE) and
bias of log-transformed parameters as defined in Seegers et
al. (2018), and corresponding graphics for chl, TSM and tur-
bidity matchup data pairs with datasets from 24 lakes and
a group of reservoirs in 10 countries on 4 continents. Cor-
relation coefficients are obtained from ordinary least square
linear regression, neglecting inevitable errors of in situ mea-
sured reference datasets (McArdle, 1988). The remote sens-
ing estimates used in these comparisons are means and stan-
dard deviations for 3× 3 pixel kernels at sampling coordi-
nates from L2 products that were acquired on the same day.
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Figure 7. Matchup comparisons between remotely sensed chl-a and monitoring measurements. Colours represent the dominant OWT in the
nine matchup pixels according to Fig. 2 (black: OWT classification not possible), and error bars indicate their standard deviation.

It should be noted that the accuracy estimates given hereafter
refer to L2 products, but for the L3 products distributed with
our database, randomly distributed errors are, depending on
acquisition frequency (Fig. 1), reduced through averaging.

All reference datasets are from continuous monitoring
programmes according to the enclosed acknowledgements,
the only exception being the 2001–2005 dataset collected
in Spanish reservoirs (Ruiz-Verdú et al., 2008; Simis et
al., 2007), which was sampled in reservoirs Almendra,

Cuerda del Pozo, Iznajar, Rosarito and Talarn. Due to the
small number of samples per reservoir, and for their method-
ological consistency, the data from Spain are used as if they
represented a single water body. The data of the Albufera la-
goon are excluded because the reference locations were too
far inshore and did not produce meaningful data pairs. We
generally use records averaged across the top 5 m of the water
column where data represent vertical gradients, e.g. from flu-
orometers or turbidimeters. In the case of Lake Champlain,
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Table 2. Statistical metrics and ancillary information for chl-a matchup data and the MPH algorithm. n/Min./Med./Max. describe the in
situ measurement counts and ranges represented by the matchups. OWT are indicated as the mode of the 9-year averaged products where
available, as well as for the available matchup data for MPH (in brackets).

Lake Country OWT n Min. Med. Max. R Bias MAE

Albert Falls Reservoir South Africa – (3) 31 3.1 12.3 32.8 0.229 −9.034 10.594
Lake Balaton Hungary 7 (7) 212 0.4 7.6 57.0 0.694 −1.024 5.995
Lake Champlain United States 2 (3) 128 0.5 4.9 30.5 0.193 7.023 10.398
Lake Geneva Switzerland 3 (3) 41 0.8 3.6 15.2 0.051 −2.603 2.821
Hartbeespoort Reservoir South Africa – (3) 29 1.0 35.7 573.9 0.845 −22.994 57.697
Lake Haukivesi Finland – (2) 34 1.4 5.9 17.0 0.522 −2.335 3.040
Lake Huron Canada 3 (1) 16 0.1 0.4 2.2 0.741 2.247 2.247
Lake Kallavesi Finland – (6) 19 6.1 9.7 34.0 0.389 0.722 3.802
Lake Kasumigaura Japan 6 (6) 26 8.1 61.1 149.0 0.833 104.049 105.119
Klipvoor Reservoir South Africa – (6) 23 12.6 73.3 497.2 0.434 167.235 211.419
Lake Malaren Sweden 3 (6) 79 1.3 11.9 35.0 0.463 7.932 14.867
Lake Ontario Canada 3 (3) 275 0.1 1.8 34.3 0.433 2.213 4.238
Lake Paijanne Finland 2 (2) 102 2.0 4.0 14.1 0.616 0.480 2.485
Lake Peipus Estonia 2 (6) 82 0.8 12.2 123.8 −0.310 26.241 23.142
Lake Pielinen Finland 2 (3) 93 0.9 5.4 17.0 0.206 0.854 3.517
Lake Pyhajarvi Finland – (2) 21 2.4 5.8 9.8 0.424 −4.035 4.035
Lake Vanajavesi Finland – (2) 86 3.7 11.0 43.0 0.570 −1.956 6.294
Lake Vanern Sweden 2 (2) 66 1.0 3.4 37.0 0.695 6.198 10.405
Lake Vattern Sweden 2 (2) 17 0.6 1.0 5.7 0.888 0.848 0.920
Lake Vesijarvi Finland – (2) 42 1.8 6.8 25.0 0.575 −5.323 5.439
Lake of the Woods Canada 6 (2) 23 0.6 4.5 18.5 0.479 1.939 4.421
Lake Zug Switzerland 3 (3) 17 0.9 1.5 4.3 0.569 2.574 2.994
Lake Zurich Switzerland 3 (3) 18 1.1 6.5 13.0 0.106 −4.113 4.266
Various reservoirs Spain – (6) 54 1.4 44.3 58.3 0.821 12.173 21.098

