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Abstract. Interactions between the biosphere and the atmosphere can be well characterized by fluxes between
the two. In particular, carbon and energy fluxes play a major role in understanding biogeochemical processes on
an ecosystem level or global scale. However, the fluxes can only be measured at individual sites, e.g., by eddy
covariance towers, and an upscaling of these local observations is required to analyze global patterns. Previous
work focused on upscaling monthly, 8-day, or daily average values, and global maps for each flux have been pro-
vided accordingly. In this paper, we raise the upscaling of carbon and energy fluxes between land and atmosphere
to the next level by increasing the temporal resolution to subdaily timescales. We provide continuous half-hourly
fluxes for the period from 2001 to 2014 at 0.5◦ spatial resolution, which allows for analyzing diurnal cycles
globally. The data set contains four fluxes: gross primary production (GPP), net ecosystem exchange (NEE),
latent heat (LE), and sensible heat (H). We propose two prediction approaches for the diurnal cycles based on
large-scale regression models and compare them in extensive cross-validation experiments using different sets
of predictor variables. We analyze the results for a set of FLUXNET tower sites showing the suitability of our
approaches for this upscaling task. Finally, we have selected one approach to calculate the global half-hourly
data products based on predictor variables from remote sensing and meteorology at daily resolution as well as
half-hourly potential radiation. In addition, we provide a derived product that only contains monthly average
diurnal cycles, which is a lightweight version in terms of data storage that still allows studying the important
characteristics of diurnal patterns globally. We recommend to primarily use these monthly average diurnal cy-
cles, because they are less affected by the impacts of day-to-day variation, observation noise, and short-term
fluctuations on subdaily timescales compared to the full half-hourly flux products. The global half-hourly data
products are available at https://doi.org/10.17871/BACI.224.

1 Introduction

Understanding the coupling of the atmosphere and the bio-
sphere is key to understanding Earth system dynamics and
ultimately to predict future trajectories based on dynamic and
fully coupled Earth system models (Bonan, 2008). Observa-
tions of energy and carbon fluxes obtained by the eddy co-
variance technique have revealed major insights into land–
atmosphere interactions (see the overview by Balddocchi,
2014), but the measurements are local by nature and it re-
mains difficult to derive global inferences. To overcome this

limitation, continental to global scale products of biosphere–
atmosphere fluxes have been produced using machine learn-
ing techniques that combine flux tower measurements, ob-
servations from remote sensing, and climate data (Jung et al.,
2009; Papale et al., 2015). These products proved to be use-
ful, for example, in terms of assessing large-scale patterns of
biosphere–atmosphere fluxes with climate data (Jung et al.,
2010) or to provide cross-consistency checks for process-
model simulations (Bonan et al., 2011). The general prin-
ciple of this upscaling approach has been to exploit relation-
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ships between climate or satellite-based driver variables like
temperature or leaf area index, and the targeted biosphere–
atmosphere flux (Xiao et al., 2012). In the first (“training”)
step, a machine learning model of the flux data is established
based on the driver variables across a regional or global
network of towers. In the second (“production”1) step, the
model is applied to large spatial domains where only grid-
ded estimates of the drivers are available. Machine learning
techniques are very effective here since they are fully data-
adaptive, do not require initial assumptions on functional re-
lationships, and can cope with nonlinear dependencies.

One of the first upscaling papers by Jung et al. (2009) deals
with empirical upscaling of monthly average values of gross
primary production (GPP) obtained from a biosphere model.
They propose using a model tree ensemble approach to per-
form the predictions and introduce both a new model tree
induction algorithm and a specific ensemble approach. Later,
Beer et al. (2010) estimated GPP for different biomes, fo-
cussing on global median annual GPP derived using differ-
ent prediction approaches. Covering a larger number of vari-
ables, Jung et al. (2011) produced global flux products at 0.5◦

spatial resolution for monthly average values of GPP, terres-
trial ecosystem respiration (TER), net ecosystem exchange
(NEE), latent heat (LE), and sensible heat (H). Their findings
were confirmed by a comprehensive cross-validation analy-
sis using FLUXNET2 towers. In the latest study of Jung et al.
(2017), they investigate the dependencies of changes in tem-
perature and water availability on the interannual variabil-
ity in carbon fluxes both locally and globally using their up-
scaled data products and process-based global land models.

There exist further upscaling approaches in the literature
based on support vector regression models (Yang et al., 2007;
Ueyama et al., 2013; Ichii et al., 2017) that estimate carbon
fluxes on both regional and continental scales. The work of
Xiao et al. (2008, 2010) deals with estimating carbon fluxes
for the United States using data from MODIS and Ameri-
Flux. Only recently, a systematic comparison of different re-
gression algorithms for predicting carbon and energy fluxes
has been carried out by Tramontana et al. (2016). They were
interested in the best prediction performances for estimat-
ing GPP, TER, NEE, LE, and H, as well as net radiation
at either 8-day or daily temporal resolution. In their cross-
validation analysis, they found that prediction performance
varies only slightly among different regression algorithms
from machine learning. However, they could show that accu-
racies clearly differ between the individual fluxes, meaning
that some fluxes are harder to estimate than others, which is
probably due to a lack of information in the set of explana-
tory variables.

1Note that an alternative notion would be to use the term “pre-
diction” here. However, in the climate community “prediction” is
typically used for future scenarios, while in machine learning the
application domain could be also at ungauged spatial locations

2http://fluxnet.fluxdata.org/ (last access: 17 July 2018)

Upscaling flux tower measurements represents a “bottom-
up” approach whereas the “top-down” atmospheric CO2 in-
versions have been used for assessing the net carbon ex-
change between the land and atmosphere. The atmospheric
inversions use measurements of CO2 in the atmosphere and
prior information, e.g., on anthropogenic emissions, together
with wind fields and a transport model to infer the land–
atmosphere net CO2 flux. Due to the relatively sparse at-
mospheric CO2 station network and uncertainties in atmo-
spheric transport, such inversion methods cannot precisely
provide located estimates but rather assessments for broad
regions. The complementary perspectives, strengths, and un-
certainties in the “bottom-up” and “top-down” approaches
make it particularly appealing to bring these two together.
Therefore, we will compare our results for upscaling NEE
with those from an ensemble of atmospheric inversions by
Peylin et al. (2013) in Sect. 6.4.

Today, global flux products feature, at best, a daily tem-
poral resolution as presented by Tramontana et al. (2016).
This is partly due to rapidly growing computational issues in
the training and production step scaling quadratically with
spatial resolution. In addition, consistent global long-term
products of driver data with hourly or higher temporal res-
olutions are lacking or are not readily available. Upscaling
half-hourly carbon and energy fluxes raises previous upscal-
ing approaches to the next level by increasing the temporal
resolution to subdaily timescales.

Furthermore, there is a need for a global data product of
half-hourly fluxes. Such a data product would allow for char-
acterizing subdaily variations in the diurnal cycles at places
where no towers are currently installed. Please note that we
use the term diurnal cycle to name the full 24 h period of
48 half-hourly values per day. In the literature, this is some-
times rather called a diel cycle, e.g., by Walter et al. (2005);
Halsey et al. (2010); Cyronak et al. (2012), which can be sep-
arated into a diurnal pattern (daytime) and a nocturnal pattern
(nighttime). However, in the community of land–atmosphere
exchange research the term diurnal cycle is more common
and we will use it throughout this paper. If we want to in-
dicate only those parts that correspond to light-driven pro-
cesses like carbon fixation in GPP, we explicitly call this day-
time GPP (and use the term nighttime to refer to the rest of
the day). Furthermore, we use diurnal courses as a synonym
for diurnal cycles.

Characterizing typical subdaily flux patterns is critically
needed for certain satellite remote sensing applications. For
example, the interpretation of satellite retrievals of sun-
induced fluorescence as proxy for photosynthesis (Guanter
et al., 2014; Sun et al., 2015) or integrated atmospheric col-
umn carbon dioxide (XCO2) at certain overpass times (usu-
ally around mid-day) requires consideration of strong diur-
nal variations of biosphere–atmosphere carbon fluxes. An-
other research area where half-hourly data products would
be a crucial piece of information is land–atmosphere feed-
back modeling studies. The derived products could allow for
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checking the cross-consistency, since many processes gov-
erning land–atmosphere interactions, e.g., related to the for-
mation of heavy rainfall or heat waves, in fact operate at sub-
daily timescales (Dirmeyer et al., 2012).

In view of the need for global high-frequency flux data,
we aim at increasing the temporal resolution of data-driven
carbon and energy flux products to subdaily timescales by
estimating half-hourly values at global scale. We tackle the
problem of predicting diurnal cycles with half-hourly val-
ues globally for both carbon and energy fluxes between bio-
sphere and atmosphere by treating the upscaling task as a
large-scale regression problem. From the machine learning
perspective, the random forest regression framework serves
as a basis for our computations due to its good performance
and suitable scaling properties with respect to large data sets.
We test two approaches for estimating half-hourly GPP with
random forest models and evaluate both of them using a
leave-one-site-out cross-validation strategy for a large set of
FLUXNET sites. We produce derived global products with
0.5◦ spatial and half-hourly temporal resolution for GPP and
NEE as well as for LE and H covering the years 2001 to
2014. For the sake of clarity, some figures in this paper only
show the results obtained for GPP although similar plots can
easily be created for the other three fluxes that have been con-
sidered. Thus, GPP serves as the running example throughout
this paper. The choice of GPP was somewhat arbitrary but it
also constitutes the upscaled carbon flux that received most
attention in the past.

The following sections are organized as follows. First, we
introduce the data base that is used in our study by describ-
ing both site-level and global forcing data (Sect. 2). Then,
we explain the methodological background (Sect. 3) and the
algorithmic concept (Sect. 4) of the proposed upscaling ap-
proaches in detail. In Sect. 5, extensive evaluations and com-
parisons of the different upscaling strategies are presented
based on leave-one-site-out cross-validation, which validate
the proposed approach and the derived global products. Af-
terwards, we present the empirical results at global scale in
Sect. 6 and highlight intrinsic features of the new data sets.
Finally, we discuss both our findings and possible improve-
ments for future applications (Sect. 8). The global data sets
presented in this paper are freely available to any interested
user (see Sect. 7).

2 Data sources

In this section, we shortly describe the two data sources we
are using in our studies. For learning the relationships be-
tween predictor variables and the target fluxes as well as
for the cross-validation experiments, we make use of site-
level data extracted at FLUXNET sites that are equipped with
eddy covariance towers (Sect. 2.1). To perform global upscal-
ing of diurnal cycles, we require gridded data products of the

predictor variables at a global scale. The latter are described
in Sect. 2.2.

2.1 Site-level data

Fluxes at half-hourly resolution are currently only achieved
by eddy covariance instruments that provide local measure-
ments and spatial extensions are so far only possible by de-
ployment of those instruments on globally distributed tow-
ers. Based on these in situ observations, we aim at predict-
ing half-hourly fluxes globally and therefore also rely on the
data obtained by the eddy covariance method at different
sites. The eddy covariance method (Baldocchi et al., 1988;
Aubinet et al., 2012) has revolutionized the study of land–
atmosphere interactions by offering a means of continuously
observing net land–atmosphere fluxes of CO2, latent heat,
and sensible heat (Balddocchi, 2014). By now, the flux tow-
ers are running for sufficient time to enable studies about the
interannual variability in land-surface dynamics, but the tem-
poral representativeness remains highly uneven (Chu et al.,
2017). In our studies, we rely on data from 222 FLUXNET
eddy covariance towers (see Appendix D for a full list of in-
volved sites). All towers are typically equipped with a suite
of comparable micrometeorological devices; i.e., instrumen-
tation and data outputs are similar enough, such that training
of machine learning methods on data from multiple different
sites is possible. Gross carbon fluxes can be derived using
different flux partitioning methods as described, for exam-
ple, by Reichstein et al. (2005) or Lasslop et al. (2010), and
here we rely on the former method. In all our experiments,
we only make use of measured fluxes; i.e., no gap-filling has
been applied and gaps in the half-hourly flux data have sim-
ply been ignored (more information on the distribution of
data gaps can be found in Appendix B).