chl measurements are taken with a vertically integrating hose
sampler across twice the measured Secchi depth. The com-
parability of this approach with remotely sensed concentra-
tions is expected to decrease with increasing Secchi depth,
and therefore we removed all matchups sampled across more
than 10 m depth (i.e. 5 m Secchi depth). In contrast to the al-
gorithm selection study in Odermatt et al. (2015a), we did
not consider any datasets that yielded less than 15 matchups
with any of the algorithms, because the statistics resulting
from these data are increasingly erratic. Note also that we
did not obtain an interpretable number of CDOM measure-
ments, and therefore this parameter remains unvalidated and
should be used with caution.

4.2 Chl matchup comparisons

Figure 7 shows the largest chl matchup datasets of each
country, whereas FUB or MPH are selected according to the
lakes’ dominant water type in the 9-year averaged products.
Eight out of nine lakes feature correlation coefficients be-
tween R = 0.40 and 0.83. Larger concentration ranges result
usually in higher R; accordingly, eutrophic lakes have gen-
erally higher R than oligotrophic and mesotrophic lakes. For
most of the latter, i.e. lakes dominated by OWT 1–3 (Cham-
plain, Geneva, Ontario, Paijanne), FUB matchups result in

MAE that are close to median concentrations, and lower ab-
solute bias (Table 3), while the comparison for Lake Vanern
shows significantly higher concentrations from remote sens-
ing than from in situ measurements. Concerning eutrophic
and hypertrophic lakes, MAE and absolute bias are likewise
clearly lower than median concentrations for Lake Balaton
and the Spanish reservoirs, while a larger bias occurs with
the data of Lake Kasumigaura. These successful examples in
Fig. 7 are contrasted by Lake Peipsi, whose high CDOM lev-
els and cyanobacteria-rich plankton community are known to
create challenging conditions (Kutser et al., 2016). A large
number of the matchup samples (black dots) even come with
reflectance shapes that do not sufficiently match any of the
OWT, which is not observed for any of the other 23 datasets.

Concerning the performance metrics for all 24 datasets,
the MPH algorithm (Table 2) achieves R > 0.4 for 17 of
them, including all datasets with OWT 4–7 apart from Lake
Peipus (see above) and Lake Kallavesi (R = 0.39). But it
does not meet R > 0.4 for 5 out of the 16 datasets that
are predominantly OWT 1–3, which confirms earlier find-
ings that the algorithm’s sensitivity decreases below about
10 mg m−3 (Odermatt et al., 2012). In contrast, the FUB
algorithm removes all pixels that exceed its training range
(see Sect. 4.2); i.e. it does not allow any matchup for max.
chl > 50 mg m−3 but for Lake Peipus (chl= 52.4 mg m−3).
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Figure 8. Global chl-a matchup scatter plots and statistics for the FUB (left) and MPH (right) algorithms, for all matching OWT (top row)
and specifically per OWT (rows 2–4). Note that none of the matchups was identified as OWT 5 (extremely productive water). Marker shapes
represent MPH cyanobacteria flagging.

This is reflected by the number of matchups for FUB, n in Ta-
ble 3, which is strongly reduced for the most productive wa-
ters (Hartbeespoort, Kasumigaura, Klipvoor, Malaren, Pei-
pus, Spanish reservoirs). When considering only datasets
with OWT 1–3, FUB achieves R > 0.4 in 10 out of 15
cases, the remaining 5 being predominantly lakes in Finland
(Haukivesi, Pielinen, Pyhajarvi, Vanajavesi), where a com-
bination of high CDOM levels and a somewhat smaller dy-

namic range than in Lake Peipus complicates retrievals (At-
tila et al., 2018). As shown already for the examples in Fig. 7,
the MAE for lake-specific chl concentrations is within 30 %
of the lake median concentration for about three-quarters of
the datasets, and the absolute bias is similar to or significantly
smaller than the MAE.

Finally, we segment the validation matchups by OWT
(Fig. 8), whereas FUB matchups are given for OWT 1–3,
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Table 3. Statistical metrics and ancillary information for chl-a matchup data and the FUB algorithm. n/Min./Med./Max. represent the in situ
measurement counts and ranges represented by the matchups for all n > 15. OWT are indicated as the mode of the 9-year averaged products
where available, as well as for the available matchup data for FUB (in brackets).

Lake Country OWT n Min. Med. Max. R Bias MAE

Albert Falls Reservoir South Africa – (3) 31 3.1 12.3 32.8 0.520 8.182 10.250
Lake Balaton Hungary 7 (7) 188 0.4 7.2 33.3 0.813 4.493 6.600
Lake Champlain United States 2 (3) 117 0.5 4.68 27.6 0.402 1.384 5.020
Lake Geneva Switzerland 3 (3) 41 0.8 3.6 15.2 0.737 −2.634 2.760
Hartbeespoort Reservoir South Africa – (3) 15 1.0 9.89 35.72 – – –
Lake Haukivesi Finland – (2) 36 1.4 5.9 17.0 0.150 −4.314 4.501
Lake Huron Canada 3 (1) 16 0.1 0.4 2.2 0.406 0.079 0.393
Lake Kallavesi Finland – (6) 20 6.1 9.7 34.0 −0.404 −6.169 6.846
Lake Kasumigaura Japan 6 (6) 4 8.1 24.0 38.4 – – –
Klipvoor Reservoir South Africa – (4) 1 36.1 36.1 36.1 – – –
Lake Malaren Sweden 3 (3) 37 1.3 9.5 25.7 0.007 18.884 19.880
Lake Ontario Canada 3 (3) 268 0.1 1.8 32.8 0.589 0.800 3.300
Lake Paijanne Finland 2 (2) 106 2.0 4.1 14.1 0.401 −1.434 2.316
Lake Peipus Estonia 2 (2) 28 1.8 14.8 52.4 −0.212 11.462 19.404
Lake Pielinen Finland 2 (3) 96 0.9 5.5 17.0 0.177 −3.178 4.039
Lake Pyhajarvi Finland – (2) 22 2.4 5.8 9.8 0.274 3.889 5.029
Lake Vanajavesi Finland – (2) 83 3.7 11.0 43.0 0.284 4.227 10.241
Lake Vanern Sweden 2 (2) 57 1.0 3.2 19.0 0.676 6.401 6.655
Lake Vattern Sweden 2 (2) 17 0.6 1.0 5.7 0.525 −0.410 0.487
Lake Vesijarvi Finland – (2) 41 1.8 6.8 16.0 0.607 4.012 5.843
Lake of the Woods Canada 6 (2) 19 0.6 3.9 10.8 0.188 16.892 17.324
Lake Zug Switzerland 3 (3) 18 0.9 1.5 4.3 0.576 1.575 1.896
Lake Zurich Switzerland 3 (3) 18 1.1 6.5 13.0 0.156 −4.803 4.891
Various reservoirs Spain – (3) 6 2.0 3.4 4.7 – – –