As predictor variables, we use the ones selected by Tra-
montana et al. (2016, Table 2) in the RS+METEO setup that
they use for estimating fluxes at daily resolution. For con-
venience, we have reproduced this table and put it in Ap-
pendix C. Besides the plant functional type (PFT), the vari-
ables contain remote sensing data from MODIS satellites and
meteorological data either in situ measured at the flux tower
locations or from long-term time series of the ERA-Interim
data set at daily resolution. It should be noted that only the
mean seasonal cycles (and derived properties like amplitude,
minimum, mean, and maximum) are taken into account for
the vegetation indices (normalized difference vegetation in-
dex – NDVI, enhanced vegetation index – EVI) as well as for
the normalized difference water index (NDWI), the fraction
of absorbed photosynthetically active radiation (fAPAR), and
the land surface temperature (LST). In contrast, the actual
values of air temperature, global radiation, potential radia-
tion, relative humidity, and of different water availability in-
dices have been used. For detailed descriptions, we refer to
the corresponding sections in the paper of Tramontana et al.
(2016, Sect. 2.1.3 and 2.1.4).
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2.2 Global forcing data

In order to compute the global flux products at half-hourly
resolution via upscaling, we require the predictor variables
mentioned in the previous section at global scale, i.e., the
variables of the RS+METEO setup from Table C1 in Ap-
pendix C, which has been reproduced from Table 2 of Tra-
montana et al. (2016). Concerning the remote sensing vari-
ables, MODIS observations are used to compute mean val-
ues for each PFT and each day aggregated to 0.5◦ spa-
tial resolution. The distributions of each PFT stem from the
MODIS collection 5 global land cover product of Friedl
et al. (2010). Climatic data for the meteorological variables
have been obtained from CRUNCEPv63, which denotes a
merged data product of monthly observation-based climate
variables at 0.5◦ spatial resolution from the Climate Research
Unit (CRU) at the University of East Anglia in Norwich, UK
and 6-hourly reanalysis data from the National Centers for
Environmental Prediction (NCEP) in Asheville and Silver
Spring, USA.

3 Methodological background: random forest
regression

Ensemble methods are powerful machine learning tools that
combine the outputs of many individual prediction models to
obtain more accurate estimations for a target variable. The
random forest approach (Breiman, 2001) denotes a typical
example, which consists of a set of randomized decision
trees. Decision trees in general can be built for classifica-
tion or regression purposes and they are therefore also called
classification trees or regression trees. Multiple decision trees
form a decision forest and learning their decision rules typi-
cally involves some randomization, which leads to the name
randomized decision forest or short random forest. In the fol-
lowing, the concepts of learning and testing randomized de-
cision trees for regression tasks are briefly summarized, be-
cause they denote the essential parts of random forest regres-
sion. The reader who is familiar with the technical details of
random forest regression can skip this section and may di-
rectly continue with the proposed upscaling approaches in
Sect. 4.

Besides the work of Breiman (1996, 2001), detailed back-
ground information about randomized decision trees and
random forests can be found in various machine learn-
ing textbooks, e.g., those from Mitchell (1997, chap. 3),
Bishop (2006, Sect. 14.3 and 14.4), Hastie et al. (2009,
chap. 9 and 10), and Murphy (2012, Sect. 16.2 and 16.4).
Furthermore, many applications are found in the area of com-
puter vision and medical image analysis (Criminisi and Shot-
ton, 2013). Specific use cases of random forests are also

3Data from CRUNCEPv6 have been obtained via personal cor-
respondence with Nicolas Viovy (email: nicolas.viovy@lsce.ipsl.
fr).

land-cover classification (Gislason et al., 2006), high-density
biomass estimations (Mutanga et al., 2012), and classifica-
tion purposes in ecology like the prediction of plant species
presence (Cutler et al., 2007) among others. Of course, pre-
vious work on the upscaling of fluxes at coarser temporal
resolutions also made use of random forests (Tramontana
et al., 2016; Jung et al., 2017) or related model tree ensem-
bles (Jung et al., 2009, 2010, 2011). Hence, random forests
and tree-based machine learning techniques in general are
applied in a broad range of diverse research fields.

3.1 Randomized decision tree

Given a training set X =
{
x(i)
∈ IRD : i = 1,2, . . .,N

}
of

N samples with each sample x being a vector consist-
ing of D predictor variables x1,x2, . . .,xD and a corre-
sponding real-valued target variable y ∈ IR with observations
y1,y2, . . .,yN ∈ IR for the N training samples, the goal is to
find a set of rules that allow for predicting y based on x. In
the case of a decision tree, these rules are binary tests for
individual predictor variables with simple thresholds. A hi-
erarchical tree structure is built as shown in Fig. 1 by select-
ing at each node i a predictor variable di ∈ {1,2, . . .,D} and
a threshold ti ∈ IR. The estimate of a node i is the average
value yi of the observations computed from training sam-
ples that reach this node. The first node of a decision tree,
called root node, contains all training samples, and hence the
overall mean value y1 =

1
N

∑N
n=1yn of observations yn from

all N training samples is an extremely coarse approximation
that needs to be refined depending on the constellation of the
input variables x.

Starting at node 1 in Fig. 1, the set of training samples is
partitioned into two subsets, represented by nodes 2 and 3,
based on the result of the binary test xd1 ≤ t1. Both nodes,
node 2 and node 3, have associated predicted outputs y2 and
y3 that are computed as the average observation of samples
that reach the corresponding node. The split parameters d1
and t1 are optimized such that the mean squared error for the
training samples is minimized given the respective predic-
tions from node 2 or node 3. Such splits are then computed
for nodes 2 and 3 as well as for further derived nodes until
a stopping criterion is fulfilled. Typical stopping criteria are
(i) a split would create nodes with less than Nmin samples,
(ii) the variance of the observations from samples in a node
is smaller than some threshold σ 2

min, or (iii) a maximum depth
dmax of the tree is reached. The depth of a tree is defined as
the largest distance of a node to the root of the tree. Values of
the parametersNmin, σ 2

min, and dmax can be changed to obtain
either smaller or larger trees, which allows for controlling the
runtime of the algorithm and the trade-off concerning gener-
alization and overfitting.

It is usually the case that multiple stopping criteria are
tested and if one of them is fulfilled, the current node is not
split but becomes a leaf node that stores a final output predic-
tion. Learning a decision tree therefore consists of comput-
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Figure 1. General structure of a decision tree for regression: binary splits with thresholds for individual predictor variables will be used to
navigate a sample x to a leaf node that stores a continuous estimate for the target variable.

ing split parameters until only leaf nodes remain that are not
split any further (Fig. 1). Hence, one distinguishes between
split nodes as the inner nodes of a tree and leaf nodes, each
of which contains the estimated output for any sample that
reaches this node.

To reduce overfitting to the training set, the learning pro-
cess is carried out in a stochastic manner by introducing sev-
eral types of randomization. Whenever split parameters need
to be identified, only a random subset of theD predictor vari-
ables is taken into account. Furthermore, only a fixed amount
of randomly chosen thresholds is tested. Both randomization
techniques also lead to reduced computation costs compared
to exhaustive search. To predict the output y∗ of a test sample
x∗, it is passed through the tree according to the evaluation of
the split functions at the inner nodes starting at the root node.
This is done until a leaf node ` is reached, whose precom-
puted output y` is assigned to x. However, more accurate
predictions can be achieved by considering an ensemble of
randomized decision trees.

3.2 Random forest as an ensemble of randomized
decision trees

In his work about random forests, Breiman (2001) makes use
of a technique called bagging that he has introduced before
(Breiman, 1996). Bagging is an acronym for bootstrap ag-
gregating (Breiman, 1996) and stands for aggregating pre-
dictions of individual models that have been learned based
on different sample sets built from the original training data
set. More precisely, individual sample sets are constructed by
random sampling with replacement from the original train-
ing set, which is commonly referred to as bootstrapping. If
the training set contains N samples, it is possible that each
of the sampled sets either contains also N samples (which
produces different sets with individual instances occurring

several times due to random sampling with replacement) or
only a fraction ν of theN samples. In both cases, the random
subset selections introduced by bagging additionally prevent
overfitting to the training set. For bagging, predictions from
an ensemble of individual models are used and an ensemble
of randomized decision trees is called random forest, ran-
domized decision forest, or random decision forest (RDF).
Each tree in the ensemble is learned separately and indepen-
dent from the other trees. Due to the involved randomization
techniques during learning of a single tree described before,
different trees contain different binary tests and provide dif-
ferent estimates for a single input sample x. The individual
predictions of each tree are then aggregated to obtain a final
result, which is typically carried out by simple averaging as
shown in Fig. 2.

However, the number of trees Ntree is a hyperparameter
whose value needs to be chosen in advance but good as-
signments depend on various aspects. Since Breiman (1996)
pointed out that bagging leads to predictions which are more
stable compared to a single model, especially if the decision
function of the single model is highly instable with respect to
the training set, a larger number of trees is in favor of higher
stability. On the other hand, more trees are causing higher
computational costs during both learning and testing. In ad-
dition, a saturation effect for the prediction accuracy can typ-
ically be observed for an increasing number of trees. Hence,
accuracies obtained by cross-validation for different numbers
of trees can help to identify this saturation and a proper value
for Ntree.

4 Methods for upscaling diurnal cycles

The problem of upscaling diurnal cycles of carbon and en-
ergy fluxes can be formulated as a large-scale regression
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Figure 2. Predicting the output y∗ of a sample x∗ with a randomized decision forest is carried out by averaging the individual predictions
obtained from the T decision trees in the ensemble.

task, i.e., estimating half-hourly fluxes for every grid cell
of the globe based on a set of predictor variables. These
predictor variables typically encode climate conditions or
Earth observations obtained from remote sensing at the cor-
responding spatial positions. However, the temporal resolu-
tions of variables can be different, not only between the tar-
get flux (half-hourly) and a predictor variable (e.g., daily) but
also among different predictor variables (e.g., daily and half-
hourly). Therefore, two prediction approaches for upscaling
diurnal cycles are presented in Sect. 4.1 and 4.2, respectively,
which account for this mismatch of temporal resolutions. Al-
though both approaches can be equipped with any regression
algorithm, we have decided to use the RDF as a nonlinear
method, which has been summarized in the previous sec-
tion. The main reasons for this choice are the fast learning
and testing algorithms, because the upscaling tasks involve a
huge number of samples such that learning nonlinear kernel
methods for regression like Gaussian processes (Rasmussen
and Williams, 2006) are impractical due to both memory de-
mand and computation time. Furthermore, Tramontana et al.
(2016) have shown in their cross-validation experiments that
the accuracies for estimating fluxes vary only slightly among
different machine learning methods.

4.1 First prediction approach: an individual regression
model for every half hour of the day

Recall from the beginning of Sect. 4 that the two main chal-
lenges for upscaling diurnal cycles to global scale are the
huge amount of data which needs to be handled as well as
the mismatch of temporal resolutions between predictor vari-
ables and the target fluxes. The first approach for predicting
diurnal cycles has the advantage that it allows for using only

predictors of daily temporal resolution. This is very impor-
tant, because daily (average) values are often less noisy with
respect to measurement noise and the availability of daily
values is much higher compared to half-hourly values, espe-
cially when considering global products with values for every
grid cell. Furthermore, variables derived from remote sens-
ing are often limited to daily temporal resolution meaning
that they are not more frequent than once per 24 h. Therefore,
the first prediction approach involves learning an individual
regression model for each half hour of the day and as indi-
cated at the beginning of Sect. 4, RDF regression models are
used for handling large-scale data. A schematic overview for
a single day and a diurnal cycle of GPP is shown in Fig. 3.

Even if one uses only predictor variables of daily tempo-
ral resolution which can be treated as constant for the whole
day, different values of the target flux for different half hours
of the day can be estimated. The reason is that the 48 dif-
ferent RDF models are learned with different values for the
target output variable y, although the same values for the
predictor variables x are used. For example, an RDF model
that is learned for a half hour during night only covers the
rather small range of observations y that can be observed
at this time, while the range of observations around noon is
typically much larger, especially during the growing season.
Hence, the 48 RDF models and their estimated outputs dif-
fer only because of different observations y that are provided
during learning together with the same set of samples X . Of
course, it is also possible to incorporate predictor variables
at half-hourly temporal resolution, which would directly fit
to the resolution of the target flux. Such predictor variables
could further enhance the distinction of individual half hours
of a day and could lead to more accurate estimations. How-
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Figure 3. Visualization of the first prediction approach: an individual RDF regression model has been learned for each half hour of a day
by just using training data from the corresponding half hour. Here, the predictions of half-hourly fluxes for a single day are visualized. The
predictor variables are passed to the individual RDF regression models indicated by the arrows above the RDF models. Each RDF model
computes an output for the corresponding half hour, which is shown by the arrows below the RDF models, such that the diurnal cycle is
estimated by a conjunction of 48 different predictions from 48 different regression models. Note that this approach allows for predicting
diurnal cycles only based on predictors with daily resolution (by ignoring the vertical colored bars in the upper part). However, predictors
with half-hourly resolution can also be incorporated (by adding the corresponding half-hourly values indicated by the vertical colored bars).

ever, they are optional and not required for this prediction
approach as indicated in Fig. 3.