and MPH matchups for OWT 4–7. The overall comparisons
per algorithm (Fig. 8, top row) show again that the con-
centration range available in the FUB products is limited to
< 40 mg m−3, but they reflect a large part of in situ mea-
surement variations, especially for the 1–10 mg m−3 range.
Contrariwise, the few MPH estimates for OWT 4–7 that fall
into this range hardly align with in situ measurements. Alto-
gether, MPH still achieves a relatively high correlation due to
a better match in the 10–1000 mg m−3 range. The interpreta-
tion of individual classes is somewhat more complicated, be-
cause OWT 1, 4 and 7 consist of far fewer samples than OWT
2, 3 and 6, while OWT 5 is missing entirely. This reflects
on the one hand the relative scarcity of the extremely clear,
productive and turbid OWT 1, 5, and 7, respectively. For ex-
ample, Lake Balaton and Lake Huron make up about 80 %
of the samples in OWT 1, and Lake Balaton alone makes up
about 90 % of the OWT 7 data. On the other hand, it is a con-
sequence of the CoastColour atmospheric correction, which
facilitates a very robust discrimination of OWT 1–3 versus
OWT 4–7 but tends to underestimate the occurrence of OWT
4 and 5 in favour of OWT 6. The correlations are around
R = 0.5 to 0.7 for large matchup counts, but lower where
n < 100. But on the whole, we can again conclude that all
MAE and biases are in the order of the subsample’s median

concentration or lower, with a tendency of MPH to overesti-
mate the reference samples.

4.3 TSM and turbidity matchup comparisons

Most monitoring programs provide either for TSM, turbidity
or only Secchi depth measurements. TSM and turbidity are,
with caveats, directly correlated, while their relationship with
Secchi depth is more complicated (Neukermans et al., 2012;
Pfannkuche and Schmidt, 2003). Therefore we consider here
only lakes where TSM or turbidity is available, which is the
case for 3 and 10 lakes, respectively, whereas TSM prevails
for the most turbid lakes, and turbidity is of units FNU apart
from Lake Geneva (FTU), Lake Michigan and Lake Zug
(NTU). In terms of remotely sensed estimates, it should be
noticed that TSM (i.e. tsm_cc_mean) is estimated from par-
ticulate scattering across all visible wavelengths, while tur-
bidity (i.e. turbidity_cc_mean) is estimated only from scat-
tering at 865 nm according to ISO 7027-1 (2016), which
means that the latter represents a significantly light smaller
penetration depth.

The scatter plots in Fig. 9 depict all available datasets but
the one for Lake Pyhajarvi (Finland, R = 0.3). The corre-
lations depend even more on the value range than for chl.
A surprisingly high correlation but a significant bias and
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Figure 9. Matchup comparisons between remotely sensed TSM or turbidity, and monitoring measurements. Colours represent the dominant
OWT in the nine matchup pixels according to Fig. 2 (black: OWT classification not possible), and error bars indicate their standard deviation.
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Figure 10. Turbidity (a) and TSM (b) matchup scatter plots and statistics across different lakes. Note that only turbidity data in units FNU
were merged.

MAE are observed for turbidity in Lake Michigan, which
might be related to the measurement standard NTU, which
does not exceed a maximum of 1.0. The performance for the
next least turbid lakes (Paijanne, Pielinen, Pyhajarvi, Geneva,
Zug; R = 0.1 to 0.5, max. turbidity 3 to 6 FNU/NTU) is sig-
nificantly worse than for the more turbid cases with R = 0.6
to 0.7. We therefore conclude that the lake-specific turbid-
ity estimates tend to be of somewhat better accuracy than
the chl estimates, apart from variations below 3 FNU, where
the scattering signal at 865 nm decreases towards the noise
level, in particular in high CDOM boreal lakes. At least for
clear water lakes (e.g. Geneva, Zug), the TSM estimates (i.e.
tsm_cc_mean) are a promising alternative to the turbidity
products due to higher signal levels at visible wavelengths.
Unfortunately, TSM reference data are only available for
Lake Champlain and two much more turbid lakes, and the
results for these three individual datasets are too inconsistent
for generalized interpretation.

When merging all three TSM and seven consistent turbid-
ity datasets (Fig. 10), the correlations are just below R = 0.8,
which is again due to the larger dynamic range, and MAE
are only about half the median concentrations. This corre-
sponds to earlier findings in a validation study review (Oder-
matt et al., 2012), where TSM retrieval is in general subject to
smaller uncertainties than chl retrieval. Apart from these per-
formance metrics, it should be noted that there is a cluster of
remotely sensed turbidity estimates in the order of 0.3 FNU
for Finnish lakes, which are up to 2 FNU according to ref-
erence measurements. This cluster is a different view of the
sensitivity loss described above.