4.2 Second prediction approach: a single regression
model suitable for all half hours of the day

In contrast to the first prediction approach, the second ap-
proach only uses a single regression model that is able to esti-
mate different values for different half hours of the same day.
It is then necessary that the distinction between these half
hours is somehow encoded in the predictor variables, which
is not the case if only predictors of daily resolution are incor-
porated. Therefore, this approach requires at least one predic-
tor variable at half-hourly temporal resolution. Fortunately,
the potential radiation (Rpot) can be calculated globally at
half-hourly resolution, because it only depends on the time
as well as the solar angle that is defined given the spatial po-
sition via latitude and longitude. Thus, the second approach
with a single model, as visualized in Fig. 4, is therefore also
applicable for upscaling diurnal cycles to global scale. Again,
we make use of an RDF regression model due to its large-
scale capabilities.

In addition, besides the potential radiation, its first-order
temporal derivative can also be incorporated as an additional
half-hourly predictor. This allows for a distinction between
morning and afternoon via the sign of the derivative as well

as for the distinction between day and night. The latter is
achieved because Rpot is zero for many consecutive hours
during night leading also to a value of zero for its derivative
in contrast to nonzero values of the derivative in the day-
time. For all our computations, we have always included this
derivative in the case when we also used Rpot. The nice prop-
erty of this approach is that information about the physical
relationships between the predictor variables and the fluxes
can be shared among different half hours during learning of
the single regression model, which is not the case for in-
dividual models as mentioned in the previous section. This
second prediction approach therefore seems to be more plau-
sible from a physical perspective, because the distinction be-
tween different half hours of the day is made based on the
data, e.g., (potential) radiation, and not enforced by learning
independent regression models for each half hour.

Although meteorological variables such as air temperature
or vapor pressure deficit (VPD) as well as incoming radiation
are also potential candidates for predictors that encode sub-
daily variations in the fluxes, they are currently only avail-
able with a half-hourly resolution at individual sites, e.g.,
also measured at eddy covariance towers. Due to the missing
half-hourly meteorological data products at a global scale, it
is not possible to use these information for the global upscal-
ing. However, since we are interested in whether such data
products could be beneficial for upscaling diurnal cycles, we
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Figure 4. Visualization of the second prediction approach: a single RDF regression model is able to predict the flux at every half hour of the
day if at least one predictor variable has a half-hourly temporal resolution (such as the potential radiation Rpot). This is different from the first
prediction approach shown in Fig. 3, because the whole training data of all half hours are used to learn a single RDF regression model. The
upper part of the figure shows the composition of the input data (predictor variables) that are required for predicting the half-hourly values
of a single day. For each half hour, the corresponding values of the predictors with half-hourly resolution are added to the predictors with
coarser temporal resolution (indicated by the vertical color bars). We then have 48 distinct samples due to the distinction from the half-hourly
predictor variables and these samples are delivered to the single RDF regression model indicated by the arrows in the upper part. For each
sample, the RDF model calculates an output value (lower part) that denotes the estimate for the corresponding half hour within the diurnal
cycle.

use the corresponding site-level data in our cross-validation
analysis to get further insights. Hence, meteorological vari-
ables measured at the eddy covariance towers of FLUXNET
can still be used for validating the upscaling approaches and
evaluations of cross-validation experiments are presented in
the next section.

5 Assessing different upscaling strategies with
leave-one-site-out cross-validation

The global products presented in this paper cover diurnal cy-
cles of four fluxes: GPP, NEE, LE, and H. For each of these
fluxes, we have consistently performed cross-validation ex-
periments but the results presented in the following only con-
sider GPP as a running example. We have decided to apply
RDF models for regression due to its efficient training and
testing algorithms, even in the case of large-scale data, as
well as its good performance for upscaling daily mean val-
ues of GPP (Tramontana et al., 2016). Each RDF was trained
with 100 randomized decision trees, because we observed a
saturation effect for the prediction performance in prelim-
inary experiments when increasing the number of decision
trees. Further parameters have been set to its default val-
ues in Matlab’s TreeBagger function, e.g., a minimum leaf

size of five samples, since we hardly observed any changes
in the overall performances when varying the parameter set-
tings. Performances are measured using the Nash–Sutcliffe
modeling efficiency (Nash and Sutcliffe, 1970) as well as the
root-mean-square error (RMSE) based on a leave-one-site-
out cross-validation scheme.

The Nash-Sutcliffe modeling efficiency, from now on sim-
ply called modeling efficiency, has been introduced by Nash
and Sutcliffe in the context of river flow forecasting but it is
often also used as an evaluation criterion in other applications
that involve the prediction of variables, especially in related
upscaling tasks (Jung et al., 2011; Tramontana et al., 2016).
A perfect match between observations and predictions would
be reflected by a modeling efficiency of 1, whereas always
using the mean of all observations as an estimate translates
to a modeling efficiency of 0 and negative modeling efficien-
cies indicate that the learned model performs worse than al-
ways assigning the mean of the observations. The modeling
efficiency is related to the fraction of explained variance and
to the coefficient of determination (R2). While values close
to 1 are preferred for the modeling efficiency, RMSE is a
non-negative measure with an optimal value of 0.

The motivation for the leave-one-site-out evaluation as a
special case of cross-validation is twofold. First, we want
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to evaluate regression models that have been learned from
as many observations as possible and based on training sets
that are most similar to the training set that will be used to
compute the global products, which will incorporate all the
available data from all FLUXNET sites. Second, we intend
to mimic a realistic scenario most similar to the upscaling
task by predicting fluxes at locations where no training data
has been taken from. As a consequence, we predict fluxes at
one FLUXNET site using a regression model learned with
all observations from all the remaining FLUXNET sites. Af-
ter doing this for each individual site, we concatenate all
site-specific predictions to form a long vector of predictions
that can be compared to the corresponding observations mea-
sured at the corresponding sites. This allows for a general
evaluation of the prediction approaches in a site-independent
manner.

5.1 Overview of experiments

We start with a short overview of the experiments that have
been conducted in order to clarify our ideas and motiva-
tions behind them. In Sect. 5.2, we compare the two different
prediction approaches for upscaling diurnal cycles that have
been introduced in Sect. 4. Furthermore, we focus on com-
paring different sets of predictor variables, e.g., the effect
of meteorological variables at half-hourly resolution on the
prediction performances. Evaluations of the prediction per-
formance for monthly average diurnal cycles derived from
the half-hourly values are shown in Sect. 5.3. These aver-
age diurnal cycles per month nicely summarize the fluxes
over a longer time period (one month) by still keeping a half-
hourly pattern that allows for monitoring subdaily variations.
In addition, averaging diurnal cycles for a specific month re-
moves noise in the individual half-hourly measurements and
reduces the effects of day-to-day variability, e.g., caused by
cloud coverage, which allows for comparing the main char-
acteristics of the observations and the predictions for the se-
lected month. The evaluations of monthly average diurnal cy-
cles play an important role with regard to our provided data
products, since we also prepare derived products that only
contain these monthly average patterns. With two additional
experiments presented in Sect. 5.4, we want to demonstrate
that the quality of our achieved predictions is not inherently
limited by the presented upscaling approaches but rather by
missing site-specific information and latent driving forces
that are not encoded in the set of predictor variables that has
been used. This is not a specific problem of upscaling diurnal
cycles of fluxes at half-hourly resolution but a general chal-
lenge for all upscaling approaches that deal with carbon and
energy fluxes, also at coarser timescales.

5.2 Improved predictions by using half-hourly
meteorological data

In the following, we compare the results of our presented
prediction approaches for half-hourly GPP depending on dif-
ferent sets of predictor variables, which have been obtained
by using the leave-one-site-out strategy explained in the be-
ginning of Sect. 5. As the core for all sets of predictors,
we include those variables that have been used for upscal-
ing daily mean GPP values by Tramontana et al. (2016). In
fact, we use exactly the same set of predictors that corre-
sponds to the RS+METEO setup which has been defined
by Tramontana et al. (2016, Table 2) and this table can also
be found in Appendix C. Given the explanations of the first
prediction approach in Sect. 4.1 with individual regression
models for each half hour, we can directly use these predic-
tor variables for estimating half-hourly GPP values. How-
ever, we also added the potential incoming radiation Rpot
at half-hourly resolution to encode subdaily variations in
the predictors as well as its first temporal derivative to dis-
tinguish between morning and afternoon. Furthermore, we
have tested a third set of predictors by additionally incor-
porating meteorological variables with half-hourly resolu-
tion measured at FLUXNET tower sites. The added vari-
ables are air temperature, vapor pressure deficit, and incom-
ing global radiation. In a nutshell, the three sets of predic-
tor variables consist of (i) daily predictors, (ii) daily pre-
dictors+ half-hourly Rpot, and (iii) daily predictors+ half-
hourly Rpot+ half-hourly meteorological predictors, besides
static predictors like PFT that are used in all three cases. The
second and third set are also used in the experiments for the
second prediction approach that includes only a single re-
gression model, because half-hourly information is encoded
in some of the predictor variables.

In Fig. 5, we have visualized the results for all sites as
well as for selected FLUXNET towers. Only for compari-
son to the leave-one-site-out experiments, we also included
the modeling efficiency of a gap-filling algorithm (Reichstein
et al., 2005) as a potential upper bound for our predictions. In
fact, each measured value is also estimated by a gap-filling
algorithm that makes use of flux measurements at the same
site under similar climate conditions and hence provides only
a theoretical baseline, because it can not be applied for pre-
dicting fluxes at locations without any observations. First, we
focus on the leftmost group of bars in Fig. 5, which shows
the modeling efficiencies for all sites. Looking at the results
for the first prediction approach with individual models for
each half hour, including half-hourly Rpot only slightly im-
proves the average performance (0.67 compared to 0.66),
which is probably also caused by the stochastic nature of
the RDF learning algorithm. However, including the mete-
orological predictors at subdaily temporal resolution leads to
an increase in the performance to 0.70 modeling efficiency.
A similar improvement can be observed for the second pre-
diction approach with a single model for all half hours of the
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Figure 5. Prediction performances (a modeling efficiency; b RMSE in µmol m−2 s−1) for individual half-hourly values of GPP depending
on different sets of predictor variables are shown. We compare our two proposed prediction approaches (individual RDF models and single
RDF model) and also include the results of a gap-filling algorithm for comparison. Looking at the results of all sites as well as at site-
specific performances, we observe that meteorological predictor variables at half-hourly resolution clearly improve the accuracies of the
estimations. Site acronyms: Canada Manitoba Black Spruce (CA-Man), Germany Hainich (DE-Hai), France Puechabon (FR-Pue), Italy
Castelporziano (IT-Cpz), USA Mississippi Goodwin Creek (US-Goo), USA California Vaira Ranch (US-Var).

day, because the modeling efficiency increases from 0.67 to
0.71 when including half-hourly meteorological data. This
highlights that varying subdaily meteorological conditions
has a clear impact on predicting the diurnal cycles of GPP
fluxes.

On the one side, half-hourly Rpot has almost no influence
on the accuracy of the predictions but on the other side,
it allows for applying the second prediction approach with
only a single regression model. Hence, it may seem more
natural from a physical perspective to distinguish individ-
ual half hours of the day by the provided half-hourly Rpot
rather than enforcing the distinction by separately learned re-
gression models. Comparing both prediction strategies, they
achieve similar performances when using the same set of pre-
dictor variables. Since it is more convenient from a technical
perspective to only handle a single regression model instead
of 48 different models, the evaluations in the following sec-
tions will focus on the second prediction approach with a sin-
gle RDF model that is suitable for predicting values at every
half hour of the day. It is interesting to note that relative per-
formance differences between the two prediction approaches
and among the different sets of predictor variables look very
similar when considering single sites only. In all our cross-
validation experiments, the best prediction accuracies are al-
ways achieved by including half-hourly meteorological vari-
ables in the set of predictors. However, absolute performance
values vary among sites. As shown in Fig. 5, the accuracies
at the sites CA-Man and DE-Hai are between 0.80 and 0.90
modeling efficiency, whereas lower performances (between
0.60 and 0.80) have been achieved for predicting GPP at FR-
Pue, IT-Cpz, and US-Goo. Moreover, the fluxes at US-Var

seem to be very difficult to estimate, since only modeling ef-
ficiencies between 0.20 and 0.30 were obtained.

To further highlight the difference in the predictions when
half-hourly meteorology is encoded in the driver variables,
we visualize all half-hourly estimations over one year at a
specific site using fingerprint plots. A fingerprint in this con-
text is a plot with 365 rows corresponding to 365 days of a
year and 48 columns corresponding to 48 half hours of each
day such that one fingerprint contains all half-hourly values
of a whole year and shows characteristic patterns for the se-
lected site, e.g., length of the growing season. In Fig. 6, the
estimations of half-hourly GPP with and without half-hourly
meteorological predictors are shown in two individual fin-
gerprint plots and their difference is indicated in a third plot.
As expected, the predictions based on half-hourly meteorol-
ogy contain much more short-term fluctuations during single
days, whereas smoother estimations are obtained when only
half-hourly Rpot is used as a subdaily driver. This can also be
observed from the difference of the two fingerprints. Hence,
half-hourly meteorological predictor variables are required to
better capture high-frequency changes in the fluxes on sub-
daily timescales. In the following, we take a closer look at
average diurnal cycles per month.

5.3 Analyzing average diurnal cycles per month

For visual inspection purposes, it is useful to look at aver-
age diurnal cycles for individual months at specific sites. Ex-
ample plots are shown in Fig. 7. They show that our predic-
tions are able to produce the typical shapes of diurnal courses
which are in line with corresponding observations. For the
depicted predictions, only observations from other sites have
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(a) Predictions for US-SO2 in 2004 with
daily predictors + half-hourly Rpot +
half-hourly meteorological predictors
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(b) Predictions for US-SO2 in 2004 with
daily predictors + half-hourly Rpot
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(c) Difference of the first two plots
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Figure 6. Fingerprint plots of half-hourly GPP fluxes estimated for US-SO2 in 2004 with leave-one-site-out cross-validation which show
that short-term fluctuations on subdaily timescales are captured better when half-hourly meteorological predictors have also been included
(a) compared to only using half-hourly Rpot (b). The difference of the first two plots (c) also emphasizes this observation.
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Figure 7. Some example sites with average diurnal cycles for different months comparing two prediction approaches with the observations.
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Table 1. Modeling efficiencies (and RMSE in µmolm−2 s−1) for the predictions of all sites obtained from the leave-one-site-out experiments
are summarized and here we differentiate between comparing all individual half-hourly values with the observations and only looking at
monthly average diurnal cycles.

Comparing all Comparing monthly
Approach half-hourly values average diurnal cycles

Individual models

daily predictors 0.66 (3.94) 0.78 (2.97)
daily predictors+ half-hourly Rpot 0.67 (3.93) 0.78 (2.95)
daily predictors+ half-hourly Rpot 0.70 (3.67) 0.80 (2.82)
+ half-hourly meteorological predictors

Single model

daily predictors+ half-hourly Rpot 0.67 (3.94) 0.78 (2.95)
daily predictors+ half-hourly Rpot 0.71 (3.65) 0.80 (2.80)
+ half-hourly meteorological predictors

Gap-filling 0.87 (2.50) 0.93 (1.62)
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Figure 8. Prediction performances for monthly average diurnal cycles of GPP are shown in the same way as the accuracies for all half-hourly
values in Fig. 5 (a modeling efficiency; b RMSE in µmol m−2 s−1).

been used to learn the regression models. It is important to
note that averaging diurnal cycles within a month reduces
noise in the observations as well as in the predictions of
a single day, but also smoothens high-frequency short-term
fluctuations, e.g., due to (partial) cloud coverage, and yet de-
creases the influence of day-to-day variations. Hence, these
mean diurnal courses are more stable and an evaluation of
averaged predictions with respect to averaged observations
for all sites leads to larger modeling efficiencies compared to
those reported in the previous section. An overview of mod-
eling efficiencies when comparing all half-hourly values ver-
sus only looking at the average diurnal cycles is given in Ta-
ble 1.

In fact, modeling efficiencies for monthly average diur-
nal cycles increase on average across all sites to a range be-
tween 0.78 and 0.80 depending on the set of predictor vari-

ables with the best results being accomplished again by in-
corporating half-hourly meteorological data. This can also
be observed from Fig. 8, which is organized in the same
way as Fig. 5 but contains the achieved modeling efficiencies
for comparing monthly average diurnal cycles of observa-
tions and predictions. For the monthly mean diurnal courses,
the difference between only using half-hourly Rpot or also
including half-hourly meteorology is not so large anymore
compared to the evaluations for all half-hourly values. This
holds for both the overall accuracies for all sites as well as
for single selected sites. As previously mentioned, the rea-
son is that averaging fluxes within a month reduces the ef-
fect of short-term fluctuations on subdaily timescales. There-
fore, if one is only interested in monthly average diurnal cy-
cles, the results obtained by using daily predictors and half-
hourly Rpot are only slightly worse compared to including
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Figure 9. Average diurnal cycles of two sites showing the problems with seasonal droughts. The error in the prediction of the half-hourly
fluxes increases during hot and dry summers for both sites, FR-Pue and IT-Cpz.

half-hourly meteorology and for some sites, the prediction
performances are even on the same level of accuracy. This is
important to know, since we also provide a derived product
from our global half-hourly fluxes that contains the monthly
average diurnal cycles globally at the same spatial resolu-
tion (Sect. 6).

However, the average diurnal cycles can also be used to
identify potential problems of the predictions. In Fig. 9, mean
diurnal courses of several months at the sites FR-Pue and IT-
Cpz are shown. It can be observed for both sites that the aver-
aged observations are lower in the summer months compared
to the corresponding predictions. In other words, the regres-
sion models overestimate GPP during these months. We be-
lieve that this is caused by the fact that our current prediction
models are not able to cope with seasonal droughts, which is
not a specific problem of diurnal upscaling but a challenge
that every upscaling approach for carbon and energy fluxes
needs to tackle. Although the observations show decreased
productivity due to drought stress in summer, the regression
models still estimate large amplitudes of the diurnal cycles,
i.e., a larger productivity. One reason for this behavior could

be the insufficient characterization of water availability that
is present in the set of predictor variables. Currently, we plan
to investigate this issue in further research. In the following,
we show that our current sets of predictor variables are lack-
ing some site-specific information, probably not only with
respect to water storage capacities.

5.4 Are we missing (site-specific) information in the
predictors?

In order to gain any insights into whether site-specific infor-
mation is currently not well represented in the predictors, we
have conducted two auxiliary experiments. During the first
experiment, we additionally estimate GPP fluxes at each site
in a leave-one-month-out setup and compare the resulting
predictions with those of the leave-one-site-out setup. For the
leave-one-month-out estimations, we learn and test regres-
sion models for each month at each site separately. Further-
more, each regression model for each month is only learned
with data from the same site but measured in different months
(and years). Hence, the regression models are highly site-
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Figure 10. Comparison between leave-one-site-out (a) and leave-one-month-out (b) at IT-Cpz. It can be observed that site-specific training
in the leave-one-month-out setup reduces the prediction errors during seasonal droughts. Thus, the drought effects only lead to problems
when training across sites and predicting fluxes in the leave-one-site-out setup or for the upscaling when fluxes are estimated at locations
where no towers exist.

specific, since only correspondences between predictor vari-
ables and GPP fluxes at a single site are used and predictions
are made at the same site but in a different time period. As
a result, we have observed improved flux estimations, which
is shown exemplarily in Fig. 10 for IT-Cpz. It can be clearly
seen that the gaps between averaged observations and aver-
aged predictions are getting smaller and mostly almost disap-
pear; i.e., the predictions match the observations much better
in the leave-one-month-out setup. In terms of modeling ef-
ficiency, the performances increase to a range between 0.75
and 0.79 when comparing all individual half-hourly predic-
tions from the leave-one-month-out setup at all sites with
the observations (best performance with leave-one-site-out
is 0.70). Regarding the comparison of averaged predictions
and averaged observations within each month as presented in
the previous section, the leave-one-month-out setup leads to
modeling efficiencies between 0.87 and 0.89. This is clearly
larger than the results of the leave-one-site-out-experiment
(best performance: 0.80). Table 2 allows for a direct com-

parison of the results from the leave-one-site-out and the
leave-one-month-out experiments using both prediction ap-
proaches with the best set of predictor variables, i.e., daily
predictor variables, half-hourly Rpot, and half-hourly meteo-
rological variables.

This table also contains the prediction performances ob-
tained from a second experiment, in which we have used the
daily GPP as an additional daily predictor for our regression
models in the leave-one-site-out setup. Of course, this is only
possible in the cross-validation analysis where we actually
have the daily averages of GPP, but the following evaluation
reveals interesting insights. Using the daily average GPP ba-
sically incorporates information about the amplitudes of the
diurnal cycles, hence drought effects of reduced productivity
can directly be observed in this additional predictor variable.
First of all, it can be seen in Fig. 11 that using the daily GPP
as an additional predictor clearly improves the predictions
at FR-Pue during summer months. Especially the decreased
productivity in July and August 2005 can be nicely predicted
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Figure 11. Improvements in the initial estimations (a) at FR-Pue can be observed when using daily GPP as an additional daily predictor if it
would be available a priori (b). Hence, the problems with seasonal drought effects would be greatly reduced in the leave-one-site-out setup
for every half hour of the diurnal cycle in the case when an accurate estimate of the daily average value is given.

by the regression models. Since the daily GPP as an addi-
tional predictor constrains the size of the peak in a diurnal
cycle, the predictions become much more powerful and the
characteristic shapes of the diurnal cycles can be produced.
The modeling efficiencies are even larger than those obtained
with the leave-one-month-out setup. They are in the range
of 0.83 to 0.87 for all half-hourly values at all sites, which
is comparable with the performance of the gap-filling algo-
rithm that has been included as an additional reference in
Fig. 5 as well as in Table 2. The gap-filling also achieves a
0.87 modeling efficiency; i.e., the upper performance limit
shown as a green bar in the leftmost group in Fig. 5 can be
obtained by including the daily GPP as an additional predic-
tor. Regarding monthly averaged diurnal cycles, a modeling
efficiency of up to 0.94 is obtained by the regression mod-
els that use daily GPP as an additional predictor, while gap-
filling reaches 0.93. This is also summarized in Table 2.

From this experiment, we can conclude that the problems
for predicting diurnal cycles of GPP are mainly caused by the
lack of estimating the daily mean GPP properly. If the daily

mean is given, predictions of half-hourly values are much
more accurate. Hence, the main problems for the upscaling
of half-hourly fluxes are not related to producing the right
shapes of the diurnal courses, but turn out to be problems of
estimating the correct amplitudes. These are then the same
problems as for upscaling daily average values (or fluxes at
coarser timescales) and are not introduced by the step of go-
ing to a larger temporal resolution in terms of half hours.

5.5 Key insights from the cross-validation experiments

In this section, we want to shortly summarize the main find-
ings from our cross-validation experiments. First, we have
seen that it does not really matter which of the two proposed
prediction approaches we are using, since prediction perfor-
mances hardly differed between the single model approach
and the individual model approach. We prefer to use the sin-
gle model approach, because it seems to be more plausible
from a physical perspective to make distinctions between
half hours of a day by the information encoded in the pre-
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Table 2. Comparing modeling efficiencies (and RMSE in µmolm−2 s−1) of the two auxiliary experiments (leave-one-month-out setup and
including the daily GPP as an additional predictor in the leave-one-site-out setup) to the best performances obtained with the leave-one-site-
out experiments by using daily predictor variables, half-hourly potential radiation, and half-hourly meteorological variables.

Comparing all Comparing monthly
Approach half-hourly values average diurnal cycles

Individual models

Leave-one-site-out 0.70 (3.67) 0.80 (2.81)
Leave-one-month-out 0.78 (3.15) 0.88 (2.16)
Leave-one-site-out+ daily GPP 0.86 (2.50) 0.93 (1.60)

Single model

Leave-one-site-out 0.71 (3.65) 0.80 (2.80)
Leave-one-month-out 0.79 (3.06) 0.89 (2.07)
Leave-one-site-out+ daily GPP 0.87 (2.46) 0.94 (1.58)

Gap-filling 0.87 (2.50) 0.93 (1.63)

dictor variables and half-hourly Rpot can always be used for
this purpose. Second, including half-hourly meteorological
information in the predictors clearly helps to improve the pre-
diction performances for fluxes on the half-hourly timescale.
However, for monthly average diurnal cycles the differences
are not so prominent anymore and estimations based on half-
hourly Rpot as the only predictor at half-hourly resolution
may be sufficient for analyzing the monthly patterns. Third,
we have shown that the main problem for upscaling half-
hourly fluxes is not the fact that we increase the temporal
resolution, since we are able to reproduce the characteris-
tic subdaily patterns. Moreover, we are lacking additional
information in the predictors that encode site-specific char-
acteristics as well as certain special conditions like seasonal
droughts. This currently prevents us from obtaining the cor-
rect day-to-day variability and also, in the end, the correct in-
terannual variability. However, these are also problems that
need to be tackled when an upscaling of carbon and energy
fluxes at coarser timescales is considered (Tramontana et al.,
2016). In the following section, we summarize the results
from our cross-validation experiments for all the four fluxes
(GPP, NEE, LE, H) with the setup that has been used to com-
pute the global half-hourly data products.