4.4 Limitations

Most remotely sensed water quality parameters are provided,
by definition, in per volume concentration units (chl, TSM,
CDOM), which are obtained through generalized relation-
ships between these concentration units and absorption and

scattering intensities. This approach has limitations that are
similar to those for phytoplankton pigment measurements
using fluorometer probes (Huot and Babin, 2010). Both are
subject to the superimposition of congeneric signals, such as
fluorescence by CDOM or other algal pigments in the case
of fluorometer probes, and CDOM and detritus absorption in
the case of remotely sensed pigment absorption. In addition,
uncertainties in the relationship between concentration units
and optical quantities affect the quantification, namely flu-
orescence quantum yield or weight-specific absorption and
scattering. Therefore Huot and Babin (2010) call for repeated
calibrations of fluorometers to quantify pigment concentra-
tions. When comparing fluorometer measurements across a
large number of different lakes, calibration aspects become
a major source of uncertainty. Therefore, it was suggested
to remove inconsistencies in absolute magnitude across fluo-
rometer profiles by normalizing each profile to a 0–100 index
range (Leach et al., 2017). Likewise, the optically derived
constituent concentrations provided in the Diversity II water
quality data come without lake-specific calibration. The com-
parison of absolute chl, TSM and CDOM levels across dif-
ferent lakes should thus be avoided. Instead, we recommend
either applying spatial or temporal normalization during data
analyses or calibrating the data with lake-specific gains and
offsets (e.g. Kiefer et al., 2015). Note that parameters that ex-
press solely optical (turbidity, cyanobacteria/floating matter)
or thermal (LSWT) parameters are not subject to this limita-
tion.

The second major limitation is related to erroneous pixel
identification for melting ice coverage and ephemeral lakes.
Areas of melting lake ice are optically very similar to wa-
ter, and the false retention of a lake ice covered pixel by the
Idepix algorithm can lead to highly irregular constituent es-
timates. Indicators for such cases are the seasonal timing,
sharp linear features in water constituent products, indicat-
ing lake ice borders or cracks, and very low values in mean
LSWT. Auxiliary data from the NOAA/NSDIC Global Lake
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Figure 11. (a) Percentage of the 108 monthly turbidity_cc_mean products with at least 50 % coverage of the maximum lake area. (b) Tur-
bidity trend, relative to median concentrations, for lakes with at least 50 % product availability. (c) Mean cyanobacteria dominance as the
average of all spatially averaged monthly immersed_cyanobacteria_mean values for the same lakes.

and River Ice Phenology Database could also help with the
identification. A procedure to fix monthly products that are
affected by melting lake ice artefacts using the BEAM L3
binner is described in Odermatt et al. (2015b). Ephemeral
(also intermittent or seasonal) lakes as well as other lakes

and reservoirs that significantly change their extent over time
are usually not well represented because the lakes’ areas are
clipped to the extent of the SWBD in February 2000. Their
change in extent also complicates the identification of shal-
low water areas in a way that makes our approach based on
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Figure 12. Chl in Lake Biwa, May 2007; L3 aggregate of four
cloud-free images and one partly cloudy image (chl_fub_mean).

temporally consistent spectroradiometric properties inappli-
cable. Therefore ratio_490 thresholds for such lakes were
set to 0.0 to disable shallow water identification. Further-
more, many of these lakes are subject to very high salin-
ity levels and other typical habitat properties that favour ex-
traordinary types of water constituents and accordingly bio-
optical properties, which can significantly affect the valid-
ity of the water quality products. In both cases, melting lake
ice and ephemeral lakes, and both the spatial extent of the
products and their spatial gradients can significantly deviate
from usual conditions. Particular care is thus needed when
a lake’s product layer extent is significantly smaller than ex-
pected. The minimum percentage of water pixels identified
in a product relative to the lake’s maximum number of wa-
ter pixels can thus be defined in the blacklisting procedure
available in the Diversity II Python library. We recommend
setting a minimum of 50 % and checking product integrity
visually where appropriate.