5.6 The selected approach for computing the global
products

While the previous sections validate the presented prediction
approaches and point to potential problems in the estimation
of half-hourly fluxes, we also decided to produce the first
global products of half-hourly GPP and NEE, as well as LE
and H that will be described in the next section. So far, the
analyses have shown that best predictions are obtained by
incorporating meteorological variables at half-hourly resolu-
tion, but such data products are not available at a global scale.
Therefore, we have computed the global products only based

on the daily predictors of the RS+METEO setup from Tra-
montana et al. (2016, Table 2), which can also be found in
Appendix C, as well as using half-hourly values of Rpot and
its first temporal derivative. The used data sources have been
described in Sect. 2 and the set of daily predictors varies be-
tween carbon and energy fluxes as indicated within the afore-
mentioned table.

Furthermore, we have decided to use the second prediction
approach (Sect. 4.2) by learning one single regression model
that is suitable for all half hours of the day. For us, it seems
more natural from a physical perspective to distinguish be-
tween different half hours of a day by (potential) radiation
as an additional variable rather than enforcing the distinction
with individual models for each half hour as it is done in the
first prediction approach (Sect. 4.1).

In Table 3, we report the corresponding prediction per-
formances from the leave-one-site-out cross-validation ex-
periments for this setup, i.e., for the selected set of predic-
tor variables and the single regression model approach. The
modeling efficiencies for both individual half-hourly values
and monthly average diurnal cycles are stated. Comparing
these values, we observe that the accuracies for predicting
energy fluxes are higher compared to those for the carbon
fluxes. Half-hourly values of the sensible heat flux can be
best estimated by achieving a modeling efficiency of 0.77
across all sites. On the other hand, net ecosystem exchange
has only been predicted with a modeling efficiency of 0.61.
This performance is lower compared to the one for gross pri-
mary production (0.67), probably due to missing information
in the predictor variables for the respiration component of
NEE. For all four fluxes, the modeling efficiencies are higher
when comparing monthly average diurnal cycles of observa-
tions and predictions. The main reasons, as also mentioned
in Sect. 5.3, are the reduction of noise and the smoothing of
short-term fluctuations at subdaily timescales due to the av-
eraging. In the following section, we present the global half-
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Table 3. Prediction performances in terms of modeling efficiency (and RMSE in µmolm−2 s−1) are estimated from the leave-one-site-out
cross-validation experiments with the setup that has been used to compute the global half-hourly products for the four fluxes.

GPP NEE LE H

Modeling efficiencies related to all individual half-hourly values 0.67 (3.94) 0.61 (3.66) 0.72 (37.96) 0.77 (45.18)
Modeling efficiencies related to monthly average diurnal cycles 0.78 (2.95) 0.76 (2.66) 0.83 (26.12) 0.86 (29.40)

hourly flux products that have been calculated with the up-
scaling approach and the setup of this section.

6 Global flux products with half-hourly resolution

For each of the four fluxes (GPP, NEE, LE, H), we have
learned a single regression model for all half hours based
on all available half-hourly values of the corresponding flux
at the 222 FLUXNET sites listed in Appendix D, i.e., one
regression model for GPP, one for NEE, one for LE, and
one for H. These models are then used to compute half-
hourly fluxes globally with 0.5◦ spatial resolution and con-
tinuously from 2001 (1 January) to 2014 (31 December) us-
ing global forcing data described in Sect. 2.2. As mentioned
in the previous section, we have used the daily predictors of
the RS+METEO setup from Tramontana et al. (2016, Ta-
ble 2) as well as half-hourly values of Rpot and its first tem-
poral derivative. Note that this table has been reproduced
in Appendix C for faster reference. Furthermore, it should
be noted that the global products have been initially cal-
culated such that they are tiled by PFT. The final flux for
each point in space and time has then been determined as
a weighted sum depending on the percentage of each PFT
to be present in the corresponding grid cell. When looking
at annual sums of the half-hourly data products, we observe
that these sums are pretty constant among the different years
for the individual fluxes. On average, we get 125.94 PgC for
GPP and −21.42 PgC for NEE as well as 182.22 ZJ for LE
and 144.79 ZJ for H.

In addition to the provided half-hourly data, we also offer
derived products containing the monthly average diurnal cy-
cles of the four fluxes for the 14 years that are covered by
the half-hourly product. For the potential user of the data, it
will be much more convenient to directly obtain the monthly
average diurnal cycles compared to downloading the much
larger half-hourly data product and computing the monthly
averages afterwards. Furthermore, the monthly average di-
urnal cycles are more robust, which has also been shown
by larger modeling efficiencies in the experimental evalua-
tions, e.g., as listed in Table 1. Since only daily predictor
variables and half-hourly Rpot are used to estimate the half-
hourly fluxes, short-term fluctuations on subdaily timescales
due to cloud cover and other effects can not be captured by
the current version of the product. Therefore, also day-to-
day variations may not be represented accordingly. However,
the averaging to create monthly mean diurnal cycles reduces

the impact of these factors and additionally smoothens errors
due to observation noise. As a consequence, we recommend
to primarily use the monthly average diurnal cycles because
of larger robustness and stability. In the following, we show
some characteristics of the computed global flux products at
half-hourly resolution, which can only be calculated due to
the subdaily timescale.

6.1 Global maps and fingerprints

Cutouts of the global products are visualized in Fig. 12,
where we have selected 14 June 2014 at 13:00 UTC in the
time domain. Global maps of GPP and NEE are shown in
the top row of Fig. 12 and one can nicely distinguish day-
time from nighttime for individual regions around the world.
Furthermore, selected locations are highlighted and all half-
hourly values of the year 2014 for these grid cells are sum-
marized in fingerprint plots, which allow for identifying dif-
ferent characteristics at the corresponding places due to the
different patterns in these plots. The fingerprints provide a
nice overview of the half-hourly fluxes over a whole year
and different lengths of the growing season as well as vary-
ing lengths of the day (time between sunrise and sunset) can
directly be observed. Corresponding maps for LE and H with
fingerprint plots for the same locations are shown in the bot-
tom row of Fig. 12. Larger values of LE compared to H at
this specific point in time can be observed in western, cen-
tral, and eastern Europe as well as in the tropical regions of
Africa, whereas it is vice versa on the Iberian Peninsula as
well as in the northern and southern regions of Africa.

6.2 Maximum diurnal amplitudes within a month

Besides the fingerprint plots summarizing a whole year of
half-hourly values for a specific location, it is also possible to
compute diurnal amplitudes for each grid cell from the global
products. We again picked GPP acting as an example for
all the fluxes and determined maximum diurnal amplitudes
within each month. In Fig. 13, the maximum diurnal ampli-
tudes of GPP are visualized for June and December 2014
with a logarithmic color scale. These months have been cho-
sen to indicate differences between summer and winter. The
biosphere at the Northern Hemisphere is quite active in June
showing large amplitudes, whereas maximum amplitudes are
close to zero at most of the grid cells of the Northern Hemi-
sphere in December. In the tropics, amplitudes of GPP do not
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Figure 12. The global maps show estimated values for half-hourly GPP (a), NEE (b), LE (c), and H (d) on 14 June 2014 at 13:00 UTC. In
addition, fingerprints for selected grid cells are used to visualize half-hourly values for each day of the year. The dot in each fingerprint marks
the value that is shown in the global map. Note that the fingerprints display different extensions of the growing season in different regions
and the global maps allow for distinguishing between daytime (e.g., in Europe and Africa) and nighttime (e.g., in East Asia, Australia, and
in the western parts of North America).

vary much between June and December with values around
30 µmolm−2 s−1. As expected, the behavior in the Southern
Hemisphere is opposite to the Northern Hemisphere; i.e., the
productivity in the Southern Hemisphere is higher in Decem-
ber compared to June.

6.3 Maximum half-hourly fluxes

Furthermore, we have been interested in the maximum flux
at each spatial position. These statistics have been calculated
among all the years 2001 to 2014 to produce a single map
of maximum half-hourly values for each flux. The results are
shown in Fig. 14. Those maximum values denote the capa-
bilities of each flux at each grid cell. For GPP, the hot spots
with maximum capacities are in the corn belt of the USA,
in eastern China, and in the tropical regions. Largest values

of NEE are obtained in the tropics as well, especially in the
Amazon. Regarding the energy fluxes, it is not so easy to
identify single hot spot regions since large values of LE or
H are widespread. However, distinct spatial patterns can be
observed in all maps of the maximum fluxes.

6.4 Comparison with ensemble of atmospheric
inversions

Finally, we want to compare our global product of NEE
with an ensemble of atmospheric CO2 inversions that con-
tains CarbonTracker (Peters et al., 2007), CarbonTracker Eu-
rope (Peters et al., 2010), the Jena CarboScope inversion
scheme (s99_V3.6) from Rödenbeck (2005), and MACC-
II of Chevallier et al. (2010) that has also been used by
Peylin et al. (2013). We consider temporal aggregations with
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Figure 13. Maximum diurnal amplitudes of GPP within a month are shown for June 2014 (a) and December 2014 (b). Differences between
summer and winter for both the Northern Hemisphere and the Southern Hemisphere as well as (almost) constant productivity in tropical
regions can be observed from both maps. Note the logarithmic color scale.
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Figure 14. Maximum half-hourly values of GPP (a), NEE (b), LE (c), and H (d) during the years 2001 to 2014 are shown for each grid cell.

a monthly resolution and have computed the mean seasonal
cycle (MSC) from the years 2001 to 2010 for each grid cell.
In the spatial domain, we have then performed an averag-
ing step according to the 11 TransCom land regions (Gur-
ney et al., 2002): North American Boreal, North American
Temperate, South American Tropical, South American Tem-
perate, Northern Africa, Southern Africa, Eurasian Boreal,
Eurasian Temperate, Tropical Asia, Australia, and Europe.

The upper panel in Fig. 15 contains the MSC of our NEE
product for the 11 TransCom land regions as well as the aver-
age MSC from the ensemble of atmospheric inversions. For

the latter, the shaded regions are spanned by minimum and
maximum values per month. Since it is known that upscal-
ing methods tend to overestimate the carbon uptake of the
biosphere (too large carbon sink) compared to atmospheric
inversions, we have also subtracted the mean value from all
curves in the upper panel and show the differences from the
corresponding mean values in the lower half in order to see
whether the patterns in the MSC are matching between the
upscaled product and the inversions. One can nicely see from
the plots in the lower half that this is the case for most of the
regions, except for the tropics where seasonality is also small.
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Figure 15. Comparison of our upscaled global NEE fluxes (red lines) with an ensemble of atmospheric CO2 inversions (blue lines) con-
sidering the mean seasonal cycle (MSC) for 11 TransCom regions estimated from the years 2001 to 2010. For the ensemble of atmospheric
inversions, the average MSC among the ensemble members is shown together with shaded regions spanned by minimum and maximum
values within the ensemble.

In the upper panel, we also observe the largest discrepancies
between the upscaled NEE product and the results from the
atmospheric inversions in the tropical regions. However, this
is a known problem for the upscaling approaches that rely
on flux tower measurements (Jung et al., 2011; Zscheischler
et al., 2017) and not a specific problem of our product. The
reason is not yet clarified in the community but one issue is
related to the fact that there are only very few flux tower sites
in tropical regions, which can also be observed from Fig. A1.

For some regions, such as Southern Africa and South
American Temperate, mismatches between the inversions
and the flux tower upscaling might also be due to contribu-
tions of fire emissions which are “seen” by the atmosphere
but not in our approach. Overall, the patterns of the MSC in
most of the regions are very similar to the results of the at-
mospheric inversions. This is remarkable given that the two
approaches and data sources are entirely independent. Thus,
our upscaling product has the potential to provide further
constraints for the atmospheric inversion methods with the
benefit of high resolution in both space and time.

We use the atmospheric inversions as an independent
benchmark here, even though a number of uncertainties also
apply to those. To put the agreement of the upscaling with
the inversions into context of agreement among inversions,
we display the values of pairwise correlation coefficients for
the MSC of the different inversion methods together with the
correlation coefficients between the MSC of each inversion

Pairwise correlations between different inversions
Correlations between inversions and our product

North American Boreal

North American Temperate

South American Tropical

South American Temperate

Northern Africa

Southern Africa

Eurasian Boreal

Eurasian Temperate

Tropical Asia
Australia

Europe
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n 

co
ef

fic
ie

nt

Figure 16. Distributions of correlation coefficients for the mean
seasonal cycles in the 11 TransCom regions comparing either indi-
vidual ensemble members from the set of atmospheric inversions or
each ensemble member with our upscaled NEE product.

approach and our upscaling product for each TransCom land
region in Fig. 16. Overall, the agreement of our upscaling ap-
proach with the inversions is comparable with the agreement
among different inversions suggesting promise for a syner-
gistic joint usage of both approaches. There is very large
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consistency among inversions and with the upscaling ap-
proach for the regions North American Boreal, North Amer-
ican Temperate, Eurasian Boreal, and Europe. Interestingly,
the upscaling approach is more consistent with the inversions
than among the inversions for the Eurasian Temperate region.
We observe that the seasonality of NEE in the tropical re-
gions is not well constrained by each approach.

7 Data availability and usage notes

The calculated global half-hourly flux products are pub-
licly available for free at https://doi.org/10.17871/BACI.224
(Bodesheim et al., 2017) under the creative commons license
CC BY 4.04. More precisely, gridded products at 0.5◦ spa-
tial resolution and half-hourly temporal resolution are pro-
vided covering GPP, NEE, LE, and H for the years 2001 to
2014. In addition, a derived product of monthly average diur-
nal cycles globally for these four fluxes and the given range
of years at the same spatial resolution has been prepared for
download as well. It is much more convenient for the user
to just download the lightweight data of the monthly aver-
ages instead of getting the half-hourly data of much larger
file size and then performing the averaging on the local ma-
chine. As mentioned in the paper, the monthly average diur-
nal cycles are primarily recommended for usage, since this
derived product turned out to be more robust.

Please note that all data files of GPP can contain slightly
negative values, which seems to be implausible at first
glance. However, these negative values mainly occur during
nighttime and are the result of an artifact in the flux parti-
tioning method at site level carried out for the FLUXNET
eddy covariance tower network, where observed NEE is sep-
arated into GPP and ecosystem respiration. The negative val-
ues from the sites are part of the training set for the pro-
posed upscaling approach, and therefore the machine learn-
ing model can produce negative GPP values for similar envi-
ronmental conditions as well. Since our data products are ob-
tained by an entirely data-driven machine learning approach,
the observational error at site level (that also causes nega-
tive nighttime GPP at the sites) propagates to global scale.
Hence, dealing with negative GPP observations is not only
a problem in our global data products but also occurs when
working with site-level data. Neglecting negative values at
the sites during model learning or manually setting them to
zero would lead to biased regression models and setting neg-
ative estimations to zero would cause biased predictions. We
therefore decided to keep negative values both in the training
set and in our provided global data products. If these neg-
ative values are causing trouble within any application that
builds on our data products, they can easily be set to zero by
the user as an appropriate post-processing step. However, the

4Please check https://creativecommons.org/licenses/by/4.0/ as
well as https://creativecommons.org/licenses/by/4.0/legalcode

user should keep in mind that this leads to an overall bias
within the data product.

The data products are stored as individual files for each
variable and each year that has been considered. We have
chosen the platform-independent NetCDF5 file format and
software packages exist in many scientific programming lan-
guages (including Matlab, python, and R) for easy data ac-
cess.

8 Conclusions and future work

In this paper, we have shown how to perform an upscal-
ing of half-hourly carbon and energy fluxes from local in
situ measurements to global scale. We have introduced two
general prediction approaches to estimate half-hourly values
mainly from predictor variables at coarser temporal resolu-
tion. Since the problem has been formulated as a large-scale
regression task, we have been working with random forest
regression, although other regression algorithms could be ap-
plied as well. Our prediction approaches have been validated
by a set of cross-validation experiments employing a leave-
one-site-out strategy for the FLUXNET towers that provide
the observations. As a result of our analyses, we have pre-
sented global flux products at half-hourly temporal resolu-
tion for the years 2001 to 2014 covering four important vari-
ables: gross primary production, net ecosystem exchange, la-
tent heat, and sensible heat. Detailed descriptions of the ex-
perimental setup for the cross-validation as well as for the
computations that have led to the global products were given
as well. Concerning the global data products, we have also
shown derived statistics like maximum diurnal amplitudes of
a month as well as maximum half-hourly fluxes at each spa-
tial position. These properties can only be computed from
data products with subdaily temporal resolution showing the
benefits of our contributions.

In future work, we aim at improving the prediction per-
formance of half-hourly fluxes in various ways. First, we
plan to add additional sources of information to the drivers
by extending the set of predictor variables to cover further
relevant aspects for the individual fluxes like water avail-
ability or soil properties. This would allow for tackling dif-
ficult scenarios like seasonal droughts, where the current ap-
proaches have shown larger errors in the prediction. Second,
we also want to incorporate the history of the predictor vari-
ables in order to account for lagged effects. So far, samples
are treated independently in the prediction but their temporal
context due to the time series characteristics may provide ad-
ditional knowledge that can be exploited for the estimation
of fluxes. Third, subdaily meteorology could be included in
the calculations of the global products by incorporating the
new generation of meteorological reanalysis data of ERA5 at
an hourly timescale that will be released in the near future
or by exploiting observations from geostationary satellites.

5https://www.unidata.ucar.edu/software/netcdf/
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Of course, the global products will be updated if these addi-
tional ideas lead to better prediction performances. Another
import aspect of future work is providing uncertainties for
the flux estimations, which could be done by quantile regres-
sion approaches (Meinshausen, 2006).
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Figure A1. The superimposed FLUXNET tower locations of the
sites used in this paper clearly show the biased distribution of under-
lying in situ measurements due to better spatial coverage of regions
in Europe and North America compared to the rest of the world.

Appendix A: FLUXNET tower locations

Since our machine learning models for the upscaling tasks
depend on in situ measurements from FLUXNET towers that
are required to create the training set, it is necessary to look
at the spatial distribution of these towers to judge on the ade-
quacy of the global data products. In Fig. A1, we display the
FLUXNET tower locations of the 222 sites that have been
used in this paper by superimposing them on the maximum
half-hourly GPP map of Fig. 14. One can clearly observe a
bias in the distribution of sites, since most of the towers are
located in Europe and North America. Hence, regions with
similar climatic conditions are well represented by our global
data products compared to ecosystems that are also less cap-
tured by the site network, e.g., the tropical regions. Please
note that this bias is not a specific problem for the upscaling
approaches and global data products of this paper, because
it affects all upscaling studies and corresponding data prod-
ucts (Jung et al., 2011; Tramontana et al., 2016; Zscheischler
et al., 2017). Thus, it does not only influence the diurnal cy-
cle of fluxes, which is the key contribution of this paper, but
rather remains a more general issue. We also refer to previ-
ous studies about the representativeness of FLUXNET, see
for example the work of Reichstein et al. (2014), who make
use of climate-space mappings to illustrate the impact of an
imbalanced distribution of sites on carbon uptake.
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Figure B1. The distribution of gaps in the flux data of 129 456 site
days that we have used from 222 FLUXNET towers clearly shows
a nighttime dominance of the gaps. In total, there are roughly 35 %
of gaps in this half-hourly flux data.

Appendix B: Gaps in the flux data

In Sect. 2.1, we mentioned that we have ignored gaps in the
half-hourly flux data. From a machine learning perspective,
we can anyway only do the training on the data we have, in-
dependent of their distribution in time. Furthermore, we have
decided to not include gap-filled data in order to prevent the
machine learning model to adapt too much to the gap-filling
method. However, we have found that within all the site days
that we have taken into account, there are roughly 35 % gaps
and Fig. B1 shows their distribution among the half hours.

One can clearly observe a nighttime dominance of the
gaps. For GPP, this is not a big problem, because it is as-
sumed to be zero anyhow. Considering NEE, the absolute
fluxes are also smaller during night compared to daytime ob-
servations. The nighttime dominance of gaps arises from less
turbulence during these hours and this is an inherent problem
of the measurement devices that we cannot resolve. However,
it should be noted that such a biased distribution of gaps does
not directly lead to a model bias, as it would be the case, for
example, for linear methods. Since we have picked random
forests as a nonlinear machine learning technique, our de-
rived models are less biased for imbalanced data because the
final estimations in the leaf nodes of the decision trees are
made locally in predictor space by considering mean values
from samples that fall into the respective leaf node. Hence,
they are independent from samples that are far away in pre-
dictor space but could potentially have higher or lower den-
sity.

In addition, we have also carried out preliminary experi-
ments where we have only used site days with no gaps, i.e.,
where all 48 half-hourly values have been available. This has
then reduced the overall number of training samples mas-
sively and has clearly reduced prediction performance, most
likely due to worse generalization abilities because the re-
duced training data did not capture all environmental condi-
tions sufficiently well.
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Appendix C: Predictor variables

In Table C1, we have reproduced Table 2 of Tramontana et al.
(2016) that lists the predictor variables with at most daily
temporal resolution used in our upscaling study. Note that
we only used the variables from the RS+METEO setup.

Table C1. This table has been reproduced from Table 2 of Tramontana et al. (2016) and the original caption is the following one. “Selected
predictors for both setups for CO2 fluxes (GPP, TER and NEE) and energy fluxes (H, LE and Rn). List of acronyms: Enhanced Vegetation
Index (EVI), fraction of absorbed photosynthetically active radiation (fAPAR), leaf area index (LAI), daytime land surface temperature
(LSTDay) and nighttime land surface temperature (LSTNight), middle infrared reflectance (band 7; MIR1), Normalized Difference Vegetation
Index (NDVI), Normalized Difference Water Index (NDWI), plant functional type (PFT), incoming global radiation (Rg), top of atmosphere
potential radiation (Rpot), Index of Water Availability (IWA), relative humidity (Rh), Water Availability Index lower (WAIL), and upper
(WAIU), and mean seasonal cycle (MSC). The product between A and B (A×B) is shown as (A, B).”

Setup Type of variability CO2 fluxes Energy fluxes

RS Spatial PFT PFT
Amplitude of MSC of EVI Maximum of MSC of (fAPAR, Rg)
Amplitude of MSC of MIR1 Minimum of MSC of Rg
Maximum of MSC of LSTDay

Spatial and seasonal MSC of LAI MSC of (EVI, LSTDay)
Rpot

Spatial, seasonal, and interannual NDWI Rg
LSTDay LSTDay
LSTNight Anomalies of LSTNight
(NDVI, Rg) Anomalies of (EVI, LSTDay)

RS+METEO Spatial PFT PFT
Amplitude of MSC of NDVI Maximum of MSC of WAIU
Amplitude of MSC of band 4
BRDF reflectance2

Mean of MSC of band 6 BRDF
reflectance2

Minimum of MSC of NDWI Max of MSC of (fPAR, Rg)
Amplitude of MSC of WAIL

Spatial and seasonal MSC of LSTNight Rpot
MSC of (fPAR, LSTDay) MSC of NDWI
MSC of (EVI, Rpot) MSC of LSTNight

MSC of (EVI, Rg)

Spatial, seasonal, and interannual Tair Rain
(Rg, MSC of NDVI) Rg
WAIL Rh

(MSC of NDVI, Rg, IWA)

1 Derived from the MOD13 product. 2 Derived from the MCD43 product.
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Appendix D: FLUXNET sites

In this study, we made use of data from 222 FLUXNET sites
that are equipped with eddy covariance towers. We would
like to thank all the data providers of these sites for their hard
work by collecting, filtering, and processing the raw data as
well as for sharing the data with the community. In Table D1,
we list the used FLUXNET sites together with corresponding
references. Note that a map of tower locations is shown in
Fig. A1.

Table D1. This is a list of 222 FLUXNET sites from which we have used data in our study.

Site ID Name Country Lat Long Years Reference

AT-Neu Neustift/Stubai Valley Austria 47.12 11.32 2002–2006 Wohlfahrt et al. (2008b)
AU-Fog Fogg Dam Australia −12.54 131.31 2006–2007 Beringer et al. (2013)
AU-How Howard Springs Australia −12.49 131.15 2001–2006 Beringer et al. (2007)
AU-Tum Tumbarumba Australia −35.66 148.15 2001–2006 Gorsel et al. (2007)
AU-Wac Wallaby Creek Australia −37.43 145.19 2005–2007 Kilinc et al. (2012)
BE-Bra Brasschaat (De Inslag Forest) Belgium 51.31 4.52 1997–2006 Gielen et al. (2010)
BE-Jal Jalhay Belgium 50.56 6.07 2006–2006 Broquet et al. (2013)
BE-Lon Lonzee Belgium 50.55 4.74 2004–2006 Moureaux et al. (2006)
BE-Vie Vielsalm Belgium 50.31 6.00 1996–2006 Aubinet et al. (2001)
BR-Ban Ecotone Bananal Island Brazil −9.82 −50.16 2003–2006 Borma et al. (2009)
BR-Cax Caxiuana Forest – Almeirim Brazil −1.72 −51.46 1999–2003 Restrepo-Coupe et al. (2013)
BR-Ji2 Rond. – Rebio Jaru Ji Parana – Tower A Brazil −10.08 −61.93 2000–2002 Restrepo-Coupe et al. (2013)
BR-Ma2 Manaus – ZF2 K34 Brazil −2.61 −60.21 1999–2006 Restrepo-Coupe et al. (2013)
BR-Sa1 Santarem – Km67 – Primary Forest Brazil −2.86 −54.96 2002–2004 Restrepo-Coupe et al. (2013)
BR-Sa2 Santarem – Km77 – Pasture Brazil −3.01 −54.54 2001–2002 Restrepo-Coupe et al. (2013)
BR-Sa3 Santarem – Km83 – Logged Forest Brazil −3.02 −54.97 2000–2003 Restrepo-Coupe et al. (2013)
BR-Sp1 Sao Paulo Cerrado Brazil −21.62 −47.65 2001–2002 Restrepo-Coupe et al. (2013)
BW-Ghg Ghanzi Grass Site Botswana −21.51 21.74 2003–2003 Williams and Albertson (2004)
BW-Ghm Ghanzi Mixed Site Botswana −21.20 21.75 2003–2003 Williams and Albertson (2004)
BW-Ma1 Maun – Mopane Woodland Botswana −19.92 23.56 1999–2001 Arneth et al. (2006)
CA-Ca1 BC – Campbell River – Mature Forest Site Canada 49.87 −125.33 1997–2005 Humphreys et al. (2006)
CA-Ca2 BC – Campbell River – Clearcut Site Canada 49.87 −125.29 2000–2005 Humphreys et al. (2006)
CA-Ca3 BC – Campbell River – Young Plantation