Finally, note that the relative abundances in the float-
ing_vegetation and floating_cyanobacteria layers include
only pixels that passed the foregoing Idepix masking. This
means that especially very densely covered water pixels are
previously identified as land pixels and not counted, resulting
in an overall underestimation of abundances.

5 Example data usage

The Diversity II water quality datasets were used for a pre-
liminary global assessment, from which we describe a few
example results hereafter. In addition, we performed sev-
eral lake-specific assessments, most prominently for indicat-
ing fish assemblages and status assessments in Lake Vän-
ern (Sweden; Sandström et al., 2016). Other use cases are
described as biodiversity stories and made available from
www.diversity2.info. A summary of three selected exam-
ples verifies how the remotely sensed parameters respond to
spatio-temporally evident or relatively well-documented bio-
physical events.

5.1 Global assessments

In order to obtain a robust database for global analyses, we
first created blacklists that list all 2003–2011 monthly tur-
bidity_cc_mean products that come with a spatial coverage
of less than 50 % or the maximum depicted area in the pe-
riod. In this manner, we eliminate a lot of products that were
acquired under suboptimal conditions, namely cloud or ice
coverage. Gaps in MERIS FR data acquisition (Fig. 1) are
also accounted for in such a manner. By counting the re-
maining products, we obtain an overview of the percentage of
available products per lake (Fig. 11a). Note that high-altitude
lakes are often only ice-free between June and September;
values as low as 30 % can thus mean almost complete cover-
age. For a rough trend estimation, we still exclude all lakes
with less than 50 % of the 108 months in 2003–2011 covered,
and we normalize the annual trend with the 9-year median
concentration in order to account for turbidity magnitude dif-
ferences (Fig. 11c). Note that such normalization can also
account for lake-specific water quality parameter underesti-
mation or overestimation, e.g. where phytoplankton pigment
to absorption ratios differ. The overview allows the quick
identification of regime shifts and extreme events. Concern-
ing the former, we observe a dramatic decrease in turbid-
ity in Lake Enriquillo (Dominican Republic), which appar-
ently accompanied a debated doubling of its surface area
during the observation period (Méndez-Tejeda et al., 2016).
As a case for the latter, we see a high positive trend of 0.2
FNU / year in Lake Sinakharin (Thailand), which is usually
below 1 FNU, but went through several individual months
with up to 6 FNU since summer 2009. Finally, using the
same product availability constraint, but no normalization,
we mapped cyanobacteria abundance (Fig. 11c).

5.2 Lake Biwa

Lake Biwa is a monomictic lake north-east of Kyoto (Japan),
up to 104 m deep and with a surface area of 658 km2 among
the smaller lakes in the dataset. The primary productivity of
the lake is relatively low, but subject to strong spatial gra-
dients that are related to the distribution of residential and
industrial areas, which are concentrated on the south-eastern
shore and responsible for increased riverine nitrogen input
(Ohte et al., 2010) that increases near-shore phytoplankton
growth (Fig. 12). In December 2007 investigations with an
AUV (autonomous underwater vehicle) revealed more than
2000 dead organisms on the lake’s bottom, mostly endemic
Isaza gobi fish and lake prawns. Low dissolved oxygen con-
centrations of less than 1.0 mg L−1 near the lake bottom in
November were identified as the main cause of an increased
exposure of aquatic organisms to heavy metals and the die-
off (Itai et al., 2012; Kawanabe et al., 2012). Oxygen supply
depends on wintertime vertical mixing, which, aside from
wind stress, depends on the vertical density gradients and
thus thermal stratification. In situ temperature profiles from
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Figure 13. Lake surface water temperature (LSWT) in March in Lake Biwa (lswt_n_mean). The March LSWT marks the annual minimum
for every year contained in the dataset.

Figure 14. Time series of spatially averaged turbidity (a) and
chl (b) in Lake Nicaragua, with data gaps especially during the rainy
season (June–October).

the Lake Biwa Environmental Research Institute’s regular
limnological survey programme suggest that vertical mixing
remained very weak in the winter of 2006/07 (Kawanabe et
al., 2012). Even though relating surface to bottom tempera-
tures is not without caveats, significantly higher LSWT with
spatially averaged 8.2 ◦C is observed in March 2007 than
in the other years (Fig. 13), suggesting that minimal annual
LSWT could be a valuable proxy for vertical mixing in tem-
perate lakes.