Site
Canada 49.53 −124.90 2001–2005 Humphreys et al. (2006)

CA-Gro ON – Groundhog River – Boreal Mixed
Wood

Canada 48.22 −82.16 2003–2005 McCaughey et al. (2006)

CA-Let AB – Lethbridge – Mixed Grass Prairie Canada 49.71 −112.94 1998–2005 Flanagan et al. (2002)
CA-Man MB – Manitoba – Northern Old Black

Spruce – BOREAS Northern Study Area
Canada 55.88 −98.48 1994–2003 Dunn et al. (2007)

CA-Mer ON – Eastern Peatland – Mer Bleue Canada 45.41 −75.52 1998–2005 Lafleur et al. (2003)
CA-NS1 UCI – 1850 burn site Canada 55.88 −98.48 2002–2005 Goulden et al. (2006)
CA-NS2 UCI – 1930 burn site Canada 55.91 −98.52 2001–2005 Goulden et al. (2006)
CA-NS3 UCI – 1964 burn site Canada 55.91 −98.38 2001–2005 Goulden et al. (2006)
CA-NS4 UCI – 1964 burn site wet Canada 55.91 −98.38 2002–2004 Goulden et al. (2006)
CA-NS5 UCI – 1981 burn site Canada 55.86 −98.49 2001–2005 Goulden et al. (2006)
CA-NS6 UCI – 1989 burn site Canada 55.92 −98.96 2001–2005 Goulden et al. (2006)
CA-NS7 UCI – 1998 burn site Canada 56.64 −99.95 2002–2005 Goulden et al. (2006)
CA-Oas SK – SSA Old Aspen Canada 53.63 −106.20 1997–2005 Amiro et al. (2006)
CA-Obs SK – SSA Old Black Spruce Canada 53.99 −105.12 1999–2005 Amiro et al. (2006)
CA-Ojp SK – SSA Old Jack Pine Canada 53.92 −104.69 1999–2005 Amiro et al. (2006)
CA-Qcu QC – Boreal Cutover Site Canada 49.27 −74.04 2001–2006 Giasson et al. (2006)
CA-Qfo QC – Mature Boreal Forest Site Canada 49.69 −74.34 2003–2006 Bergeron et al. (2007)
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Table D1. Continued.

Site ID Name Country Lat Long Years Reference

CA-SF1 SK – Fire 1977 Canada 54.49 −105.82 2003–2005 Mkhabela et al. (2009)
CA-SF2 SK – Fire 1989 Canada 54.25 −105.88 2003–2005 Mkhabela et al. (2009)
CA-SF3 SK – Fire 1998 Canada 54.09 −106.00 2003–2005 Mkhabela et al. (2009)
CA-SJ1 SK – 1994 Harv. Jack Pine Canada 53.91 −104.66 2001–2005 Mkhabela et al. (2009)
CA-SJ2 SK – 2002 Harvested Jack Pine Canada 53.94 −104.65 2003–2005 Mkhabela et al. (2009)
CA-SJ3 SK – SSA 1975 Harv. Yng Jack Pine Canada 53.88 −104.64 2004–2005 Mkhabela et al. (2009)
CA-TP1 ON – Turkey Point Seedling White Pine Canada 42.66 −80.56 2004–2005 Peichl et al. (2010)
CA-TP2 ON – Turkey Point Young White Pine Canada 42.77 −80.46 2003–2005 Arain and Restrepo-Coupe

(2005)
CA-TP3 ON – Turkey Point Middle-aged White Pine Canada 42.71 −80.35 2003–2005 Peichl et al. (2010)
CA-TP4 ON – Turkey Point Mature White Pine Canada 42.71 −80.36 2003–2005 Arain and Restrepo-Coupe

(2005)
CA-WP1 AB – Western Peatland – LaBiche River –

Black Spruce/Larch Fen
Canada 54.95 −112.47 2003–2005 Syed et al. (2006)

CA-WP2 AB – Western Peatland – Sphagnum moss
– Poor Fen

Canada 55.54 −112.33 2004–2004 Glenn et al. (2006)

CG-Tch Tchizalamou Rep. of Congo −4.29 11.66 2006–2006 Merbold et al. (2009)
CH-Oe1 Oensingen1 grass Switzerland 47.29 7.73 2002–2006 Ammann et al. (2007)
CH-Oe2 Oensingen2 crop Switzerland 47.29 7.73 2005–2005 Kutsch et al. (2010)
CN-Bed Beijing Daxing China 39.53 116.25 2005–2006 Liu et al. (2009)
CN-Cha Changbaishan China 42.40 128.10 2003–2003 Guan et al. (2006)
CN-Do1 Dongtan 1 China 31.52 121.96 2005–2005 Yan et al. (2008)
CN-Do2 Dongtan 2 China 31.58 121.90 2005–2005 Yan et al. (2008)
CN-Do3 Dongtan 3 China 31.52 121.97 2005–2005 Yan et al. (2008)
CN-Du1 Duolun_cropland China 42.05 116.67 2005–2006 Zhang et al. (2007)
CN-Du2 Duolun_grassland China 42.05 116.28 2006–2006 Zhang et al. (2007)
CN-Ku1 Kubuqi_populus forest China 40.54 108.69 2005–2006 Wilske et al. (2009)
CN-Ku2 Kubuqi_shrubland China 40.38 108.55 2006–2006 Wilske et al. (2009)
CN-Xi1 Xilinhot fenced steppe (X06) China 43.55 116.68 2006–2006 Chen et al. (2009)
CN-Xi2 Xilinhot grassland site (X03) China 43.55 116.67 2006–2006 Chen et al. (2009)
CZ-BK1 Bily Kriz – Beskidy Mountains Czech Rep. 49.50 18.54 2000–2006 Acosta et al. (2008)
CZ-BK2 Bily Kriz – grassland Czech Rep. 49.49 18.54 2004–2006 Marek et al. (2011)
CZ-wet CZECHWET – Trebon Czech Rep. 49.03 14.77 2006–2006 Marek et al. (2011)
DE-Geb Gebesee Germany 51.10 10.91 2004–2006 Anthoni et al. (2004)
DE-Gri Grillenburg – grass station Germany 50.95 13.51 2005–2006 Owen et al. (2007)
DE-Hai Hainich Germany 51.08 10.45 2000–2006 Knohl et al. (2003)
DE-Har Hartheim Germany 47.93 7.60 2005–2006 Schindler et al. (2006)
DE-Kli Klingenberg – cropland Germany 50.89 13.52 2004–2006 Owen et al. (2007)
DE-Meh Mehrstedt 1 Germany 51.28 10.66 2003–2006 Don et al. (2009)
DE-Tha Anchor Station Tharandt – old spruce Germany 50.96 13.57 1996–2006 Bernhofer et al. (2003)
DE-Wet Wetzstein Germany 50.45 11.46 2002–2006 Anthoni et al. (2004)
DK-Fou Foulum Denmark 56.48 9.59 2005–2005 Soegaard et al. (2003)
DK-Lva Lille Valby (Rimi) Denmark 55.68 12.08 2005–2006 Soussana et al. (2007)
DK-Ris Risbyholm Denmark 55.53 12.10 2004–2005 Houborg and Soegaard

(2004)
DK-Sor Soroe Denmark 55.49 11.65 1996–2006 Pilegaard et al. (2001)
ES-ES1 El Saler Spain 39.35 −0.32 1999–2006 Carvalhais et al. (2008)
ES-ES2 El Saler – Sueca Spain 39.28 −0.32 2004–2006 Kutsch et al. (2010)
ES-LMa Las Majadas del Tietar Spain 39.94 −5.77 2004–2006 Perez-Priego et al. (2017)
ES-VDA Vall d’Alinya Spain 42.15 1.45 2004–2006 Gilmanov et al. (2007)
FI-Hyy Hyytiala Finland 61.85 24.29 1996–2006 Suni et al. (2003)
FI-Kaa Kaamanen wetland Finland 69.14 27.30 2000–2006 Aurela et al. (2004)
FI-Sii Siikaneva fen Finland 61.83 24.19 2004–2005 Haapanala et al. (2006)
FI-Sod Sodankyla Finland 67.36 26.64 2000–2006 Thum et al. (2007)
FR-Aur Aurade France 43.55 1.11 2005–2005 Béziat et al. (2009)
FR-Fon Fontainebleau France 48.48 2.78 2005–2006 Delpierre et al. (2016)
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Table D1. Continued.

Site ID Name Country Lat Long Years Reference

FR-Gri Grignon (after 5 June 2005) France 48.84 1.95 2005–2006 Loubet et al. (2011)
FR-Hes Hesse Forest – Sarrebourg France 48.67 7.06 1997–2006 Granier et al. (2000)
FR-LBr Le Bray (after 28 June 1998) France 44.72 −0.77 1996–2006 Berbigier et al. (2001)
FR-Lam Lamasquere France 43.49 1.24 2005–2005 Béziat et al. (2009)
FR-Lq1 Laqueuille France 45.64 2.74 2004–2006 Allard et al. (2007)
FR-Lq2 Laqueuille extensive France 45.64 2.74 2004–2006 Allard et al. (2007)
FR-Pue Puechabon France 43.74 3.60 2000–2006 Allard et al. (2008)
GF-Guy Guyaflux French Guyana 5.28 −52.93 2004–2006 Bonal et al. (2008)
HU-Bug Bugacpuszta Hungary 46.69 19.60 2002–2006 Nagy et al. (2007)
HU-Mat Matra Hungary 47.85 19.73 2004–2006 Wohlfahrt et al. (2008a)
ID-Pag Palangkaraya Indonesia −2.35 114.04 2002–2003 Hirano et al. (2007)
IE-Dri Dripsey Ireland 51.99 −8.75 2003–2005 Peichl et al. (2011)
IL-Yat Yatir Israel 31.34 35.05 2001–2006 Grünzweig et al. (2003)
IT-Amp Amplero Italy 41.90 13.61 2002–2006 Wohlfahrt et al. (2008a)
IT-BCi Borgo Cioffi Italy 40.52 14.96 2004–2006 Kutsch et al. (2010)
IT-Bon Bonis Italy 39.48 16.53 2006–2006 Balzarolo et al. (2011)
IT-Col Collelongo- Selva Piana Italy 41.85 13.59 1996–2006 Valentini et al. (1996)
IT-Cpz Castelporziano Italy 41.71 12.38 1997–2006 Garbulsky et al. (2008)
IT-LMa La Mandria Italy 45.58 7.15 2003–2006 Broquet et al. (2013)
IT-Lav Lavarone (after March 2002) Italy 45.96 11.28 2000–2006 Cescatti and Marcolla

(2004)
IT-MBo Monte Bondone Italy 46.02 11.05 2003–2006 Marcolla and Cescatti

(2005)
IT-Mal Malga Arpaco Italy 46.12 11.70 2003–2006 Gilmanov et al. (2007)
IT-Noe Sardinia/Arca di Noe Italy 40.61 8.15 2004–2006 Spano et al. (2009)
IT-Non Nonantola Italy 44.69 11.09 2001–2006 Reichstein et al. (2003)
IT-PT1 Zerbolo – Parco Ticino – Canarazzo Italy 45.20 9.06 2002–2004 Migliavacca et al. (2009)
IT-Pia Island of Pianosa Italy 42.58 10.08 2002–2005 Vaccari et al. (2012)
IT-Ren Renon/Ritten (Bolzano) Italy 46.59 11.43 1999–2006 Marcolla et al. (2005)
IT-Ro1 Roccarespampani 1 Italy 42.41 11.93 2000–2006 Rey et al. (2002)
IT-Ro2 Roccarespampani 2 Italy 42.39 11.92 2002–2006 Tedeschi et al. (2006)
IT-SRo San Rossore Italy 43.73 10.28 1999–2006 Chiesi et al. (2005)
JP-Mas Mase paddy flux site – Tsukuba –

Japan (MSE)
Japan 36.05 140.03 2002–2003 Saito et al. (2005)

JP-Tak Takayama Japan 36.15 137.42 1999–2004 Yamamoto et al. (1999)
JP-Tom Tomakomai National Forest Japan 42.74 141.51 2001–2003 Hirano et al. (2003)
KR-Hnm Haenam Korea 34.55 126.57 2004–2006 Lee et al. (2003)
KR-Kw1 Gwangneung Coniferous Forest Korea 37.75 127.16 2004–2007 Hong et al. (2008)
NL-Ca1 Cabauw the Netherlands 51.97 4.93 2003–2006 Jacobs et al. (2007)
NL-Haa Haastrecht the Netherlands 52.00 4.81 2003–2004 Jacobs et al. (2007)
NL-Hor Horstermeer the Netherlands 52.03 5.07 2004–2006 Hendriks et al. (2007)
NL-Lan Langerak the Netherlands 51.95 4.90 2005–2006 Moors et al. (2010)
NL-Loo Loobos the Netherlands 52.17 5.74 1996–2006 Dolman et al. (2002)
NL-Lut Lutjewad the Netherlands 53.40 6.36 2006–2006 Moors et al. (2010)
NL-Mol Molenweg the Netherlands 51.65 4.64 2005–2006 Moors et al. (2010)
PT-Esp Espirra Portugal 38.64 −8.60 2002–2006 Rodrigues et al. (2011)
PT-Mi1 Mitra (Evora) Portugal 38.54 −8.00 2003–2005 Pereira et al. (2007)
PT-Mi2 Mitra IV Tojal Portugal 38.48 −8.02 2004–2006 Pereira et al. (2007)
RU-Che Cherskii Russia 68.61 161.34 2002–2005 Corradi et al. (2005)
RU-Cok Chokurdakh Russia 70.62 147.88 2003–2005 van der Molen et al.

(2007)
RU-Fyo Fyodorovskoye wet spruce stand Russia 56.46 32.92 1998–2006 Kurbatova et al. (2008)
RU-Ha1 Ubs Nur – Hakasija – grassland Russia 54.73 90.00 2002–2004 Belelli Marchesini et al.

(2007)
RU-Ha2 Ubs Nur – Hakasija – recovering grassland Russia 54.77 89.96 2002–2003 Belelli Marchesini et al.

(2007)
RU-Ha3 Ubs Nur – Hakasija – Site 3 Russia 54.70 89.08 2004–2004 Belelli Marchesini et al.

(2007)
RU-Zot Zotino Russia 60.80 89.35 2002–2004 Kurbatova et al. (2002)
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Table D1. Continued.

Site ID Name Country Lat Long Years Reference

SE-Abi Abisko Sweden 68.36 18.79 2005–2005 Christensen et al. (2007)
SE-Deg Degero Sweden 64.18 19.55 2001–2005 Sagerfors et al. (2008)
SE-Nor Norunda Sweden 60.09 17.48 1996–2005 Lagergren et al. (2008)
SE-Sk1 Skyttorp1 young Sweden 60.13 17.92 2005–2005 Launiainen et al. (2016)
SE-Sk2 Skyttorp Sweden 60.13 17.84 2004–2005 Launiainen et al. (2016)
SE-St1 Stordalen Forest- Mountain Birch Sweden 68.37 19.05 2006–2006 Christensen et al. (2012)
SK-Tat Tatra Slovak Rep. 49.12 20.16 2005–2005 Matese et al. (2008)
UK-AMo Auchencorth Moss – Scotland UK 55.79 −3.24 2005–2005 Drewer et al. (2010)
UK-EBu Easter Bush- Scotland UK 55.87 −3.21 2004–2006 Famulari et al. (2004)
UK-ESa East Saltoun UK 55.91 −2.86 2003–2005 Smallman et al. (2013)
UK-Gri Griffin – Aberfeldy – Scotland UK 56.61 −3.80 1997–2006 Sturm et al. (2005)
UK-Ham Hampshire UK 51.12 −0.86 2004–2005 Wilkinson et al. (2012)
UK-Her Hertfordshire UK 51.78 −0.48 2006–2006 Broquet et al. (2013)
UK-Tad Tadham Moor UK 51.21 −2.83 2001–2001 Harding and Lloyd (2008)
US-ARM OK – ARM Southern Great Plains site –

Lamont
USA 36.61 −97.49 2003–2006 Fischer et al. (2007)

US-Aud AZ – Audubon Research Ranch USA 31.59 −110.51 2002–2006 Krishnan et al. (2012)
US-Bar NH – Bartlett Experimental Forest USA 44.06 −71.29 2004–2005 Jenkins et al. (2007)
US-Bkg SD – Brookings USA 44.35 −96.84 2004–2006 Yang et al. (2017)
US-Blo CA – Blodgett Forest USA 38.90 −120.63 1997–2006 Goldstein et al. (2000)
US-Bn1 AK – Bonanza Creek; 1920 Burn site near

Delta Junction
USA 63.92 −145.38 2003–2003 Liu et al. (2005)

US-Bn2 AK – Bonanza Creek; 1987 Burn site near
Delta Junction

USA 63.92 −145.38 2003–2003 Liu et al. (2005)

US-Bn3 AK – Bonanza Creek; 1999 Burn site near
Delta Junction

USA 63.92 −145.74 2003–2003 Liu et al. (2005)

US-Bo1 IL – Bondville USA 40.01 −88.29 1996–2007 Meyers and Hollinger (2004)
US-Bo2 IL – Bondville (companion site) USA 40.01 −88.29 2004–2006 Meyers and Hollinger (2004)
US-Brw AK – Barrow USA 71.32 −156.63 1998–2002 Kwon et al. (2006)
US-CaV WV – Canaan Valley USA 39.06 −79.42 2004–2005 Wang et al. (2008)
US-Dk1 NC – Duke Forest – open field USA 35.97 −79.09 2001–2005 Stoy et al. (2006)
US-Dk2 NC – Duke Forest – hardwoods USA 35.97 −79.10 2003–2005 Stoy et al. (2006)
US-Dk3 NC – Duke Forest – loblolly pine USA 35.98 −79.09 2001–2005 Stoy et al. (2006)
US-FPe MT – Fort Peck USA 48.31 −105.10 2000–2006 Wang et al. (2008)
US-FR2 TX – Freeman Ranch – Mesquite Juniper USA 29.95 −98.00 2004–2006 Heilman et al. (2014)
US-Fuf AZ – Flagstaff – Unmanaged Forest USA 35.09 −111.76 2005–2006 Dore et al. (2008)
US-Fwf AZ – Flagstaff – Wildfire USA 35.45 −111.77 2005–2006 Dore et al. (2008)
US-Goo MS – Goodwin Creek USA 34.25 −89.87 2002–2006 Wilson and Meyers (2007)
US-Ha1 MA – Harvard Forest EMS Tower (HFR1) USA 42.54 −72.17 1991–2006 Urbanski et al. (2007)
US-Ha2 MA – Harvard Forest Hemlock Site USA 42.54 −72.18 2004–2004 Hadley et al. (2009)
US-Ho1 ME – Howland Forest (main tower) USA 45.20 −68.74 1996–2004 Hollinger et al. (2004)
US-Ho2 ME – Howland Forest (west tower) USA 45.21 −68.75 1999–2004 Hollinger et al. (2004)
US-IB1 IL – Fermi National Accelerator Lab –

Batavia (Agricultural site)
USA 41.86 −88.22 2005–2007 Allison et al. (2007)

US-IB2 IL – Fermi National Accelerator Lab –
Batavia (Prairie site)

USA 41.84 −88.24 2004–2007 Gomez-Casanovas et al. (2012)

US-Ivo AK – Ivotuk USA 68.49 −155.75 2003–2006 Davidson et al. (2016)
US-KS1 FL – Kennedy Space Center (slash pine) USA 28.46 −80.67 2002–2002 Bracho et al. (2008)
US-KS2 FL – Kennedy Space Center (scrub oak) USA 28.61 −80.67 2000–2006 Powell et al. (2006)
US-LPH MA – Little Prospect Hill USA 42.54 −72.18 2002–2005 Hadley et al. (2008)
US-Los WI – Lost Creek USA 46.08 −89.98 2001–2005 Sulman et al. (2009)
US-MMS IN – Morgan Monroe State Forest USA 39.32 −86.41 1999–2005 Schmid et al. (2000)
US-MOz MO – Missouri Ozark Site USA 38.74 −92.20 2004–2006 Gu et al. (2006)
US-Me1 OR – Metolius – Eyerly burn USA 44.58 −121.50 2004–2005 Irvine et al. (2007)
US-Me2 OR – Metolius – intermediate aged

ponderosa pine
USA 44.45 −121.56 2003–2005 Vickers et al. (2009)

US-Me3 OR – Metolius – second young aged pine USA 44.32 −121.61 2004–2005 Vickers et al. (2009)
US-Me4 OR – Metolius – old aged ponderosa pine USA 44.50 −121.62 1996–2000 Law et al. (2001)
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Table D1. Continued.

Site ID Name Country Lat Long Years Reference

US-NC1 NC – NC_Clearcut USA 35.81 −76.71 2005–2006 Noormets et al. (2012)
US-NC2 NC – NC_Loblolly Plantation USA 35.80 −76.67 2005–2006 Noormets et al. (2012)
US-NR1 CO – Niwot Ridge Forest (LTER NWT1) USA 40.03 −105.55 1999–2003 Monson et al. (2002)
US-Ne1 NE – Mead – irrigated continuous maize

site
USA 41.17 −96.48 2001–2005 Verma et al. (2005)

US-Ne2 NE – Mead – irrigated maize-soybean
rotation site

USA 41.16 −96.47 2001–2005 Verma et al. (2005)

US-Ne3 NE – Mead – rainfed maize-soybean
rotation site

USA 41.18 −96.44 2001–2005 Verma et al. (2005)

US-PFa WI – Park Falls/WLEF USA 45.95 −90.27 1996–2003 Desai et al. (2015)
US-SO2 CA – Sky Oaks – Old Stand USA 33.37 −116.62 1997–2006 Lipson et al. (2005)
US-SO3 CA – Sky Oaks – Young Stand USA 33.38 −116.62 1997–2006 Lipson et al. (2005)
US-SO4 CA – Sky Oaks – New Stand USA 33.38 −116.64 2004–2006 Lipson et al. (2005)
US-SP1 FL – Slashpine – Austin Cary – 65yrs nat

regen
USA 29.74 −82.22 2000–2005 Powell et al. (2008)

US-SP2 FL – Slashpine – Mize-clearcut – 3yrs regen USA 29.76 −82.24 1998–2004 Bracho et al. (2012)
US-SP3 FL – Slashpine – Donaldson-mid-rot –

12yrs
USA 29.75 −82.16 1999–2004 Bracho et al. (2012)

US-SRM AZ – Santa Rita Mesquite USA 31.82 −110.87 2004–2006 Scott et al. (2009)
US-Syv MI – Sylvania Wilderness Area USA 46.24 −89.35 2002–2006 Desai et al. (2005)
US-Ton CA – Tonzi Ranch USA 38.43 −120.97 2001–2006 Ma et al. (2007)
US-UMB MI – Univ. of Mich. Biological Station USA 45.56 −84.71 1999–2003 Gough et al. (2008)
US-Var CA – Vaira Ranch- Ione USA 38.41 −120.95 2001–2006 Ma et al. (2007)
US-WCr WI – Willow Creek USA 45.81 −90.08 1999–2006 Cook et al. (2004)
US-Wi0 WI – Young red pine (YRP) USA 46.62 −91.08 2002–2002 Desai et al. (2008)
US-Wi1 WI – Intermediate hardwood (IHW) USA 46.73 −91.23 2003–2003 Desai et al. (2008)
US-Wi4 WI – Mature red pine (MRP) USA 46.74 −91.17 2002–2005 Desai et al. (2008)
US-Wi5 WI – Mixed young jack pine (MYJP) USA 46.65 −91.09 2004–2004 Desai et al. (2008)
US-Wi6 WI – Pine barrens #1 (PB1) USA 46.62 −91.30 2002–2002 Desai et al. (2008)
US-Wi8 WI – Young hardwood clearcut (YHW) USA 46.72 −91.25 2002–2002 Desai et al. (2008)
US-Wkg AZ – Walnut Gulch Kendall Grasslands USA 31.74 −109.94 2004–2006 Scott et al. (2010)
US-Wrc WA – Wind River Crane Site USA 45.82 −121.95 1998–2006 Falk et al. (2008)
VU-Coc CocoFlux Vanuatu −15.44 167.19 2001–2004 Roupsard et al. (2006)
ZA-Kru Skukuza – Kruger National Park South Africa −25.02 31.50 2001–2003 Scholes et al. (2001)
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