5.3 Lake Nicaragua

Lake Nicaragua/Cocibolca is the largest lake in central
America, with a surface area of 7851 km2. It is polymictic,
with a maximum and average depth of only 26 and 15 m, re-
spectively. It is subject to prevalent ecological issues such as
untreated urban wastewater discharge and immissions from
agriculture (soil erosion, fertilizer and pesticide immissions)
and aquacultures that introduce non-resident Tilapia species
and possibly novel diseases. Moreover, the planned construc-
tion of the Nicaragua Canal connecting the Caribbean Sea
to the Pacific Ocean would bring about a significant shift in
the lake’s ecological status, most directly through the exca-
vation of a 27.6 m deep, 520 m wide and 286 km long water-
way across the centre of the shallow lake, which will strongly
affect light availability within the water (Meyer and Huete-
Pérez, 2014). In spite of the limited availability of MERIS
FR data over Latin America (Fig. 1), it can contribute to es-
timating baseline conditions prior to the intervention. Gen-
erally maximum and minimum turbidity occur around Au-
gust and February, respectively (Fig. 14a), within a range be-
tween 2 and 20 FNU. Outliers such as in October 2005 and
May 2007 can occur when only a small area of the lake is
sampled. However, the 2011 turbidity peak in October is re-
lated to an extraordinary shift from cyanobacteria to eucary-
otic algae (Fig. 15), which comes with significantly lower
chl concentrations throughout the year from both the MPH
(Fig. 14a) and the FUB algorithm (not shown), but also a
second productivity peak. Even though data continuity and
in situ measurements are required for further interpretation,
the available data suggest that the lake was in a relatively
unstable state at the end of the observation period.
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Figure 15. Annual relative cyanobacteria abundance in Lake Nicaragua, 2003–2011 (immersed_cyanobacteria_mean). Note that the number
and distribution of valid observations across the years are quite unequal (Fig. 16).

Figure 16. Number of observations for the annual cyanobacteria abundance maps in Fig. 15 (num_obs).

5.4 Lake Victoria

Lake Victoria is the second largest freshwater lake in the
world and is situated in a shallow depression between the
Great Rift Valley and the western Albertine Rift, with a
shoreline shared by Kenya, Uganda and Tanzania. It is up to
83 m deep, eutrophic and light-limited (Hecky et al., 2010),

and its thermocline is usually at around 30–40 m, with com-
plete mixing occurring once a year (MacIntyre et al., 2014;
Payne, 1986). About 80 % of the water input to Lake Victoria
is from direct rainfall (Swenson and Wahr, 2009), and atmo-
spheric deposition is the most important phosphorous source
in pelagic areas of the main basin (Tamatamah et al., 2005).
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Figure 17. Monthly chl concentrations obtained with the Maximum Peak Height (MPH) algorithm in north-eastern Lake Victoria, 2005
(chl_mph_mean).

In contrast, the Nyanza Gulf (also known as Winam or Kavi-
rondo Gulf), the lake’s most distinctive morphological fea-
ture in the north-east, receives about 10 % of the lake’s ter-
restrial inflow, and it was concluded from ground measure-
ments between March 2005 and March 2006 that the Nyanza
Gulf even received phosphorous input from the main basin,
in contrast to the paradigm that the gulf is a major contributor
to the lake’s increasing nutrient enrichment (Gikuma-Njuru
et al., 2013). As a matter of fact, MERIS observations con-
firm that the most productive areas are located in the very east
of the gulf throughout 2005 (Fig. 17) and for the first half of
2006 (not shown). During this period, the chl levels in the
lake’s centre in July 2005 appear extraordinarily high. This
observation can be verified through a comparison with the
number of available observations (2–7) and the abundance
of immersed cyanobacteria (0.4–1) in this area and month.
This means that most parts of this cyanobacteria bloom were
identified in several observations.

The Nyanza Gulf was also subject to intensive growth of
water hyacinths (Eichhorna crassipes) in response to El Niño
precipitation anomalies in 1998 (Albright et al., 2004) and
2007 (Fusilli et al., 2013). Figure 18 displays the 2007 pro-
liferation event according to Diversity II data. The hyacinths
appear in floating_cyanobacteria_mean rather than the ex-
pected floating_vegetation_mean, presumably due to persis-
tent cyanobacteria dominance in the gulf. Given that Idepix
is likely to mask completely overgrown pixels as land (see
Sect. 4.1), the remaining water pixels counted for the abun-
dance consist partly of immersed cyanobacteria, and partly
of floating eucaryotes. Despite these limitations and the fact
that monthly aggregates lack the spatial details of individual
observations, the extent and course of the proliferation match
well with the MODIS observations presented by Fusilli et
al. (2013).

6 Data availability

MERIS FR data are the primary input data source for the
creation of the Diversity II dataset, and are available from
the European Space Agency. LSWT is provided by the ARC
Lake project. Auxillary data were collected in the LakeNet
and GLWD databases. We use maximum (SAR-WB) and in-
stantaneous (SWBD) lake outlines from ASAR and SRTM
data, respectively. In situ data for validation are provided by
various public authorities (see Acknowledgements). All in-
put data are available free of charge.

7 Conclusions

The Diversity II dataset is the first globally representative,
temporally resolved and methodologically consistent infor-
mation source for inland water quality dynamics from satel-
lite Earth observations. It includes monthly, yearly and 9-
year temporally aggregated geophysical maps of various wa-
ter quality parameters, which provide unprecedented possi-
bilities for exploitation at global and local scale. Global anal-
yses are yet to be carried out, with caution as to the limita-
tions mentioned hereafter. At local scale, several case stud-
ies demonstrated how the data could effectively contribute
to traditional investigations of lake-specific processes and
events. The Diversity II product user handbook (Odermatt et
al., 2015b) helps to improve such interpretation of remotely
sensed data by providing background knowledge of acquisi-
tion and retrieval methods, and Python scripts are available
that facilitate standard information extraction and visualiza-
tion from the individual GeoTIFF files.

The methods used for producing the Diversity II dataset
are widely used and validated by several independent users
beyond the end of the ENVISAT era. We complemented
these studies with a relatively extensive performance assess-

www.earth-syst-sci-data.net/10/1527/2018/ Earth Syst. Sci. Data, 10, 1527–1549, 2018



1546 D. Odermatt et al.: Diversity II global water quality data

Figure 18. Peak of the 2007 water hyacinth growth in the Nyanza
Gulf, Lake Victoria (floating_cyanobacteria_mean).

ment, which also refers to the complexity of comparisons
between in situ measured and remotely sensed water qual-
ity parameters. For the performance indicators given here, R,
MAE, bias and graphics, we repeatedly used the median con-
centration as a reference. We assume that the median repre-
sents typically a background concentration, which is several
times lower than e.g. the magnitude of seasonal variations.
It must also be remembered that the performance assessment
refers to L2 observations, while our monthly product’s tem-
poral consistency is significantly enhanced where several ob-
servations are available in a month.

It is a major asset of Earth observation that productions
from L1 observations can be repeated as improved methods
become available, so there is no doubt that the methods in use
for Diversity II will be improved and overhauled in the fu-
ture. Several lessons were learned for such repeated produc-
tions, some of them involving challenges for future research.
For example, the binary identification of optically shallow
waters and floating lake ice has received relatively little at-
tention in recent years, but under certain circumstances they
have much larger effects on the final product accuracy than
retrieval algorithms. Our method for the identification of
clouds, land and mixed pixels is more advanced, but it re-
mains critical for all partly cloudy situations. Therefore, the
development of such methods should receive much more at-
tention, relative to the number of retrieval algorithms that
were developed in recent years. The latest generation of re-
trieval algorithms will be based on further advanced water
types (Spyrakos et al., 2018) and ensemble approaches that
account for the selection of multiple algorithms’ estimates
(as e.g. left to the user with chl_mph_mean/chl_fub_mean).
Finally, new approaches are needed for the consolidation of
such increasingly large geospatial datasets, and for the ex-
traction of relevant information, which is still mostly based
on lake-specific knowledge.
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